223
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Engineering endomorphin drugs: state of the art

, PhD & , PhD
Pages 1-14 | Published online: 04 Jan 2012

Bibliography

  • Zadina JE, Hackler L, Ge L-J, Kastin AJ. A potent and selective endogenous agonist for the mu-opiate receptor. Nature 1997;386:499-501
  • Zadina JE, Kastin AJ, Hackler L. Mu-Opiate receptor peptides. WO9842732; 1998
  • Hackler L, Zadina JE, Ge LJ, Kastin AJ. Isolation of relatively large amounts of endomorphin-1 and endomorphin-2 from human brain cortex. Peptides 1997;18:1635-9
  • Largent-Milnes TM, Vanderah TW. Recently patented and promising ORL-1 ligands: where have we been and where are we going? Expert Opin Ther Patents 2010;20:291-305
  • Stevens CW, Brasel CM, Mohan S. Cloning and bioinformatics of amphibian mu, delta, kappa, and nociceptin opioid receptors expressed in brain tissue: evidence for opioid receptor divergence in mammals. Neurosci Lett 2007;419:189-94
  • Dreborg S, Sundstrom G, Larsson TA, Evolution of vertebrate opioid receptors. Proc Natl Acad Sci USA 2008;105:15487-92
  • Aldrich J. Analgesics. John Wiley & Sons; New York: 1996. p. 321-441
  • Blumberg H, Dayton HB, Wolf PS. Counteraction of narcotic antagonist analgesics by the narcotic antagonist naloxone. Proc Soc Exp Biol Med 1966;123:755-8
  • Julius D, Renault P. Narcotic antagonists: naltrexone. Progress Report. National Technical Information Service; Springfield, VA 22161: 1976
  • Goodman AJ, Le Bourdonnec B, Dolle RE. Mu opioid receptor antagonists: recent developments. ChemMedChem 2007;2:1552-70
  • Marczak ED, Jinsmaa Y, Li T, [N-allyl-Dmt1]-endomorphins are mu-opioid receptor antagonists lacking inverse agonist properties. J Pharmacol Exp Ther 2007;323:374-80
  • Kenakin T. Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol Sci 2007;28:407-15
  • Keresztes A, Borics A, Toth G. Recent advances in endomorphin engineering. ChemMedChem 2010;5:1176-96
  • Sun R-Q, Wang Y, Zhao C-S, Changes in brain content of nociceptin/orphanin FQ and endomorphin 2 in a rat model of neuropathic pain. Neurosci Lett 2001;311:13-16
  • Martin-Schild S, Zadina JE, Gerall AA, Localization of endomorphin-2-like immunoreactivity in the rat medulla and spinal cord. Peptides 1997;18:1641-9
  • Mousa SA, Machelska H, Schafer M, Stein C. Immunohistochemical localization of endomorphin-1 and endomorphin-2 in immune cells and spinal cord in a model of inflammatory pain. J Neuroimmunol 2002;126:5-15
  • Seale JV, Jessop DS, Harbuz MS. Immunohistochemical staining of endomorphin 1 and 2 in the immune cells of the spleen. Peptides 2004;25:91-4
  • Groneberg DA, Fischer A. Endogenous opioids as mediators of asthma. Pulm Pharmacol Ther 2001;14:383-9
  • Kamei J, Morita K, Saitoh A, Nagase H. The antitussive effects of endomorphin-1 and endomorphin-2 in mice. Eur J Pharmacol 2003;467:219-22
  • Storr M, Geisler F, Neuhuber WL, Endomorphin-1 and -2, endogenous ligands for the mu-opioid receptor, inhibit striated and smooth muscle contraction in the rat oesophagus. Neurogastroenterol Motil 2000;12:441-8
  • Yu Y, Wang X, Cui Y, Abnormal modulation of cholinergic neurotransmission by endomorphin 1 and endomorphin 2 in isolated bronchus of type 1 diabetic rats. Peptides 2006;27:2770-7
