326
Views
45
CrossRef citations to date
0
Altmetric
Reviews

New microtubule-inhibiting anticancer agents

, &
Pages 329-343 | Published online: 08 Feb 2010

Bibliography

  • Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004;4:253-65
  • Schwartz EL. Antivascular actions of microtubule-binding drugs. Clin Cancer Res 2009;15:2594-601
  • Pourroy B, Honore S, Pasquier E, Antiangiogenic concentrations of vinflunine increase the interphase microtubule dynamics and decrease the motility of endothelial cells. Cancer Res 2006;66:3256-63
  • Carlson RO. New tubulin targeting agents currently in clinical development. Expert Opin Investig Drugs 2008;17:707-22
  • Zhao Y, Fang WS, Pors K. Microtubule stabilising agents for cancer chemotherapy. Expert Opin Ther Pat 2009;19:607-22
  • Boulikas T, Tsogas I. Microtubule-targeted antitumor drugs: chemistry, mechanisms and nanoparticle formulations. Gene Ther Mol Biol 2008;12B:313-57
  • Edelman MJ. Novel taxane formulations and microtubule-binding agents in non-small-cell lung cancer. Clin Lung Cancer 2009;10:S30-4
  • Leonelli F, La Bella A, Migneco LM, Bettolo RM. Design, synthesis and applications of hyaluronic acid-paclitaxel bioconjugates. Molecules 2008;13:360-78
  • Sun L, Simmerling C, Ojima I. Recent advances in the study of the bioactive conformation of taxol. ChemMedChem 2009;4:719-31
  • Michaud LB. The epothilones: how pharmacology relates to clinical utility. Ann Pharmacother 2009;43:1294-309
  • Available from: http://clinicaltrials.gov/ct2/results?term=TPI287.
  • Ojima I, Das M. Recent advances in the chemistry and biology of new generation taxoids. J Nat Prod 2009;72:554-65
  • Ojima I, Chen J, Sun L, Design, synthesis, and biological evaluation of new-generation taxoids. J Med Chem 2008;51:3203-21
  • Ferlini C, Raspaglio G, Mozzetti S, The seco-taxane IDN5390 is able to target class III beta-tubulin and to overcome paclitaxel resistance. Cancer Res 2005;65:2397-405
  • Mozzetti S, Ferlini C, Concolino P, Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 2005;11:298-305
  • Hari M, Yang H, Zeng C, Expression of class III beta-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil Cytoskeleton 2003;56:45-56
  • Ferrandina G, Zannoni GF, Martinelli E, Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res 2006;12:2774-9
  • Seve P, Lai R, Ding K, Class III beta-tubulin expression and benefit from adjuvant cisplatin/vinorelbine chemotherapy in operable non-small cell lung cancer: analysis of NCIC JBR.10. Clin Cancer Res 2007;13:994-9
  • Pepe A, Sun L, Zanardi I, Novel C-seco-taxoids possessing high potency against paclitaxel-resistant cancer cell lines overexpressing class III beta-tubulin. Bioorg Med Chem Lett 2009;19:3300-4
  • Jones ME, Barrett BS, Bell C, TPI 287, a third-generation taxane derivative, functionally modulates the MDR1 P-glycoprotein drug transport pump and is active in resistant tumor cells. Mol Cancer Ther 2007;6:3399S
  • Jones ME, Bell CB, Schiemann BJ, Biological characterization of TPI 287–a novel third generation taxane analog. Clinical Cancer Res 2005;11:9089S
  • Kowalski RJ, Giannakakou P, Hamel E. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol(R)). J Biol Chem 1997;272:2534-41
  • Bollag DM, McQueney PA, Zhu J, Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 1995;55:2325-33
  • Nettles JH, Li H, Cornett B, The binding mode of epothilone A on alpha,beta-tubulin by electron crystallography. Science 2004;305:866-9
  • Dumontet C, Jordan MA, Lee FF. Ixabepilone: targeting betaIII-tubulin expression in taxane-resistant malignancies. Mol Cancer Ther 2009;8:17-25
