17
Views
7
CrossRef citations to date
0
Altmetric
Meeting Report

IBC’s 11th Annual International Symposium: Advances in Anticoagulant, Antithrombotic and Thrombolytic Drugs

&
Pages 157-162 | Published online: 24 Feb 2005

Bibliography

  • QUINTON PM: Cystic fibrosis: a disease in electrolyte transport. FASEB (1990) 4:2709–2717.
  • RIORDAN JR, ROMMENS JM, KEREM B et al: Identifica-tion of the cystic fibrosis gene: cloning and characteri-zation of complementary DNA. Science (1989) 245:1066–1073.
  • •One of the classical papers describing the identification of the CFTR gene and its product.
  • ELBORN JS, SHALE DJ, BRITTON JR: Cystic fibrosis: current survival and population estimates to the year 2000. Thorax (1991) 46:881–885.
  • FRIZZELL RA: Physiology of cystic fibrosis. Physic)]. Rev. (1999) 79:S1–S255.
  • ••Collection of authoritative reviews on CFTR.
  • COLLINS FS: Cystic fibrosis: molecular biology and therapeutic implications. Science (1992) 256:774–779.
  • CARSON MR, TRAVIS SM, WELSH MJ: The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (C1411) have distinct functions in controlling channel activity. J Biol. Chem. (1995) 270:1711–1717.
  • SHEPPARD DN, WELSH MJ: Structure and function of the CF1R chloride channel. Physiol. Rev. (1999) 79:S23–S45.
  • •Review on current knowledge about the structure of CFTR.
  • KOPITO RR: Biosynthesis and degradation of GEHL Physic)]. Rev. (1999) 79:S167–S173.
  • RIORDAN JR: Cystic fibrosis as a disease of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein. Am. J. Hum. Genet. (1999) 64:1499–1504.
  • SKACH WR: Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator. Kidney Int. (2000) 57:825–831.
  • YANG Y, JANICH S, COHN JA, WILSON JM: The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgilysosomal compartment. Proc. Nati Acad. Sci. USA (1993) 90:9480–9484.
  • PIND S, RIORDAN JR, WILLIAMS DB: Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmem-brane conductance regulator. J Biol. Chem. (1994) 269:12784–12788.
  • LOO MA, JENSEN TJ, CUI L, HOU Y, CHANG XB, RIORDANJR: Perturbation of Hsp90 interaction with nascent C1,111 prevents its maturation and accelerates its degradation by the proteasome. EMBO J. (1998) 17:6879–6887.
  • MEACHAM GC, LU Z, KING S, SORSCHER E, TOUSSON A,CYR DM: The Hdj-2/Hsc70 chaperone pair facilitates early steps in CETI( biogenesis. EMBO J. (1999) 1 8:1492–1505.
  • CHENG SH, GREGORY RJ, MARSHALL J et al.: Defective intracellular transport and processing of CFIR is the molecular basis of most cystic fibrosis. Cell (1990) 63:827–834.
  • ••Cellular basis of defect in AF508 mutations.
  • JENSEN TJ, LOO MA, PIND S, WILLIAMS DB, GOLDBERGAL, RIORDAN JR: Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell (1995) 83:129–135.
  • WARD CL, OMURA S, KOPITO RR: Degradation of CFIRby the ubiquitin-proteasome pathway. Cell (1995) 83:121–127.
  • DENNING GM, ANDERSON MP, AMARA JF, MARSHALL J,SMITH AE, WELSH MJ: Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature (1992) 358:761–764.
  • •Correction of the AF508-CFTR defect by low temperatures.
  • BROWN CR, HONG-BROWN LQ, BIWERSI J, VERKMAN AS, WELCH MJ: Chemical chaperones correct the mutant phenotype of the AF508 cystic fibrosis transmem-brane conductance regulator protein. Cell Stress Chaper-ones (1996) 1:117–125.
  • •Correction of the AF508 defect by chemical chaperones.
  • WELSH MJ, SMITH AE: Molecular mechanisms of CFIR chloride channel dysfunction in cystic fibrosis. Cell (1993) 73:1251–1254.
  • PILEWSKI JM, FRIZZELL RA: Role of CFIR in airwaydisease. Physiol. Rev. (1999) 79:S215–S255.
  • KNOWLES MR, CHURCH NL, WALTNER WE et al.: A pilotstudy of aerosolized amiloride for the treatment of lung disease in cystic fibrosis. N Engl. J Med. (1990) 322:1189–1194.
  • •First study of long-term amiloride treatment of CF.
  • REDDY MM, LIGHT MJ, QUINTON PM: Activation of the epithelial Na + channel (ENaC) requires GEM C1 channel function. Nature (1999) 402:301–304.
  • •Important conceptual paper on relationship between Na+ and Cl- transport in epithelial cells.