  • Jessop DS, Major GN, Coventry TL, Novel opioid peptides endomorphin-1 and endomorphin-2 are present in mammalian immune tissues. J Neuroimmunol 2000;106:53-9
  • Jessop DW, Harbuz MS. Inflammation modulatory compound. WO03020304A2; 2003
  • Jessop DS, Richards LJ, Harbuz MS. Opioid peptides endomorphin-1 and endomorphin-2 in the immune system in humans and in a rodent model of inflammation. Ann NY Acad Sci 2002;966:456-63
  • McDougall JJ, Baker CL, Hermann PM. Attenuation of knee joint inflammation by peripherally administered endomorphin-1. J Mol Neurosci 2003;22:125-37
  • Champion HC, Zadina JE, Kastin AJ, Endomorphin 1 and 2, endogenous ligands for the mu-opioid receptor, decrease cardian output, and total peripheral resistance in the rat. Peptides 1997;18:1393-7
  • Champion HC, Zadina JE, Kastin AJ, The endogenous mu-opioid receptor agonists endomorphins 1 and 2 have novel hypotensive activity in the rabbit. Biochem Biophys Res Commun 1997;235:567-70
  • Champion HC, Zadina JE, Kastin AJ, The endogenous mu-opioid agonists, endomorphin 1 and 2, have vasodilator activity in the hindquarters vascular bed of the rat. Life Sci 1997;61:409-15
  • Appleyard SM, Hayward M, Young JI, A role for the endogenous opioid beta-endorphin in energy homeostatis. Endocrinology 2003;144:1753-60
  • Woods SC, D'Alessio DA, Tso P, Consumption of high-fat diet alters the homeostatic regulation of energy balance. Physiol Behav 2004;83:573-8
  • Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci 2005;8:1445-9
  • Olszewski PK, Levine AS. Central opioids and consumption of sweet tastants: When reward outweighs homeostasis. Physiol Behav 2007;91:506-12
  • Chao D, Bazzy-Asaad A, Balboni G, delta-, but not mu-, opioid receptor stabilizes K+ homeostasis by reducing Ca2+ influx in the cortex during acute hypoxia. J Cell Physiol 2007;212:60-7
  • Lambert DG. The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 2008;7:694-711
  • Przewlocki R, Przewlocka B. Opioids in chronic pain. Eur J Pharmacol 2001;429:79-91
  • Zubieta J-K, Bueller JA, Jackson LR, Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J Neurosci 2005;25:7754-62
  • Morgan MM, Christie MJ. Analysis of opioid efficacy, tolerance, addiction and dependence from cell culture to human. Br J Pharmacol 2011;164:1322-34
  • Begley DJ. Peptides and the blood-brain barrier: the status of our understanding. Ann NY Acad Sci 1994;739:89-100
  • Shane R, Wilk S, Bodnar RJ. Modulation of endomorphin-2-induced analgesia by dipeptidyl peptidase IV. Brain Res 1999;815:278-86
  • Corbett AD, Henderson G, McKnight AT, 75 years of opioid research: the exciting but vain quest for the Holy Grail. Br J Pharmacol 2006;147:S153-62
  • Cardillo G, Gentilucci L, Qasem AR, Endomorphin-1 analogues containing beta-proline are mu-opioid receptor agonists and display enhanced enzymatic hydrolysis resistance. J Med Chem 2002;45:2571-8
  • Yamada T, Tani Y. Novel endomorphin derivatives. WO02102833A1; 2002
  • Biondi B, Giannini E, Negri L, Opioid peptides: synthesis and biological activity of new endomorphin analogues. Int J Pept Res Ther 2006;12:145-51
  • Janecka A, Fichna J, Kruszynski R, Synthesis and antinociceptive activity of cyclic endomorphin-2 and morphiceptin analogs. Biochem Pharmacol 2005;71:188-95