  • Huzil JT, Chik JK, Slysz GW, A unique mode of microtubule stabilization induced by peloruside A. J Mol Biol 2008;378:1016-30
  • Hunt JT. Discovery of ixabepilone. Mol Cancer Ther 2009;8:275-81
  • Pfeiffer B, Hauenstein K, Merz P, Synthesis and SAR of C12-C13-oxazoline derivatives of epothilone A. Bioorg Med Chem Lett 2009;19:3760-3
  • Frein JD, Taylor RE, Sackett DL. New sources of chemical diversity inspired by biosynthesis: rational design of a potent epothilone analogue. Org Lett 2009;11:3186-9
  • Kingston DGI. Tubulin-interactive natural products as anticancer agents. J Nat Prod 2009;72:507-15
  • Madiraju C, Edler MC, Hamel E, Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin. Biochemistry 2005;44:15053-63
  • Honore S, Kamath K, Braguer D, Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. Cancer Res 2004;64:4957-64
  • Mita ACL, Chen TL, Bocinski K, A phase I pharmacokinetic (PK) trial of XAA296A (Discodermolide) administered every 3 wks to adult patients with advanced solid malignancies. J Clin Oncol ASCO Annual Meeting Proceedings 2004;22(14S):2025
  • Florence GJ, Gardner NM, Paterson I. Development of practical syntheses of the marine anticancer agents discodermolide and dictyostatin. Nat Prod Rep 2008;25:342-75
  • Paterson I, Findlay AD. Recent advances in the total synthesis of polyketide natural products as promising anticancer agents. Australian J Chem 2009;62:624-38
  • Paterson I, Naylor GJ, Wright AE. Total synthesis of a potent hybrid of the anticancer natural products dictyostatin and discodermolide. Chem Commun (Camb) 2008;38:4628-30
  • Paterson I, Gardner NM, Guzman E, Wright AE. Total synthesis and biological evaluation of novel C2-C6 region analogues of dictyostatin. Bioorg Med Chem 2009;17:2282-9
  • Paterson I, Gardner NM, Guzman E, Wright AE. Total synthesis and biological evaluation of potent analogues of dictyostatin: modification of the C2-C6 dienoate region. Bioorg Med Chem Lett 2008;18:6268-72
  • Eiseman JL, Bai L, Jung WH, Improved synthesis of 6-epi-dictyostatin and antitumor efficacy in mice bearing MDA-MB231 human breast cancer xenografts. J Med Chem 2008;51:6650-3
  • Sato B, Muramatsu H, Miyauchi M, A new antimitotic substance, FR182877. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 2000;53:123-30
  • Buey RM, Calvo E, Barasoain I, Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites. Nat Chem Biol 2007;3:117-25
  • Pryor DE, O'Brate A, Bilcer G, The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry 2002;41:9109-15
  • Liu J, Towle MJ, Cheng H, In vitro and in vivo anticancer activities of synthetic (-)-laulimalide, a marine natural product microtubule stabilizing agent. Anticancer Res 2007;27:1509-18
  • Risinger AL, Jackson EM, Polin LA, The taccalonolides: microtubule stabilizers that circumvent clinically relevant taxane resistance mechanisms. Cancer Res 2008;68:8881-8
  • Gollner A, Altmann KH, Gertsch J, Mulzer J. The laulimalide family: total synthesis and biological evaluation of neolaulimalide, isolaulimalide, laulimalide and a nonnatural analogue. Chemistry 2009;15:5979-97
  • West LM, Northcote PT, Battershill CN. Peloruside A: a potent cytotoxic macrolide isolated from the new zealand marine sponge Mycale sp. J Org Chem 2000;65:445-9
  • Gaitanos TN, Buey RM, Diaz JF, Peloruside A does not bind to the taxoid site on beta-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res 2004;64:5063-7
  • Hamel E, Day BW, Miller JH, Synergistic effects of peloruside A and laulimalide with taxoid site drugs, but not with each other, on tubulin assembly. Mol Pharmacol 2006;70:1555-64