  • MATSUI H, GRUBB BR, TARRAN R et al.: Evidence forpericiliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell (1998) 95:1005–1015.
  • MATSUI H, DAVIS CW, TARRAN R, BOUCHER RC: Osmoticwater permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia. J Clin. Invest. (2000) 105:1419–1427.
  • SMITH JJ, TRAVIS SM, GREENBERG EP, WELSH MJ: Cysticfibrosis epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell (1996) 85:229–236.
  • ZABNER J, SMITH JJ, KARP PH, WIDDICOMBE JH, WELSHMJ: Loss of CFIR chloride channels alters salt absorp-tion by cystic fibrosis airway epithelia in vitro. Mot. Cell (1998) 2:397–403.
  • WELCH WJ, BROWN CR: Influence of molecular andchemical chaperones on protein folding. Cell Stress Chaperones (1996) 1:109–115.
  • SATO S, WARD CL, KROUSE ME, WINE JJ, KOPITO RR:Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. j Biol. Chem. (1996) 271:635–638.
  • HEDA GD, MARINO CR: Surface expression of the cysticfibrosis transmembrane conductance regulator mutant AF508 is markedly upreg-ulated by combina-tion treatment with sodium butyrate and low tempera-ture. Biochem. Biophys. Res. Commun. (2000) 271:659–664.
  • CHENG SH, FANG SL, ZABNER J et al.: Functional activa-tion of the cystic fibrosis trafficking mutant AF508-CFIR by overexpression. Am. J. Physiol. (1995) 268:L615–L624.
  • RUBENSTEIN RC, EGAN MF, ZEITLIN PL: In vitro pharma-cologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing AF508-CFIR j Clin. Invest. (1997) 100:2457–2463.
  • •Use of 4-phenylbutyrate to correct the AF508 in vitro.
  • RUBENSTEIN RC, ZEITLIN PL: A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in AF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial C1(111 function. Am. J Respir. Crit. Care Med. (1998) 157:484–490.
  • •First clinical trial of 4-phenylbutyrate.
  • ILLEK B, ZHANG L, LEWIS NC, MOSS RB, DONG JY, FISCHER H: Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein. Am. J Physiol. (1999) 277:C833–C839.
  • •Combination of 4-phenylbutyrate and genistein for treatment of CF.
  • ANDERSSON C, ROOMANS GM: Activation of AF508 CFIRin a cystic fibrosis respiratory epithelial cell line by 4-phenylbutyrate, genistein and CPX. Eur. Respk. J. (2000) 15:937–941.
  • RUBENSTEIN RC, ZEITLIN PL: Sodium 4-phenylbutyratedownreg-ulates Hsc70: implications for intracellular trafficking of AF508-CFIR. Am. J. Physiol. Cell Physiol (2000) 278:C259–C267.
  • •Cellular basis of action of 4-phenylbutyrate in the correction of the AF508-CFTR defect.
  • LOFFING J, MOYER BD, REYNOLDS D, STANTON BA: PBAincreases CFIR expression but at high doses inhibits Cl- secretion in Calu-3 airway epithelial cells. Am. J Physic)]. (1999) 277:L700–L708.
  • MOYER BD, LOFFING-CUENI D, LOFFING J, REYNOLDS D,STANTON BA: Butyrate increases apical membrane CFIR but reduces chloride secretion in MDCK cells. Am. J. Physic]. (1999) 277 :F271–F276.
  • MCGRATH-MORROW SA, STAHL JL: G(1) Phase growtharrest and induction of p21(Waf1/Cip1/Sdi1) in IB3-1 cells treated with 4-sodium phenylbutyrate. J. Pharmacol. Exp. Ther. (2000) 294:941–947.
  • PELIDIS MA, CARDUCCI MA, SIMONS JW: Cytotoxic effects of sodium phenylbutyrate on human neuroblastomacelllines. Intl Oncol (1998) 12:889–893.
  • ENGELHARD HH, HOMER RJ, DUNCAN HA, ROZENTAL J: Inhibitory effects of phenylbutyrate on the prolifera-tion, morphology, migration and invasiveness of malignant glioma cells. J Neurooncol. (1998) 37:97–108.
  • ZEITLIN PL: Pharmacologic restoration of AF508 CFIR-mediated chloride current. Kidney Int. (2000) 57:832–837.
  • BRADBURY NA: Focus on 'Sodium 4-phenylbutyrate downreg-ulates Hsc70: implications for intracellular trafficking of AF508-CFIR'. Am. J. Physiol. Physiol.(2000) 278:C257–C258.
  • MCPHERSON MA, DORMER RL, BRADBURY NA, DODGE JA, GOODCHILD MC: Defective beta-adrenergic secretory responses in submandibular acinar cells from cystic fibrosis patients. Lancet (1986) 2:1007–1008.
