46
Views
15
CrossRef citations to date
0
Altmetric
Miscellaneous

Peripheral channelopathies as targets for potassium channel openers

Pages 1345-1359 | Published online: 24 Feb 2005

Bibliography

  • COOPER EC, JAN LY: Ion channel genes and human neurological disease: Recent progress, prospects and challenges. Proc. Natl. Acad. Set. USA (1999) 96:4759–4766.
  • CURRAN ME: Potassium ion channels and human disease: phenotypes to drug targets? Cun: Opin. Biotech. (1998) 9:565–572.
  • BARCHI RL: Ion channel mutations affecting muscle and brain. Cun: Opin. Neural. (1998) 11:461–468.
  • SANGUINETTI MC, SPECTOR PS: Potassium channelopathies. Neurapharinacal. (1997) 36:755–762.
  • ABITBOL I, PERETZ A, LERCHE C, BUSCH AE, ATTALI B: Stilbenes and fenamates rescue the loss of I-KS channel function induced by an LQT5 mutation and other IsK mutants. EMBO J. (1999) 18:4137–4148.
  • INAGAKI N, GONOI T, CLEMENT JP et al.: A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron (1996) 16:1011–1017.
  • LEBRUN P, ARKHAMMAR P, ANTOINE MH, NGUYEN QA, HANSEN JB, PIROTTE B: A potent diazoxide analogue activating ATP-sensitive K+ channels and inhibiting insulin release. Diabetologia (2000) 43:723–32.
  • RASMUSSEN SB, SORENSEN TS, HANSEN JB, MANDRUP-POULSEN T, HORNUM L, MARKHOLST H: Functional rest through intensive treatment with insulin and potassium channel openers preserves residual beta-cell function and mass in acutely diabetic BB rats. Harm. Metab. Res. (2000) 32:294–300
  • LAWSON K: Potassium channel activation: a potential therapeutic approach? Pharmacy] Ther. (1996) 70:39–63.
  • KACZOROWSKI GJ, GARCIA LM: Pharmacology of voltage-gated and calcium-activated potassium channels. Curr. Opin. Chem. Biol. (1999) 3:448–458.
  • KACZOROWSKI GJ, KNAUS H-G, LEONARD RJ, MCMANUS OB, GARCIA LM: High conductance, calcium-activated potassium channels; structure, pharmacology and function. J. Biomembr. Bioenerg. (1996) 28:255–267.
  • SYME CA, GERLACH AC, SINGH AK, DEVOR DC: Pharmacological activation of cloned intermediate- and small-conductance Ca2+-activated K+ channels. Am. J. Physial. (2000) 278:C570–0581.
  • RUNDFELDT C, NETZER R: The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells transfected with human KCNQ2/3 subunits. Neurosci. Lett. (2000) 282:73–76.
  • KORNHUBER J, MALER M, WILTFANG J, BLEICH S, DEGNER D, RUTHER E: Opening of neuronal K+ channels by flupirtine. Fortschritte der Neurologie Psychiamie (1999) 106:857–867.
  • CLEMENT JP 4TH, KUNJILAR K, GONZALEZ G etal.: Association and stoichiometry of Kpap channel subunits. Neuron (1997) 18:827–838.
  • SHYNG SL, NICHOLS CG: Octameric stoichiometry of the KATp channel complex. Gen. Physial. (1997) 110:655–664.
  • LAWSON K: Is there a role for potassium channel openers in neuronal ion channel disorders? Expert Opin. Investig. Dugs (2000) 9:2269–2280.
  • UHDE I, TOMAN A, GROSS I, SCHWANSTECHER C, SCHWANSTECHER M: Identification of the potassium channel opener site on sulphonylurea receptors. J. Biol. Chem. (1999) 274:28079–28082.
  • MOREAU C, JACQUET H, PROST AL, D'HAHAN N, VIVAUDOU M: The molecular basis of the specificity of action of KATp channel openers. EMBO J. (2000) 19:6644–6651.
  • OZCAN C, HOLMUHAMEDOV EL, JAHANGIR A, TERZIC A: Diazoxide protects mitochondria from anoxic injury: implications for myopreservation. j Thome. Cardiovasc. Surg. (2001) 121:298–306.