  • Wilmes A, Bargh K, Kelly C, Peloruside A synergizes with other microtubule stabilizing agents in cultured cancer cell lines. Mol Pharm 2007;4:269-80
  • Tinley TL, Randall-Hlubek DA, Leal RM, Taccalonolides E and A: plant-derived steroids with microtubule-stabilizing activity. Cancer Res 2003;63:3211-20
  • Buey RM, Barasoain I, Jackson E, Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chem Biol 2005;12:1269-79
  • Beyer CF, Zhang N, Hernandez R, TTI-237: a novel microtubule-active compound with in vivo antitumor activity. Cancer Res 2008;68:2292-300
  • Beyer CF, Zhang N, Hernandez R, TTI-237: a novel microtubule-active compound with in vivo antitumor activity. Cancer Res 2008;68:2292-300
  • Beyer CF, Zhang N, Hernandez R, The microtubule-active antitumor compound TTI-237 has both paclitaxel-like and vincristine-like properties. Cancer Chemother Pharmacol 2009;64:681-9
  • Boukari H, Sackett DL, Schuck P, Nossal RJ. Single-walled tubulin ring polymers. Biopolymers 2007;86:424-36
  • Cormier A, Marchand M, Ravelli RB, Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO Rep 2008;9:1101-6
  • Sato M, Sagawa M, Nakazato T, A natural peptide, dolastatin 15, induces G2/M cell cycle arrest and apoptosis of human multiple myeloma cells. Int J Oncol 2007;30:1453-9
  • Horti J, Juhasz E, Monostori Z, Phase I study of TZT-1027, a novel synthetic dolastatin 10 derivative, for the treatment of patients with non-small cell lung cancer. Cancer Chemother Pharmacol 2008;62:173-80
  • von Mehren M, Balcerzak SP, Kraft AS, Phase II trial of dolastatin-10, a novel anti-tubulin agent, in metastatic soft tissue sarcomas. Sarcoma 2004;8:107-11
  • Taori K, Liu YX, Paul VJ, Luesch H. Combinatorial strategies by marine cyanobacteria: symplostatin 4, an antimitotic natural dolastatin 10/15 hybrid that synergizes with the coproduced HDAC inhibitor largazole. Chembiochem 2009;10:1634-9
  • Smith CD, Zhang X, Mooberry SL, Cryptophycin: a new antimicrotubule agent active against drug-resistant cells. Cancer Res 1994;54:3779-84
  • Smith CD, Zhang X. Mechanism of action cryptophycin. Interaction with the Vinca alkaloid domain of tubulin. J Biol Chem 1996;271:6192-8
  • Salamonczyk GM, Han K, Guo Zw Z, Sih CJ. Total synthesis of cryptophycins via a chemoenzymatic approach. J Org Chem 1996;61:6893-900
  • Rej R, Nguyen D, Go B, Total synthesis of cryptophycins and their 16-(3-phenylacryloyl) derivatives. J Org Chem 1996;61:6289-95
  • Eissler S, Bogner T, Nahrwold M, Sewald N. Efficient synthesis of cryptophycin-52 and novel para-alkoxymethyl unit A analogues. Chemistry 2009;15:11273-87
  • Stevenson JP, Sun W, Gallagher M, Phase I trial of the cryptophycin analogue LY355703 administered as an intravenous infusion on a day 1 and 8 schedule every 21 days. Clin Cancer Res 2002;8:2524-9
  • Edelman MJ, Gandara DR, Hausner P, Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer. Lung Cancer 2003;39:197-9
  • Liu WL, Zhang JC, Jiang FQ, Fu L. Synthesis and cytotoxicity studies of new cryptophycin analogues. Arch Pharm (Weinheim) 2009;342:577-83
  • Siemann DW, Chaplin DJ, Walicke PA. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin Investig Drugs 2009;18:189-97
  • Duan JX, Cai X, Meng F, Potent antitubulin tumor cell cytotoxins based on 3-aroyl indazoles. J Med Chem 2007;50:1001-6
  • Meng F, Cai X, Duan J, A novel class of tubulin inhibitors that exhibit potent antiproliferation and in vitro vessel-disrupting activity. Cancer Chemother Pharmacol 2008;61:953-63
  • Brancale A, Silvestri R. Indole, a core nucleus for potent inhibitors of tubulin polymerization. Med Res Rev 2007;27:209-38