  • MILLS CL, DORIN JR, DAVIDSON DJ et al.: Decreased beta-adrenergic stimulation of glycoprotein secretion in CF mice submandibular glands: reversal by the methylx an thin e, IBMX. Biochem. Biophys. Res. Commun. (1995) 215:674–681.
  • YANG Y, DEVOR DC, ENGELHARDT JF et al.: Molecular basis of defective anion transport in Lcells expressing recombinant forms of C1,11L Hum. Mol. Genet. (1993) 2 :1253–1261.
  • GRUBB B, LAZAROWSKI E, KNOWLES M, BOUCHER R:Isobutylmethylxanthine fails to stimulate chloride secretion in cystic fibrosis airway epithelia. Am. J Respir. Cell. Mol. Biol. (1993) 8:454–460.
  • HAWS CM, NEPOMUCENO IB, KROUSE ME et al.: AF508-CFIRchannels: kinetics, activation by forskolin and potentiation by xanthines. Am. J Physiol. (1996) 270:C1544–C1555.
  • •Mechanism of activation of mutant CFTR by xanthines.
  • HE Z, RAMAN S, GUO Y, REENSTRA WW: Cystic fibrosistransmembrane conductance regulator activation by cAMP-independent mechanisms. Am. J. Physiol. (1998) 275:C958–C966.
  • CHAPPE V, METTEY Y, VIERFOND JM et al.: Structuralbasis for specificity and potency of xanthine deriva-tives as activators of the CFIR chloride channel. Br. J Pharmacol. (1998) 123:683–693.
  • •Extensive pharmacological analysis of xanthines as activa-tors of CFTR.
  • SCHULTZ BD, SINGH AK, DEVOR DC, BRIDGES RJ: Pharmacology of CFIR chloride channel activity. Physic]. Rev. (1999) 79:S109–S144.
  • ••Extensive review with new data on inhibitors and activatorsof CFTR.
  • EIDELMAN 0, GUAY-BRODER C, VAN GALEN PJ et al.: Aladenosine-receptor antagonists activate chloride efflux from cystic fibrosis cells. Proc. Natl. Acad. ScL USA (1992) 89:5562–5566.
  • GUAY-BRODER C, JACOBSON KA, BARNOY S et al.: Alreceptor antagonist 8-cyclopenty1-1,3-dipropyl xanthine selectively activates chloride efflux from human epithelial and mouse fibroblast cell lines expressing the cystic fibrosis transmembrane regulator AF508 mutation. Biochemistry (1995) 34:9079–9087.
  • JACOBSON KA, GUAY-BRODER C, VAN GALEN PJ et al.:Stimulation by alkylxanthines of chloride efflux in CFPAC-1 cells does not involve Al adenosine receptors. Biochemistry (1995) 34:9088–9094.
  • •Mechanism of CPX activation of CFTR.
  • PEREIRA MM, LLOYD MILLS C, DORMER RL, MCPHERSONMA: Actions of adenosine Al and A2 receptor antago-nists on CFIR antibody-inhibited beta-adrenergic mucin secretion response. Br. J Pharmacol. (1998) 125:697–704.
  • CASAVOLA V, TURNER RJ, GUAY-BRODER C, JACOBSONKA, EIDELMAN 0, POLLARD HB: CPX, a selective Al-adenosine-receptor antagonist, regulates intracel-lular pH in cystic fibrosis cells. Am. J Physiol. (1995) 269:C226–C233.
  • COHEN BE, LEE G, JACOBSON KA et al.: 8-Cyclopenty1-1,3-dipropylxanthine and other xanthines differentially bind to the wild-type and AF508 first nucleotide binding fold (NBF-1) domains of the cystic fibrosis transmembrane conductance regulator. Biochemistry (1997) 36:6455–6461.
  • •Elucidation of molecular interaction between CPX and CFTR.
  • ARISPE N, MA J, JACOBSON KA, POLLARD HB: Directactivation of cystic fibrosis transmembrane conduc-tance regulator channels by 8-cyclopenty1-1,3-dipr opylx an thin e (CPX) and 1,3-dially1-8-cyclohexylxanthine (DAX). J. Biol. Chem. (1998) 273:5727–5734.
  • SRIVASTAVA M, EIDELMAN 0, POLLARD HB: Pharmaco-genomics of the cystic fibrosis transmembrane conductance regulator (CFIR) and the cystic fibrosis drug CPX using genome microarray analysis. Mol. Med. (1999) 5:753–767.
  • •Pharmacogenomic study of the effects of CPX on AF508-CFTR showing normalisation of trafficking.