  • Cardillo G, Gentilucci L, Melchiorre P, Synthesis and binding activity of endomorphin-1 analogues containing beta-amino acids. Bioorg Med Chem Lett 2000;10:2755-8
  • Okada Y, Fujita Y, Motoyama T, Structural studies of [2',6'-dimethyl-L-tyrosine1]endomorphin-2 analogues: enhanced activity and cis orientation of the Dmt-Pro amide bond. Biorg Med Chem 2003;11:1983-4
  • Sasaki Y, Sasaki A, Niizuma H, Endomorphin 2 analogues containing Dmp residue as an aromatic amino acid surrogate with high mu-opioid receptor affinity and selectivity. Bioorg Med Chem 2003;11:675-8
  • Lazarus LH, Okada Y, Li T. Dmt-derivative compounds and related compositions and methods of use. WO2007027628A1; 2011
  • Persons PE, Hauske J, Hussoin R. Tetrapeptides, analogs and peptidomimetics which bind selectively mammalian opioid receptors. WO9965932; 1999
  • Wang RY. C-terminal modified endomorphin-1, endomorphin-2. CN100378126; 2006
  • Wang RZ. Endomorphin analog and its preparing method. CN20041026314; 2006
  • Wang R, Liu H, Liu X. Combined chemical modified endomorphin-1 and method for preparing same. CN20061104541;2008
  • Wang R, Yu Y, Liu H. C end modification endomorphin 2. CN20071147468; 2008
  • Fujita Y, Tsuda Y, Li T, Development of potent bifunctional endomorphin-2 analogues with mixed mu-/delta-opioid agonist and delta-opioid antagonist properties. J Med Chem 2004;47:3591-9
  • Sperlinga E, Kosson P, Urbanczyk-Lipowska Z, 6-Hydroxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid mimics active conformation of tyrosine in opioid peptides. Bioorg Med Chem Lett 2005;15:2467-9
  • Harrison BA, Gierasch TM, Neilan C, High-afifnity mu opioid receptor ligands discovered by the screening of an exhuastively stereodiversified library of 1,5-enediols. J Am Chem Soc 2002;124:13352-3
  • Harrison BA, Pasternak GW, Verdine GL. 2,6-Dimethyltyrosine analogues of a stereodiversified ligand library: highly potent, selective, non-peptidic mu opioid receptor agonists. J Med Chem 2003;46:677-80
  • Harrison B, Gierasch TM, Verdine GL, Mu opioid receptor ligands: methods of use and synthesis. WO2004033414A1; 2004
  • Zhao QY, Chen Q, Yang DJ, Endomorphin 1[Psi] and endomorphin 2[Psi], endomorphins analogues containing a reduced (CH2NH) amide bond between Tyr1 and Pro2, display partial agonist potency but significant antinociception. Life Sci 2005;77:1155-65
  • Toth I. Compounds and methods for the treatment of pain. WO2007112492A1; 2007
  • Koda Y, Del Orgo M, Wessling ST, Synthsis and in vitro evaluation of a library of modified endomorphin 1 peptides. Bioorg Med Chem 2008;16:6286-96
  • Li T, Jinsmaa Y, Nedachi M, Transformation of mu-opioid receptor agonists into biologically potent mu-opioid receptor antagonists. Bioorg Med Chem 2007;15:1237-51
  • Li Q, Marczak ED, Okada Y, The novel mu-opioid receptor antagonist [N-allyl-Dmt1]-endomorphin-2 attenuates the enhancement of GABAergic neurotransmission by ethanol. Alcohol Alcohol 2009;44:13-19
  • In Y, Minoura K, Tomoo K, Structural function of C-terminal amidation of endomorphin. Conformational comparison of mu-selective endomorphin-2 with its C-terminal free acid, studied by 1H-NMR spectroscopy, molecular calculation, and X-ray crystallography. FEBS J 2005;272:5079-97
  • Carr DB, Lipkowski AW, Kream RM, Novel chimeric analgesic peptides. EP2045269A1; 2009