  • Arora S, Wang XI, Keenan SM, Novel microtubule polymerization inhibitor with potent antiproliferative and antitumor activity. Cancer Res 2009;69:1910-5
  • Zhang C, Yang N, Yang CH, S9, a novel anticancer agent, exerts its anti-proliferative activity by interfering with both PI3K-Akt-mTOR signaling and microtubule cytoskeleton. PLoS One 2009;4:e4881
  • Yoshimatsu K, Yamaguchi A, Yoshino H, Mechanism of action of E7010, an orally active sulfonamide antitumor agent: inhibition of mitosis by binding to the colchicine site of tubulin. Cancer Res 1997;57:3208-13
  • Banerjee M, Poddar A, Mitra G, Sulfonamide drugs binding to the colchicine site of tubulin: thermodynamic analysis of the drug-tubulin interactions by isothermal titration calorimetry. J Med Chem 2005;48:547-55
  • Morton CL, Favours EG, Mercer KS, Evaluation of ABT-751 against childhood cancer models in vivo. Invest New Drugs 2007;25:285-95
  • Luo Y, Hradil VP, Frost DJ, ABT-751, a novel tubulin-binding agent, decreases tumor perfusion and disrupts tumor vasculature. Anticancer Drugs 2009;20:483-92
  • Wang YM, Hu LX, Liu ZM, N-(2,6-Dimethoxypyridine-3-yl)-9- methylcarbazole-3-sulfonamide as a novel tubulin ligand against human cancer. Clin Cancer Res 2008;14:6218-27
  • Cao TM, Durrant D, Tripathi A, Stilbene derivatives that are colchicine-site microtubule inhibitors have antileukemic activity and minimal systemic toxicity. Am J Hematol 2008;83:390-7
  • Durrant D, Corwin F, Simoni D, Cis-3, 4′, 5-trimethoxy-3′-aminostilbene disrupts tumor vascular perfusion without damaging normal organ perfusion. Cancer Chemother Pharmacol 2009;63:191-200
  • Durrant DE, Richards J, Tripathi A, Development of water soluble derivatives of cis-3, 4′, 5-trimethoxy-3′-aminostilbene for optimization and use in cancer therapy. Invest New Drugs 2009;27:41-52
  • Liberatore AM, Coulomb H, Pons D, IRC-083927 is a new tubulin binder that inhibits growth of human tumor cells resistant to standard tubulin-binding agents. Mol Cancer Ther 2008;7:2426-34
  • Perchellet EM, Perchellet JP, Ganta CK, Synthesis, molecular targets, and antitumor activities of substituted tetrahydro-1-oxopyrano[4,3-b][1]benzopyrans and nanogels for drug delivery. Anticancer Agents Med Chem 2009;9:864-76
  • Bacher G, Nickel B, Emig P, D-24851, a novel synthetic microtubule inhibitor, exerts curative antitumoral activity in vivo, shows efficacy toward multidrug-resistant tumor cells, and lacks neurotoxicity. Cancer Res 2001;61:392-9
  • Wienecke A, Bacher G. Indibulin, a novel microtubule inhibitor, discriminates between mature neuronal and nonneuronal tubulin. Cancer Res 2009;69:171-7
  • Oostendorp RL, Witteveen PO, Schwartz B, Dose-finding and pharmacokinetic study of orally administered indibulin (D-24851) to patients with advanced solid tumors. Invest New Drugs 2009 (online)
  • Tong YG, Zhang XW, Geng MY, Pseudolarix acid B, a new tubulin-binding agent, inhibits angiogenesis by interacting with a novel binding site on tubulin. Mol Pharmacol 2006;69:1226-33
  • Tan WF, Zhang XW, Li MH, Pseudolarix acid B inhibits angiogenesis by antagonizing the vascular endothelial growth factor-mediated anti-apoptotic effect. Eur J Pharmacol 2004;499:219-28
  • Li MH, Miao ZH, Tan WF, Pseudolaric acid B inhibits angiogenesis and reduces hypoxia-inducible factor 1alpha by promoting proteasome-mediated degradation. Clin Cancer Res 2004;10:8266-74
  • Yang SP, Cai YJ, Zhang BL, Structural modification of an angiogenesis inhibitor discovered from traditional Chinese medicine and a structure-activity relationship study. J Med Chem 2008;51:77-85
  • Yenjerla M, Cox C, Wilson L, Jordan MA. Carbendazim inhibits cancer cell proliferation by suppressing microtubule dynamics. J Pharmacol Exp Ther 2009;328:390-8