  • KUNZELMANN K, BRIEL M, SCHREIBER R, RICKEN S, NITSCHKE R, GREGER R: No evidence for direct activa-tion of the cystic fibrosis transmembrane conduc-tance regulator by 8-cyclopenty1-1,3-dipropyl xanthine. Cell Physiol. Biochem. (1998) 8:185–193.
  • AKIYAMA T, ISHIDA J, NAKAGAWA S et al.: Genistein, aspecific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. (1987) 262:5592–5595.
  • OGAWARA H, AKIYAMA T, WATANABE S, ITO N, KOBORIM, SEODA Y: Inhibition of tyrosine protein kinase activity by synthetic isoflavones and flavones. Antibiot. (Tokyo) (1989) 42:340–343.
  • AKIYAMA T, OGAWARA H: Use and specificity of genistein as inhibitor of protein-tyrosine kinases. Methods Enzymol. (1991) 201:362–370.
  • MARKOVITS J, LINASSIER C, FOSSE P et al.: Inhibitoryeffects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res. (1989) 49:5111–5117.
  • OSHEROFF N, CORBETT AH, ELSEA SH, WESTERGAARD M: Defining functional drug-interaction domains on topoisomerase II by exploiting mechanistic differ-ences between drug classes. Cancer Chemother. Pharmacol. (1994) 34 (Suppl.):S19–S25.
  • HIGASHI K, OGAWARA H: Effects of isoflavone compounds on the activation of phospholipase C. Chem. Pharm. Bull. (Tokyo) (1992) 40:157–160.
  • OKAJIMA F, AKBAR M, ABDUL MAJID M, SHO K, TOMURA H, KONDO Y: Genistein, an inhibitor of protein tyrosine kinase, is also a competitive antagonist for P1 -purinergic (adenosine) receptor in FRTL-5 thyroid cells. Biochem. Biophys. Res. Commun. (1994) 203:1488–1495.
  • JI XD, MELMAN N, JACOBSON KA: Interactions of flavonoids and other phytochemicals with adenosine receptors. J. Med. Chem. (1996) 39:781–788.
  • MESSINA MJ, PERSKY V, SETCHELL KD, BARNES S: Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr. Cancer (1994) 21:113–131.
  • MESSINA MJ: Legumes and soybeans: overview of their nutritional profiles and health effects. Am. J Clin. Nutr. (1999) 70 (Suppl. 3):4395-450S.
  • NGUYEN TD, CANADA AT, HEINTZ GG, GETTYS TVV, COHN JA: Stimulation of secretion by the T84 colonic epithelial cell line with dietary flavonols. Biochem. Pharmacol (1991) 41:1879–1886.
  • NGUYEN TD, CANADA AT: Citrus flavonoids stimulatesecretion by human colonic T84 cells. J Nutr. (1993) 123:259–268.
  • ILLEK B, FISCHER H, SANTOS GF, WIDDICOMBE JH,MACHEN TE, REENSTRA WW: cAMP-independent activa-tion of CEIR Cl channels by the tyrosine kinase inhibitor genistein. Am..] Physiol. (1995) 268:C886–C893.
  • •First paper on activation of CFTR by genistein.
  • LEHRICH RW, FORREST JN, JR.: Tyrosine phosphoryla-tion is a novel pathway for regulation of chloride secretion in shark rectal gland. Am. J Physiol. (1995) 269:F594–F600.
  • SEARS CL, FIROOZMAND F, MELLANDER A et al.:Genistein and tyrphostin 47 stimulate CEIR-mediated CE secretion in T84 cell monolayers. Am. J Physiol. (1995) 269:G874–G882.
  • DIENER M, HUG F: Modulation of Cl- secretion in ratdistal colon by genistein, a protein tyrosine kinase inhibitor. Eur.J. Pharmacol (1996) 299:161–170.
  • WEINREICH F, WOOD PG, RIORDAN JR, NAGEL G: Directaction of genistein on GEHL Pfltigers Arch. (1997) 434:484–491.
  • WANG F, ZELTWANGER S, YANG IC, NAIRN AC, HWANGTC: Actions of genistein on cystic fibrosis transmem-brane conductance regulator channel gating. Evidence for two binding sites with opposite effects. J Gen. Physic]. (1998) 111:477–490.
  • CHIANG CE, CHEN SA, CHANG MS, UN CI, LUK HN: Genistein directly induces cardiac CETI( chloride current by a tyrosine kinase-independent and protein kinase A-independent pathway in guinea pig ventricular myocytes. Biochem. Biophys. Res. Commun. (1997) 235:74–78.
  • FRENCH PJ, BIJMAN J, BOT AG, BOOMAARS WE, SCHOLTE BJ, DE JONGE HR: Genistein activates CEIRCE channels via a tyrosine kinase- and protein phosphatase-independent mechanism. Am. J. Physiol. (1997) 273:C747–C753.