  • Foran SE, Carr DB, Lipkowski AW, A substance P-opioid chimeric peptide as a unique nontolerance-forming analgesic. Proc Natl Acad Sci USA 2000;97:7621-6
  • Salvadori S, Attila M, Balboni G, delta Opioidmimetic antagonists: prototypes for designing a new generation of ultraselective opioid peptides. Mol Med 1995;1:678-89
  • Salvadori S, Balboni G, Guerrini R, Evolution of the Dmt-Tic pharmacophore: N-terminal methylated derivatives with extraordinary delta opioid antagonist activity. J Med Chem 1997;40:3100-8
  • Lazarus LH, Bryant SD, Cooper PS, Design of delta-opioid peptide antagonists for emerging drug applications. Drug Discov Today 1998;3:284-94
  • Bryant SD, Jinsmaa Y, Salvadori S, Dmt and opioid peptides: a potent alliance. Biopolymers (Peptide Sci) 2003;71:86-102
  • Balboni G, Onnis V, Cenzo C, Effect of lysine at C-terminus of the Dmt-Tic opioid pharmacophore. J Med Chem 2006;49:5610-17
  • Dygos JH, Yonan EE, Scaros MG, A convenient asymmetric synthesis of the unnatural amino acid 2,6-dimethyl-L-tyrosine. Synthesis 1992;8:741-3
  • Stewart JM, Young JD. Solid Phase Peptide Synthesis. Pierce Chemical Co; Rockford, IL: 1984
  • Atherton E, Sheppard RC. Solid phase peptide synthesis: a Practical Approach. Oxford University Press, IRL Press,; Oxford: 1989
  • Li T, Fujita Y, Tsuda Y, Development of potent mu-opioid receptor ligands using unique tyrosine analogues of endomorphin-2. J Med Chem 2005;48:586-92
  • Li T, Shiotani K, Miyazaki A, Bifunctional [2',6'-dimethyl-L-tyrosine1]endomorphin-2 analogues substituted at position 3 with alkylated phenylalanine derivatives yield potent mixed mu-agonist/delta-antagonist and dual mu-/delta-agonist opioid ligands. J Med Chem 2007;50:2753-66
  • Nyberg F, Hallberg A, Hallberg M, Therapeutic methods and compositions employing peptide compounds. WO2010004535A2; 2010
  • Gillon V, Moussou P, Contet-Audonneau J-L, Oligopeptides and their use. WO2007051550A1; 2007
  • Bevec D, Cavalli F, Cavalli V, Bacher G. Use of a peptide as a therapeutic agent. PCTEP2008007939; 2009
  • Moussou P, Contet-Audenneau J-L, Gillon V. Oligopeptides and their use. EP1782819A1; 2007
  • Maione T. Advantagous salts of mu-opiate receptor peptides. WO2009076672A1; 2009
  • Aimoto S. Contemporary methods for peptide and protein synthesis. Curr Org Chem 2001;5:45-87
  • Okada Y, Fukumizu A, Takahashi M, Synthesis of stereoisomeric analogues of endomorphin-2, H-Tyr-Pro-Phe-Phe-NH2, and examination of their opioid receptor binding activities and solution conformation. Biochem Biophys Res Commun 2000;276:7-11
  • Blackwell HE, O'Leary DJ, Chatterjee AK, New approaches to olefin cross-metathesis. J Am Chem Soc 2000;122:58-71
  • Scholl M, Ding S, Lee SW, Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org Lett 1999;1:953-6
  • Wolfe DP, Glorioso JC, Fink DJ. Method of amidated peptide biosynthesis and delivery in vivo: endomorphin-2. WO2006132925A2; 2006
  • Gao Y, Liu X, Liu W, Opioid receptor binding and antinociceptive activity of the analogues of endomorphin-2 and morphiceptin with phenylalanine mimics in the position 3 or 4. Bioorg Med Chem Lett 2006;16:3688-92
  • Liu HR, Zhang B, Liu X, Endomorphin-1 analogues with enhanced metabolic stability and systemic analgesic activity: design, synthesis, and pharmacolgical characterization. Bioorg Med Chem 2007;15:1694-702