  • Rohr J. Cryptophycin anticancer drugs revisited. ACS Chem Biol 2006;1:747-50
  • Bourdron J, Barbier P, Allegro D, Caulerpenyne binding to tubulin: structural modifications by a non conventional pharmacological agent. Med Chem 2009;5:182-90
  • Cocca C, Dorado J, Calvo E, 15-Deoxi-Delta(12,14)-prostaglandin J(2) is a tubulin-binding agent that destabilizes microtubules and induces mitotic arrest. Biochem Pharmacol 2009;78:1330-9
  • Azarenko O, Okouneva T, Singletary KW, Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane. Carcinogenesis 2008;29:2360-8
  • Mi L, Xiao Z, Hood BL, Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem 2008;283:22136-46
  • Westermann S, Weber K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 2003;4:938-47
  • Mialhe A, Lafanechere L, Treilleux I, Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res 2001;61:5024-7
  • Soucek K, Kamaid A, Phung AD, Normal and prostate cancer cells display distinct molecular profiles of alpha-tubulin posttranslational modifications. Prostate 2006;66:954-65
  • Kato C, Miyazaki K, Nakagawa A, Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis. Int J Cancer 2004;112:365-75
  • Dal Piaz F, Vassallo A, Lepore L, Sesterterpenes as tubulin tyrosine ligase inhibitors. First insight of structure-activity relationships and discovery of new lead. J Med Chem 2009;52:3814-28
  • Erck C, Peris L, Andrieux A, A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc Natl Acad Sci USA 2005;102:7853-8
  • Tran AD, Marmo TP, Salam AA, HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J Cell Sci 2007;120:1469-79
  • North BJ, Marshall BL, Borra MT, The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003;11:437-44
  • Schemies J, Sippl W, Jung M. Histone deacetylase inhibitors that target tubulin. Cancer Lett 2009;280:222-32
  • Itoh Y, Suzuki T, Kouketsu A, Design, synthesis, structure–selectivity relationship, and effect on human cancer cells of a novel series of histone deacetylase 6-selective inhibitors. J Med Chem 2007;50:5425-38
  • Schaefer KL, Takahashi H, Morales VM, PPAR-gamma inhibitors reduce tubulin protein levels by a PPAR-gamma, PPAR-delta and proteasome-independent mechanism, resulting in cell cycle arrest, apoptosis and reduced metastasis of colorectal carcinoma cells. Int J Cancer 2007;120:702-13
  • Schaefer KL. PPAR-gamma inhibitors as novel tubulin-targeting agents. PPAR Res 2008;2008:785405
  • Harris G, Schaefer KL. The microtubule-targeting agent T0070907 induces proteasomal degradation of tubulin. Biochem Biophys Res Commun 2009;388:345-9
  • Lee G, Elwood F, McNally J, T0070907, a selective ligand for peroxisome proliferator-activated receptor gamma, functions as an antagonist of biochemical and cellular activities. J Biol Chem 2002;277:19649-57
  • Mi L, Gan N, Chung FL. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery. Biochem Biophys Res Commun 2009;388:456-62
  • Poruchynsky MS, Sackett DL, Robey RW, Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells: a possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition. Cell Cycle 2008;7:940-9
  • Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004;4:423-36
  • Ganesh T, Guza RC, Bane S, The bioactive Taxol conformation on beta-tubulin: experimental evidence from highly active constrained analogs. Proc Natl Acad Sci USA 2004;101:10006-11
  • Paik Y, Yang C, Metaferia B, Rotational-echo double-resonance NMR distance measurements for the tubulin-bound paclitaxel conformation. J Am Chem Soc 2007;129:361-70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.