  • TILLY BC, BEZSTAROSTI K, BOOMAARS WE, MARINO CR,LAMERS JM, DE JONGE HR: Expression and regulation of chloride channels in neonatal rat cardiomyocytes. Mol. Cell. Biochem. (1996) 157:129–135.
  • ILLEK B, YANKASKAS JR, MACHEN TE: cAMP and genistein stimulate HCO3- conductance through CEIR in human airway epithelia. Am. J. Physiol. (1997) 272:L752–L761.
  • RANDAK C, AUERSWALD EA, ASSFALG-MACHLEIDT I, REENSTRA WW, MACHLEIDT W: Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein. Biochem. J. (1999) 340:227–235.
  • HWANG TC, WANG F, YANG IC, REENSTRA WW: Genistein potentiates wild-type and AF508-GFIR channel activity. Am. J Physiol. (1997) 273:C988–C998.
  • •Activation of AF508 by genistein.
  • LEHRICH RW, ALLER SG, WEBSTER P, MARINO CR, FORREST JN, JR.: Vasoactive intestinal peptide, forskolin and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium. J Clin. Invest. (1998) 101:737–745.
  • YANG IC, CHENG TH, WANG F, PRICE EM, HWANG TC:Modulation of CEIR chloride channels by calyculin A and genistein. Am. J Physiol. (1997) 272:C142–C155.
  • ILLEK B, FISCHER H: Flavonoids stimulate Cl conduc-tance of human airway epithelium in vitro and in vivo. Am. J. Physic]. (1998) 275:L902–L910.
  • GODDARD CA, EVANS MJ, COLLEDGE WH: Genistein activates CEIR-mediated CE secretion in the murine trachea and colon. Am. J Physiol. Cell Physiol. (2000) 279:C383–C392.
  • DEVOR DC, BRIDGES RJ, PILEWSKI JM: Pharmacological modulation of ion transport across wild-type and AF508 CEIR-expressing human bronchial epithelia. Am. J. Physic]. Cell Physic]. (2000) 279:C461–C479.
  • LEUNG GP, WONG PY: Activation of cystic fibrosis transmembrane conductance regulator in rat epididymal epithelium by genistein. Biol. Reprod. (2000) 62:143–149.
  • LANSDELL KA, CAI Z, KIDD JF, SHEPPARD DN: Two mechanisms of genistein inhibition of cystic fibrosis transmembrane conductance regulatorchannels expressed in murine cell line. J. Physiol. (2000) 524:317–330.
  • ILLEK B, FISCHER H, MACHEN TE: Alternate stimulationof apical CFIR by genistein in epithelia. Am. J. Physiol. 1996 270:C265–C275.
  • NCI, DCPC: Clinical development plan: genistein. J. Cell.Biochem. (1996) 26S:114–126.
  • MESSINGER Y, YANISHEVSKI Y, EK 0 et al.: In vivotoxicity and pharmacokinetic features of B43 (anti-CD1 9)-genistein immunoconjugate in non-human primates. Clin. Cancer Res. (1998) 4:165–170.
  • UCKUN FM, MESSINGER Y, CHEN CL et al.: Treatment oftherapy-refractory B-lineage acute lymphoblastic leukemia with an apoptosis-inducing CD19-directed tyrosine kin as e inhibitor. Clin. Cancer Res. (1999) 5:3906–3913.
  • BERGER HA, TRAVIS SM, WELSH MJ: Regulation of thecystic fibrosis transmembrane conductance regulator channel by specific protein kinases and protein phosphatases. J Biol. Chem. (1993) 268:2037–2047.
  • REENSTRA WW, YURKO-MAURO K, DAM A, RAMAN S, SHORTEN S: CF1R chloride channel activation by genistein: the role of serine/threonine protein phosphatases. Am. J. Physiol. (1996) 271:C650–C657.
  • BECQ F, FANJUL M, MERTEN M, FIGARELLA C, HOLLANDE E, GOLA M: Possible regulation of CFIR-chloride channels by membrane-bound phosphatases in pancreatic duct cells. FEBS Lett. (1993) 327:337–342.
  • BECQ F, JENSEN TJ, CHANG XB et al.: Phosphatase inhibitors activate normal and defective CFTR chloride channels. Proc. Natl. Acad. Sci. USA (1994) 91:9160–9164.
  • BECQ F, VERRIER B, CHANG XB, RIORDAN JR, HANRAHAN JW: cAMP- and Ca2±-independent activa-tion of cystic fibrosis transmembrane conductance regulator channels by phenylimidazothiazole drugs. J Biol. Chem. (1996) 271:16171–16179.
  • FISCHER H, ILLEK B, MACHEN TE: Regulation of CFIR by protein phosphatase 2B and protein kinase C. Pfliigers Arch. (1998) 436:175–181.
