33
Views
0
CrossRef citations to date
0
Altmetric
Patent Evaluation

Treatment of CD30-positive diseases, such as Hodgkin's lymphoma, by administration of a combination of sheddase inhibitor and anti-CD30 immunotherapeutic agents

Incyte Corporation: WO2007143600

&
Pages 671-676 | Published online: 26 May 2008

Bibliography

  • Ansell SM, Armitage JO. Management of Hodgkin lymphoma. Mayo Clin Proc 2006;81(3):419-26
  • Schmitz N, Pfistner B, Sextro M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin's disease: a randomised trial. Lancet 2002;359(9323):2065-71
  • Borchmann P, Schnell R, Schulz H, Engert A. Monoclonal antibody-based immunotherapy of Hodgkin's lymphoma. Curr Opin Investig Drugs 2004;5(12):1262-7
  • Schwab U, Stein H, Gerdes J, et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin's disease and a subset of normal lymphoid cells. Nature 1982;299(5878):65-7
  • Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 1985;66(4):848-58
  • Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol 1998;10(6):457-70
  • Durkop H, Latza U, Hummel M, et al. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin's disease. Cell 1992;68(3):421-7
  • Smith CA, Gruss HJ, Davis T, et al. CD30 antigen, a marker for Hodgkin's lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 1993;73(7):1349-60
  • Molin D, Fischer M, Xiang Z, et al. Mast cells express functional CD30 ligand and are the predominant CD30L-positive cells in Hodgkin's disease. Br J Haematol 2001;114(3):616-23
  • Amakawa R, Hakem A, Kundig TM, et al. Impaired negative selection of T cells in Hodgkin's disease antigen CD30-deficient mice. Cell 1996;84(4):551-62
  • Braschoss S, Hirsch B, Dubel S, et al. New anti-CD30 human pancreatic ribonuclease-based immunotoxin reveals strong and specific cytotoxicity in vivo. Leuk Lymphoma 2007;48(6):1179-86
  • Barth S, Huhn M, Matthey B, et al. Ki-4(scFv)-ETA, a new recombinant anti-CD30 immunotoxin with highly specific cytotoxic activity against disseminated Hodgkin tumors in SCID mice. Blood 2000;95(12):3909-14
  • Engert A, Martin G, Pfreundschuh M, et al. Antitumor effects of ricin A chain immunotoxins prepared from intact antibodies and Fab fragments on solid human Hodgkin's disease tumors in mice. Cancer Res 1990;50(10):2929-35
  • Borchmann P, Treml JF, Hansen H, et al. The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity against malignant lymphoma. Blood 2003;102(10):3737-42
  • Klimm B, Schnell R, Diehl V, Engert A. Current treatment and immunotherapy of Hodgkin's lymphoma. Haematologica 2005;90(12):1680-92
  • Bartlett NL, Younes A, Carabasi MH, et al. A phase 1 multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30+ hematologic malignancies. Blood 2008;111(4):1848-54
  • Kasamon YL, Ambinder RF. Immunotherapies for Hodgkin's lymphoma. Crit Rev Oncol Hematol 2008;66(2):135-44
  • Ansell SM, Horwitz SM, Engert A, et al. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin's lymphoma and anaplastic large-cell lymphoma. J Clin Oncol 2007;25(19):2764-9
  • Maggio E, Van Den Berg A, Diepstra A, et al. Chemokines, cytokines and their receptors in Hodgkin's lymphoma cell lines and tissues. Ann Oncol 2002;13(Suppl 1):52-6
  • Hansen HP, Dietrich S, Kisseleva T, et al. CD30 shedding from Karpas 299 lymphoma cells is mediated by TNF-alpha-converting enzyme. J Immunol 2000;165(12):6703-9
  • Eichenauer DA, Simhadri VL, Pogge Von Strandmann E, et al. ADAM10 inhibition of human CD30 shedding increases specificity of targeted immunotherapy in vitro. Cancer Res 2007;67(1):332-8
  • Gerli R, Monti D, Bistoni O, et al. Chemokines, sTNF-Rs and sCD30 serum levels in healthy aged people and centenarians. Mech Ageing Dev 2000;121(1-3):37-46