  • LIU Y, REN G, O'ROURKE B, MARBAN E, SEHARASEYON J: Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. j Mal. Pharmacal. (2001) 59:225–230.
  • VERGARA C, LATORRE R, MARRION NV, ADELMAN JP: Calcium activated potassium channels. Curr. Opin. Neurobial (1998) 8:321–329.
  • GIANGIACOMO KM, KAMASSAH A, HARRIS G, MCMANUS OB: Mechanism of maxi-K channel activation by dehydrosoyasaponin-I. I Gen. Physial (1998) 112:485–501.
  • WANNER SG, KOCH RO, KOSCHAK A et al.: High-conductance calcium-activated potassium channels in rat brain: pharmacology, distribution and subunit composition. Biochemistry (1999) 38:5392–5400.
  • ACKERMAN MJ, CLAPHAM DE: Ion channels - basic science and clinical disease. N. Engl. J. Med. (1997) 336:1575–1586.
  • VINCENT GM, TIMOTHY K, FOX J, ZHANG L: The inherited long OT syndrome: From ion channel to bedside. Cardial Rev 7:44–55.
  • WANG Q, CURRAN ME, SPLAWSKI I et al.: Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias (1996) Nat. Genet. 12: 17–23.
  • DONGER C, DENJOY I, BERTHET M et al: KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation (1997) 96:2778–2781.
  • TANAKA T, NAGAI R, TOMOIKE H et al.: Four novel KVLQT1 and four novel HERG mutations in familial long-QT syndrome. Circulation (1997) 95:565–567.
  • SAARINEN K, SWAN H, KAINULAINEN K, TOIVONEN L, VIITASALO M, KONTULA K: Molecular genetics of the long QT syndrome: Two novel mutations of the KVLQT1 gene and phenotypic expression of the mutant gene in a large kindred. Hum. Mutat. (1998) 11:158–165.
  • LI H, CHEN QY, MOSS AJ et al: New mutations in the KVLQT1 potassium channel that cause long-QT syndrome. Circulation (1998) 97:1264–1269.
  • NEYROUD N, RICHARD P, VIGNIER N et al.: Genomic organization of the KCNQ1 K+ channel gene and identification of C-terminal mutations in the long-QT syndrome Circ. Res. (1999) 84:290–297.
  • SPLAWSKI I, TRISTANI-FIROUZI M, LEHMANN MH, SANGUINETTI MC, KEATING MT: Mutations in the hminK gene cause long QT syndrome and suppress I-Ks function. Nat. Genet. (1997) 17:338–340.
  • DUGGAL P, VESELY MR, WATTANASIRICHAIGOON D, VILLAFANE J, KAUSHIK V, BEGGS AH: Mutation of the gene for IsK associated with both Jervell and Lange-Nielsen and Romano-Ward forms of Long-QT syndrome. Circulation (1998) 97:142–146.
  • CURRAN ME, SPLAWSKI I, TIMOTHY KW, VINCENT GM, GREEN ED, KEATING MT: A molecular-basis for cardiac-arrhythmia herg mutations cause LQT syndrome. Cell (1995) 80:795–803.
  • SANGUINETTI MC, CURRAN ME, SPECTOR PS, KEATING MT: Spectrum of HERG Ktchannel dysfunction in an inherited cardiac arrhythmia. Proc. Natl. Acad. Sd. USA (1996) 93:2208–2212.
  • NAKAJIMA T, FURUKAWA T, TANAKA T et al: Novel mechanism of HERG current suppression in LQT2 - Shift in voltage dependence of HERG inactivation. Circ. Res. (1998) 83:415–422.
  • CHEN J, ZOU AR, SPLAWSKI I, KEATING MT, SANGUINETTI MC: Long QT syndrome-associated mutations in the Per-Arnt-Sim (PAS) domain of HERG potassium channels accelerate channel deactivation. j Biol. Chem. (1999) 274:10113–10118.
  • FURUTANI M, TRUDEAU MC, HAGIWARA N et al.: Novel mechanism associated with an inherited cardiac arrhythmia - Defective protein trafficking by the mutant HERG (G6015) potassium channel. Circulation (1999) 99:2290–2294.