  • KELLEY TJ, AL-NAKKASH L, COTTON CU, DRUMM ML: Activation of endogenous AF508 cystic fibrosis transmembrane conductance regulator by phosphodiesterase inhibition. J Clin. Invest. (1996) 98:513–520.
  • SMITH SN, MIDDLETON PG, CHADWICK S et al.: The in vivo effects of milrinone on the airways of cystic fibrosis mice and human subjects. Am. J. Respir. Cell Mol. Biol. (1999) 20:129–134.
  • OLESEN SP, MUNCH E, MOLDT P, DREJER J: Selective activation of Ca2±-dependent K+ channels by novel benzimidazolone. Eur. j Pharmacol. (1994) 251:53–59.
  • GRIBKOFF VK, CHAMPIGNY G, BARBRY P, DWORETZKY SI, MEANWELL NA, LAZDUNSKI M: The substituted benzimidazolone NS004 is an opener of the cystic fibrosis chloride channel. J. Biol. Chem. (1994) 269:10983–10986.
  • CHAMPIGNY G, IMLER JL, PUCHELLE E et al.: A change in gating mode leading to increased intrinsicchannelactivity compensates for defective processing in a cystic fibrosis mutant corresponding to a mild form of the disease. EMBO J (1995) 14:2417–2423.
  • DEVOR DC, SINGH AK, BRIDGES RJ, FRIZZELL RA: Modulation of C1 secretion by benzimidazolones. II. Coordinate regulation of apical GC1 and basolateral GK. Am J. Physiol. (1996) 271:L785–L795.
  • SINGH AK, DEVOR DC, GERLACH AC, GONDOR M, PILEWSKI JM, BRIDGES RJ: Stimulation ofsecretionby chlorzoxazone. J. Pharmacol. Exp. Ther. (2000) 292:778–787.
  • LINDEN KG, WEINSTEIN GD: Psoriasis: current perspec-tives with an emphasis on treatment. Am. J. Med. (1999) 107:595–605.
  • BICKERS DR, PATHAK MA: Psoralen pharmacology: studies on metabolism and enzyme induction. Nati Cancer Inst. Monogr. (1984) 66:77–84.
  • SZEWCYK A, DE WEILLE JR, LADZUNSKI M: 8-Methoxypsoralen blocks ATP-sensitive potassium channels and stimulates insulin release. Eur. J. Pharmacol. (1992) 216:323–326.
  • DEVOR DC, SINGH AK, BRIDGES RJ, FRIZZELL RA: Psoralens: novel modulators ofsecretion. Am. JPhysiol. (1997) 272:C976–C988.
  • BECQ F, METTEY Y, GRAY MA et al.: Development of substituted Benzo [c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel. J. Biol. Chem. (1999) 274:27415–27425.
  • •A new group of activators of CFTR with possible clinical relevance.
  • BEDWELL DM, KAENJAK A, BENOS DJ et al.: Suppression of a CFIR premature stop mutation in a bronchial epithelial cell line. Nature Med. (1997) 3:1280–1284.
  • •Gentamicin can suppress stop mutations in CFTR.
  • WILSCHANSKI M, FAMINI C, BLAU H et al.: A pilot study of the effect of gentamicin on nasal potential differ-ence measurements in cystic fibrosis patients carrying stop mutations. Am. J. Respir. Crit. Care Med. (2000) 161:860–865.
  • FISCHER H, ILLEK B, MACHEN TE: The actin filament disrupter cytochalasin D activates the recombinant cystic fibrosis transmembrane conductance regulator channel in mouse 313 fibroblasts. J Physiol. (1995) 489:745–754.
  • SAMUELS J, AKSENTIJEVICH I, TOROSYAN Y et al.: Familial Mediterranean fever at the millennium. Clinical spectrum, ancient mutations and a survey of 100 American referrals to the National Institutes of Health. Medicine (Baltimore) (1998) 77:268–297.
  • LALLEMAND JY, STOVEN V, ANNEREAU JP et al.: Induction by antitumoral drugs of proteins that functionally complement CFIR: a novel therapy for cystic fibrosis? Lancet (1997) 350:711–712.
  • SERMET-GAUDELUS I, STOVEN V, ANNEREAU JP et al: Interest of colchicine for the treatment of cystic fibrosis patients. Preliminary report. Mediators Inflamm. (1999) 8:13–15.
  • WITKO-SARSAT V, SERMET-GAUDELUS I, LENOIR G, DESCAMPS-LATSCHA B: Inflammation and GEM: might neutrophils be the key in cystic fibrosis? Mediators Inflamm. (1999) 8:7–11.
  • FRIZELL RA, RECHKEMMER G, SHOEMAKER RL: Altered regulation of airway epithelial chloride channels in cystic fibrosis. Science (1986) 233:558–560.