  • Shao X, Gao Y, Zhu C, Conformational analysis of endomorphin-2 analogs with phenylalanine mimics by NMR and molecular modeling. Bioorg Med Chem 2007;15:3539-47
  • Wang CL, Yao JL, Yu Y, Structure-activity study of endomorphin-2 analogs with C-terminal modifications by NMR spectroscopy and molecular modeling. Bioorg Med Chem 2008;16:6415-22
  • Wang CL, Guo C, Wang YQ, Synthesis and antinociceptive effects of endomorphin-1 analogs with C-terminal linked by oligoarginine. Peptides 2011;32:293-9
  • Liu HM, Liu XF, Yao JL, Utilization of combined chemical modifications to enhance the blood-brain barrier permeability and pharmacological activity of endomorphin-1. J Pharmacol Exp Ther 2006;319:308-16
  • Gao Y-F, Zhai M-X, Liu W-X, Structure-activity relationships of the dimeric analogues of endomorphin-2 with different lengths of spacers. Prot Pept Lett 2008;15:275-9
  • Wang C-L, Cuo C, Zhou Y, In vitro and in vivo characterization of opioid activities of C-terminal esterified endomorphin-2 analogues. Peptides 2009;30:1697-704
  • Liu H, Yang Y, Xin R, Differential cardiovascular effects of synthetic peptides derived from endomorphin-1 in anesthetized rats. Peptides 2008;29:1048-56
  • Yu Y, Cui Y, Wang X, In vitro characterization of the effects of endomorphin 1 and 2, endogenous ligands for mu-opioid receptors, on mouse colonic motility. Biochem Pharmacol 2007;73:1384-93
  • Dai X, Cui SG, Wang T, Endogenous opioid peptides, endomorphin-1 and -2 and deltorphin I, stimulate angiogenesis in the CAM assay. Eur J Pharmacol 2008;579:269-75
  • Gong P, Chen FX, Ma GF, Endomorphin 1 effectively protects cadmium chloride-induced hepatic damage in mice. Toxicology 2008;251:35-44
  • Liu H, Ni J, Wang R. In vitro release performance and analgesic activity of endomorphin-1 loaded nanoparticles. Pharmazie 2006;61:450-2
  • Perlikowska R, do-Rego J-C, Cravezic A, et al. Synthesis and biological evaluation of cyclic endomorphin-2 analogs. Peptides 2010;31:339-45
  • Schmidt R, Neubert K. Cyclization studies with tetra- and pentapeptide sequences corresponding to beta-casomorphins. Int J Pept Prot Res 1991;37:502-7
  • Streeton C, Whelan G. Naltrexone, a replase prevention maintenance treatment of alcohol dependence: a meta-analysis of randomized controlled trials. Alcohol Alcohol 2001;36:544-52
  • Srisurapanont M, Jarusuraisin N. Naltrexone for the treatment of alcoholism: a meta-analysis of randomized controlled trials. Int J Neuropsychopharmacol 2005;8:267-80
  • Heidbreder C. Novel pharmacotherapeutic targets for the management of drug addiction. Eur J Pharmacol 2005;526:101-12
  • Gomes I, IJzerman AP, Ye K, G Protein-coupled receptor heteromerization: A role in allosteric modulation of ligand binding. Mol Pharmacol 2011;79:1044-52
  • He SQ, Zhang ZN, Guan JS, Facilitation of mu-Opioid receptor activity by preventing delta-Opioid receptor-mediated codegradation. Neuron 2011;69:120-31
  • Yekkirala AS, Kalyuzhny AE, Portoghese PS. Standard opioid agonists activate heteromeric opioid receptors: evidence for morphine and [D-Ala2-MePhe4-Glyol5]enkephalin as selective mu−delta agonists. ACS Chem Neurosci 2010;1:146-54
  • Milan-Lobo L, Whistler JL. Heteromerization of the mu- and delta-opioid receptors produces ligand-biased antagonism and alters mu-receptor trafficking. J Pharmacol Exp Ther 2011;337:868-75