  • McMillan SA, McDonnell GV, Douglas JP, et al. Elevated serum and CSF levels of soluble CD30 during clinical remission in multiple sclerosis. Neurology 1998;51(4):1156-60
  • Wang G, Hansen H, Tatsis E, et al. High plasma levels of the soluble form of CD30 activation molecule reflect disease activity in patients with Wegener's granulomatosis. Am J Med 1997;102(6):517-23
  • Casasnovas RO, Mounier N, Brice P, et al. Plasma cytokine and soluble receptor signature predicts outcome of patients with classical Hodgkin's lymphoma: a study from the Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol 2007;25(13):1732-40
  • Horn-Lohrens O, Tiemann M, Lange H, et al. Shedding of the soluble form of CD30 from the Hodgkin-analogous cell line L540 is strongly inhibited by a new CD30-specific antibody (Ki-4). Int J Cancer 1995;60(4):539-44
  • Schnell R, Staak O, Borchmann P, et al. A Phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4.dgA) in patients with refractory CD30+ Hodgkin's and non-Hodgkin's lymphoma. Clin Cancer Res 2002;8(6):1779-86
  • Hansen HP, Matthey B, Barth S, et al. Inhibition of metalloproteinases enhances the internalization of anti-CD30 antibody Ki-3 and the cytotoxic activity of Ki-3 immunotoxin. Int J Cancer 2002;98(2):210-5
  • Matthey B, Borchmann P, Schnell R, et al. Metalloproteinase inhibition augments antitumor efficacy of the anti-CD30 immunotoxin Ki-3(scFv)-ETA against human lymphomas in vivo. Int J Cancer 2004;111(4):568-74
  • Fu X, Parks WC, Heinecke JW. Activation and silencing of matrix metalloproteinases. Semin Cell Dev Biol 2008;19(1):2-13
  • Bond JS, Matters GL, Banerjee S, Dusheck RE. Meprin metalloprotease expression and regulation in kidney, intestine, urinary tract infections and cancer. FEBS Lett 2005;579(15):3317-22
  • Becherer JD, Blobel CP. Biochemical properties and functions of membrane-anchored metalloprotease-disintegrin proteins (ADAMs). Curr Top Dev Biol 2003;54:101-23
  • Grams F, Reinemer P, Powers JC, et al. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur J Biochem 1995;228(3):830-41
  • Maskos K, Fernandez-Catalan C, Huber R, et al. Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc Natl Acad Sci USA 1998;95(7):3408-12
  • Duan JJ, Chen L, Lu Z, et al. Discovery of low nanomolar non-hydroxamate inhibitors of tumor necrosis factor-alpha converting enzyme (TACE). Bioorg Med Chem Lett 2007;17(1):266-71
  • Duan JJ, Chen L, Lu Z, et al. Discovery of beta-benzamido hydroxamic acids as potent, selective, and orally bioavailable TACE inhibitors. Bioorg Med Chem Lett 2008;18(1):241-6
  • Niu X, Umland S, Ingram R, et al. IK682, a tight binding inhibitor of TACE. Arch Biochem Biophys 2006;451(1):43-50
  • Beck G, Bottomley G, Bradshaw D, et al. (E)-2(R)-[1(S)-(Hydroxycarbamoyl)-4-phenyl-3-butenyl]-2′-isobutyl-2′-(methanesulfonyl)-4-methylvalerohydrazide (Ro 32-7315), a selective and orally active inhibitor of tumor necrosis factor-alpha convertase. J Pharmacol Exp Ther 2002;302(1):390-6
  • Incyte Corporation. WO2007143600; 2007
  • Burns DM, He C, Li Y, et al. Conversion of an MMP-potent scaffold to an MMP-selective HER-2 sheddase inhibitor via scaffold hybridization and subtle P1′ permutations. Bioorg Med Chem Lett 2008;18(2):560-4
  • Zhou BB, Peyton M, He B, et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 2006;10(1):39-50
  • Pavlaki M, Zucker S. Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev 2003;22(2-3):177-203
  • Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002;295(5564):2387-92
  • Fridman JS, Caulder E, Hansbury M, et al. Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin Cancer Res 2007;13(6):1892-902

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.