  • BOUCHER RC, CHENG EH, PARADISO AM, STUTTS MJ, KNOWLES MR, EARP HS: Chloride secretory response of cystic fibrosis human airway epithelia. Preservation of calcium but not protein kinase C- and A-dependent mechanisms. J. Clin. Invest. (1989) 84:1424–1431.
  • MASON SJ, PARADISO AM, BOUCHER RC: Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium. Br. J Pharmacol. (1991) 103:1649–1656.
  • COZENS AL, YEZZI MJ, CHIN L et al: Characterization of immortal cystic fibrosis tracheobronchial gland epithelial cells. Proc. Natl. Acad. Sci. USA (1992) 89:5171–5175.
  • CLARKE LL, HARLINE MC, GAWENIS LR, WALKER NM, TURNER JT, WEISMAN GA: Ex tracellular UTP stimulates electrogenic bicarbonate secretion across GEER knockout gallbladder epithelium. Am]. Physiol. Castro-intest. Liver Physiol. (2000) 279:G132–G138.
  • KNOWLES MR, CLARKE LL, BOUCHER RC: Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl. J. Med. (1991) 325:533–538.
  • •Use of nucleotides as alternative activators of chloride efflux in CF.
  • BENNET WD, OLIVIER KN, ZEMAN KL, HOHNEKER KW, BOUCHER RC, KNOWLES MR: Effect of uridine-5'-triphophate plus amiloride on mucociliary clearance in adult cystic fibrosis. Am. J. Respir. Grit. Care Med. (1996) 153:1796–1801.
  • OLIVIER KN, BENNET WD, HOHNEKER KW et al: Acute safety and effects on mucociliary clearance of aerosol-ized uridine-5t-triphophate ± amiloride in normal human adults. Am. J. Respir. Grit. Care Med. (1996) 154:217–223.
  • GHOSAL S, TAYLOR CJ, COLLEDGE WH, RATCLIFF R, EVANS MJ: Sodium channel blockers and uridine triphosphate: effects on nasal potential difference in cystic fibrosis mice. Eur. Respir. j (2000) 15:146–150.
  • TAYLOR AL, SCHWIEBERT LM, SMITH JJ et al.: Epithelial P2X purinergic receptor channel expression and function. J Chn. Invest. (1999) 104:875–884.
  • ZHANG AL, ROOMANS GM: Regulation of intracellular calcium by extracellular nucleotides in cultured pig tracheal submucosal gland cells. Respir. Physiol. (1999) 118:237–246.
  • INGLIS SK, COLLETT A, MCALROY HL, WILSON SM, OLVER RE: Effect of luminal nucleotides on Cl- secretion and Na+ absorption in distal bronchi. Pfliigers Arch. (1999) 438:621–627.
  • •Inhibition of Na + uptake is an additional property of purinergic agonists.
  • DEVOR DC, PILEWSKI JM: UTP inhibits Na + absorption in wild-type and AF508 GEM-expressing human bronchial epithelia. Am. J. Physiol (1999) 276:C827–C837.
  • •Inhibition of Na + uptake is an additional property of purinergic agonists.
  • AGTERESCH HJ, DAGNELIE PC, VAN DEN BERG JW, WILSON JH: Adenosine triphosphate: established and potential clinical applications. Drugs (1999) 58:211–232.
  • APP EM, KING M, HELFESRIEDER R, KOHLER D, MATTHYS H: Acute and long-term amiloride inhalation in cystic fibrosis lung disease. A rational approach to cystic fibrosis therapy. Am. Rev. Respir. Dis. (1990) 141:605–612.
  • TOMKIEWICZ RP, APP EM, ZAYAS JG et al: Arniloride inhalation therapy in cystic fibrosis. Influence on ion content, hydration and rheology of sputum. Am. Rev. Respir. Dis. (1993) 148:1002–1007.
  • MIDDLETON PG, GEDDES DM, ALTON EW: Effect of amiloride and saline on nasal mucociliary clearance and potential difference in cystic fibrosis and normal subjects. Thorax (1993) 48:812–816.
  • HOFMANN T, SENIER I, BITTNER P, HULS G, SCHWANDT HJ, LINDEMANN H: Aerosolized amiloride: dose effect on nasal bioelectric properties, pharmacokinetics and effect on sputum expectoration in patients with cystic fibrosis. J. Aerosol Med. (1997) 10:147–158.
  • HOFMANN T, STUTTS MJ, ZIERSCH A et al.: Effects of topically delivered benzamil and amiloride on nasal potential difference in cystic fibrosis. Am. J Respir. Grit. Care Med. (1998) 157:1844–1849.
  • •Use of the more stable amiloride analogue benzamil to inhibit Na + influx in CF airway epithelial cells.