  • Diaz A, Pazos A, Florez J, Regulation of mu-opioid receptors, G-protein-coupled receptor kinases and beta-arrestin 2 in the rat brain after chronic opioid receptor antagonism. Neuroscience 2002;112:345-53
  • Agnati LF, Guidolin D, Leo G, Receptor-receptor interactions: a novel concept in brain integration. Prog Neurobiol 2010;90:157-75
  • Fuxe K, Marcelino D, Guidolin D, Heterodimers and receptor mosaics of different types of G-protein-coupled receptors. Physiology 2008;23:322-32
  • Bohn LM, Galnetdinov RR, Lin F-T, mu-Opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 2000;408:720-3
  • Moron JA, Abul-Husn NS, Rozenfeld R, Morphine administration alters the profile of hippocampal postsynaptic density-associated proteins - a proteomics study focusing on endocytic proteins. Mol Cell Proteomics 2007;6:29-42
  • Rozenfeld R, Devi LA. Receptor heterodimerization leads to a switch in signaling: beta-arrestin2-mediated ERK activation by mu-delta opioid receptor heterodimers. FASEB J 2007;21:2455-65
  • Abdelhamid EE, Sultana M, Portoghese PS, Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther 1991;258:299-303
  • He L, Lee NM. Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord. J Pharmacol Exp Ther 1998;285:1181-6
  • Hepburn MJ, Little PJ, Gingras J, Differential effects of naltrindole on morphine-induced tolerance and physical dependence in rats. J Pharmacol Exp Ther 1997;281:1350-6
  • Riba P, Ben Y, Smith AP, Morphine tolerance in spinal cord is due to interaction between mu- and delta-receptors. J Pharmacol Exp Ther 2002;300:265-72
  • Zhang HP, Luo XG, Kranzler HR, Association between two mu-opioid receptor gene (OPRM1) haplotype blocks and drug or alcohol dependence. Hum Mol Genet 2006;15:807-19
  • Zhang L, Chang L, Yu LL, Endomorphin analogues with balanced affinity for both mu- and delta-opioid receptors. Chin Chem Lett 2011;22:907-10
  • Kream RM, Kato T, Shimonaka H, Substance P markedly potentiates the antinociceptive effects of morphine sulfate administered at the spinal level. Proc Natl Acad Sci USA 1993;90:3564-8
  • Kream RM. Chimeric hybrid analgesics. WO03090697A2; 2003
  • Maszczynska I, Lipkowski AW, Carr DB, Alternative forms of interaction of Substance P and opioids in nociceptive transmission. Lett Pept Sci 1998;5:395-8
  • Salvadori S, Trapella C, Fiorini S, A new opioid designed multiple ligand derived from the mu-opioid agonist endomorphin-2 and the delta-opioid antagonist pharmacophore Dmt-Tic. Bioorg Med Chem Lett 2007;15:6876-81
  • Bigliardi-Qi M, Gaveriaux-Ruff C, Pfaltz K, Deletion of mu- and kappa-opioid receptors in mice changes epidermal hypertrophy, density of peripheral nerve endings, and itch behavior. J Invest Dermatol 2007;127:1479-88
  • Bigliardi PL, Stammer H, Jost G, Treatment of pruritus with topically applied opiate receptor antagonist. J Am Acad Dermatol 2007;56:979-88
  • Kosterlitz HW, Watt AJ. Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). Br Pharmacol Chemother 1968;33:266-76
  • Salemi S, Aeschlimann A, Reisch N, Detection of kappa and delta opioid receptors in skin - Outside the nervous system. Biochem Biophys Res Commun 2005;338:1012-17