  • KNOWLES MR, OLIVIER K, NOONE P, BOUCHER RC: Pharmacologic modulation of salt and water in the airway epithelium in cystic fibrosis. Am. J Respir. Grit. Care Med. (1995) 151:S65–S69.
  • PUCHELLE E, DE BENTZMANN S, ZAHM JM: Physical and functional properties of airway secretions in cystic fibrosis - therapeutic approaches. Respiration (1995) 62 (Suppl. 0:2–12.
  • GRAHAM A, HASANI A, ALTON EW et al.: No added benefit from nebulized amiloride in patients with cystic fibrosis. Eur. Respir. J. (1993) 6:1243–1248.
  • BOWLER IM, KELMAN B, WORTHINGTON D et al.: Nebulised amiloride in respiratory exacerbations of cystic fibrosis: a randomised controlled trial. Arch. Dis. Child. (1995) 73:427–430.
  • PONS G, MARCHAND MC, D'ATHIS P et al.: French multicenter randomized double-blind placebo-controlled trial on nebulized amiloride in cystic fibrosis patients. The Arniloride-AFLM Collaborative Study Group. Pediatr. Pulmonol. (2000) 30:25–31.
  • •Largest clinical study to date on the use of amiloride in CF.
  • BLANK U, GLANZ H, EISTERT B et al: Benzamil and mucoviscidosis. Primary culture of nasal mucosa as an electrophysiologic in vitro model. HNO (1996) 44:172–177.
  • RODGERS HC, KNOX AJ: The effect of topical benzamil and amiloride on nasal potential difference in cystic fibrosis. Eur. Respir. J. (1999) 14:693–696.
  • GRUBB BR, BOUCHER RC: Effect of in vivo corticoster-oids on Na+ transport across airway epithelia. Am. J. Physiol. (1998) 275:C303–C308.
  • TROUT L, KING M, FENG W, INGLIS SK, BALLARD ST: Inhibition of airway liquid secretion and its effect on the physical properties of airway mucus. Am. J. Physiol. (1998) 274:L258–L263.
  • BALLARD ST, TROUT L, BEBOK Z, SORSCHER EJ, CREWS A: CFIR involvement in chloride, bicarbonate and liquid secretion by airway submucosal glands. Am. J. Physiol. (1999) 277:L694–L699.
  • DEVOR DC, SINGH AK, LAMBERT LC, DELUCA A, FRIZZELL RA, BRIDGES RJ: Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J. Gen. Physiol. (1999) 113:743–760.
  • ILLEK B, TAM AW, FISCHER H, MACHEN TE: Anion selectivity of apical membrane conductance of Calu 3 human airway epithelium. Pflagers Arch. (1999) 437:812–822.
  • WHEAT VJ, SHUMAKER H, BURNHAM C, SHULL GE, YANKASKAS JR, SOLEIMANI M: GEM induces the expression of DRA along with C11HCO3- exchange activity in tracheal epithelial cells. Am. J. Physiol. Cell Physiol. (2000) 279:C62–C71.
  • •Connection between CFTR and chloride/bicarbonate exchange.
  • PRATHA VS, HOGAN DL, MARTENSSON BA, BERNARD J, ZHOU R, ISENBERG JI: Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis. Gastro-enterology (2000) 118:1051–1060.
  • JIANG C, FANG SL, XIAO YF et al.: Partial restoration of cAMP-stimulated CFIR chloride channel activity in AF508 cells by deoxysperg-ualin. Am. J. Physiol. (1998) 275:C171–C178.
  • FULLER W, CUTHBERT AW: Post-translational disrup-tion of the AF508 cystic fibrosis transmembrane conductance regulator (CFIR)-molecular chaperone complex with geldanamycin stabilizes AF508 CFIR in the rabbit reticulocyte lysate. J. Biol. Chem. (2000) 48:37462–37468.
  • •Disruption of the connection between AF508-CFTR and chaperones resolves the trafficking defect in mutant CFTR.
  • PLEMPER RK, WOLF DH: Retrograde protein transloca-tion: eradication of secretory proteins in health and disease. Trends Biochem. Sci. (1999) 24:266–270.
  • STERN M, MUNKONGE FM, CAPLEN NJ et al.: Quantitative fluorescence measurements of chloride secretion in native airway epithelium from CF and non-CF subjects. Gene Ther. (1995) 2:766–774.
  • ANDERSSON C, DRAGOMIR A, HJELTE L, ROOMANS GM: Measurements of CFIR activity in nasal epithelial cells by MQAE. Proc. XIIIth Int. Cystic Fibrosis Congress (2000) 93.
  • DRAGOMIR A, ANDERSSON C, HJELTE L, ROOMANS GM: Assessment of CFIR function in nasal epithelium. Proc. XIIIth Int. Cystic Fibrosis Congress (200098.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.