  • Bigliardi-Qi M, Gaveriaux-Ruff C, Zhou H, Deletion of delta-opioid receptor in mice alters skin differentiation and delays wound healing. Differentiation 2006;74:174-85
  • Czapla MA, Champion HC, Zadina JE, Endomorphin 1 and 2, endogenous mu-opioid agonists, decrease systemic arterial pressure in the rat. Pharmacol Lett 1998;62:PL 175-9
  • Champion HC, Zadina JE, Kastin AJ, The endogenous mu-opioid receptor agonists endomorphins 1 and 2 have novel hypotensive activity in rabbit. Biochem Biophys Res Commun 1997;235:567-70
  • Califano J. A. High Society. How Substance Abuse Ravages America and What to do About it. Public Affairs, Perseus Books Group; New York: 2007
  • Srisurapanont M, Jarusuraisin N. Opioid antagonists for alcohol dependence (Review). Cochrane Database Syst Rev 2005;CD001867:1-54
  • Bodnar RJ. Endogenous opiates and behavior: 2008. Peptides 2009;30:2432-79
  • Nathan PJ, O'Neill BV, Napolitano A, Bullmore ET. Neuropsychiatric adverse effects of centrally acting antiobesity drugs. CNS Neurosci Ther 2011;17:490-505
  • Perez-Castrillon JL, Olmos JM, Gomez JJ, Expression of opioid receptors in osteoblast-like MG-63 cells, and effects of different opioid agonists on alkaline phosphatase and osteocalcin secetion by these cells. Neuroendorincology 2000;72:187-94
  • Shorr RI, Griffin MR, Daugherty JR, Opioid analgesics and the risk of hip fracture in the elderly: codeine and propoxyphene. J Gerontol 1992;47:M111-15
  • Jimerson DC, Wolfe BE. Neuropeptides in eating disorders. CNS Spectr 2004;9:516-22
  • Ritter SL, Hall RA. Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 2009;10:819-30
  • Greenberg DS. On the road to academic greatness—a parable. Science 2007;317:1328-9
  • Marczak ED, Jinsmaa Y, Myers P, Orally administered H-Dmt-Tic-Lys-NH-CH2-Ph (MZ-2), a potent µ-/delta-opioid receptor antagonist, regulates obese-related factors in mice. Eur J Pharmacol 2009;616:115-21
  • Greco EA, Fornari R, Rossi F, Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int J Clin Pract 2010;64:817-20
  • Schneider JP. Should bisphonates be continued indefinitely? An unusual facture in a healthy woman on long-term alendronate. Geriatrics 2006;61:31-3
  • Gallagher JC, Sai AJ. Bisphosphonate use in osteoporosis: cardiovascular effects. Menopause 2010;17:5-7
  • Kuehn BM. Prolonged bisphosphonate use linked to rare fractures, esophageal cancer. J Am Med Assoc 2010;304:2114-15
  • Ravosa MJ, Ning J, Liu Y, Bisphosphonate effects on the behaviour of oral epithelial cells and oral fibroblasts. Arch Oral Biol 2010;56:491-8
  • Shoji S, Tabuchi M, Miyazawa K, Bisphosphonate inhibits bone turnover in OPG(-/-) mice via a depressive effect on both osteoclasts and osteoblasts. Calcif Tissue Int 2010;87:181-92
  • Lazarus LH, Guglietta A, Wilson WE, Dimeric dermorphin analogues as mu-receptor probes on rat brain membranes. Correlation between central mu-receptor potency and suppression of gastric acid secretion. J Biol Chem 1989;264:354-62
  • Torino D, Mollica A, Pinnen F, Synthesis and evaluation of new endomorphin-2 analogues containing (Z)-alpha,beta-didehydrophenylalanine (D(Z)Phe) residues. J Med Chem 2009;53:4550-4
  • Erspamer V, Melchiorri P, Erspamer G, Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc Natl Acad Sci USA 1989;86:5188-92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.