  • ABBOT GW, SESTI F, SPLAWSKI et al.:MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell (1999) 97:175–187.
  • KUNZELMANN K, HUBNER M, SCHREIBER R et al: Cloning and function of the rat colonic epithelial K+ channel K(V)LQT1. j Memb. Biol. (2001) 179:155–164.
  • MALL M, WISSNER A, SCHREIBER R etal.: Role of K(v)LQT1 in cyclic adenosine monophosphate-mediated Cl- secretion in human airway epithelia. Am. I Resp. Cell Mal. Biol. (2000) 23:283–289.
  • SHIMIZU W, KURITA T, MATSUO K et al.: Improvement of repolarization abnormalities by a K+ channel opener in the LQT1 form of congenital long-QT syndrome. Circulation (1998) 97:1581–1588.
  • TAN HL, ALINGS M, VAN OLDEN RW, WILDE AAM: Long-term (subacute) potassium treatment in congenital HERG-related long QT syndrome (LQTS2). Cardiovasc. Dectraphysial (1999) 10:229–233.
  • SHIMIZU W, ANTZELEVITCH C: Effects of a K+ channel opener to reduce transmural dispersion of repolarization and prevent torsade de pointes in LQT1, LQT2, and LQT3 models of the long-QT syndrome. Circulation (2000) 102:706–712.
  • LEHMANN-HORN F, ENGEL AG, RICKER K, RUDEL R: The periodic paralyses and paramyotonia. In: Myology Engel AG, Franzini-Armstong C, (Eds.), 2nd Edition, McGraw-Hill Publishers, New York, USA (1994):1303–1327.
  • LEHMANN-HORN F, RUDEL R: Molecular pathophysiology of voltage-gated ion channels. Rev Physial Biochem. Pharmacal (1996) 128:195–268.
  • LAPIE P, LORY P, FONTAINE B: Hypokalemic periodic paralysis: An autosomal dominant muscle disorder caused by mutations in a voltage-gated calcium channel. Neuromuscular. Disord. (1997) 7:234–240.
  • FOUAD G, DALAKAS M, SERVIDEI S et aL: Genotype-phenotype correlations of DHP receptor alpha(1)-subunit gene mutations causing hypokalemic periodic paralysis. Neuromusc. Disord. (1997) 7:33–38.
  • TRICARICO D, MALLAMACI R, TORTORELLA V, CAMERINO DC: Biophysical changes of skeletal muscle K-ATP channels in K+ depleted rats and pharmacological interventions. Biophys. (1997) 72:A249.
  • DENGLER R, HOFMANN WW RUDEL R: Effects of potassium depletion and insulin on resting and stimulated skeletal rat muscle. I Neural Neurosurg. Psychiatr. (1979) 42:818–826.
  • TRICARICO D, PIERNO S, MALLAMACI R et al: The biophysical and pharmacological characteristics of skeletal muscle ATP-sensitive K+ channels are modified in Ktdepleted rat, an animal model of hypokalemic periodic paralysis. Mal Pharmacal (1998) 54:197–206.
  • TRICARICO D, MALLAMACI R, BARBIERI M, CAMERINO DC: Modulation of ATP-sensitive K+ channel by insulin in rat skeletal muscle fibers. Biochem. Biophys. Res. Comm. (1997) 232:536–539.
  • TRICARICO D, SERVIDEI S, TONALI P, JURKAT-ROTT K, CAMERINO DC: Impairment of skeletal muscle adenosine triphosphate-sensitive K+ channels in patients with hypokalemic periodic paralysis. J. OM. Invest. (1999) 103:675–682.
  • RUFF RL: Insulin acts in hypokalemic periodic paralysis by reducing inward rectifier K+ current. Neurology (1999) 53:1556–1563.
  • LIGTENBERG JJM, VANHAEFTEN TW, VANDERKOLK LE et al.: Normal insulin release during sustained hyperglycaemia in hypokalaemic periodic paralysis: Role of the potassium channel opener pinacidil in impaired muscle strength. Clin Sci (1996) 91:583–589.
  • SPULER A, LEHMANNHORN F, GRAFE P: Cromakalim (BRL-34915) restores in vitro the membrane-potential of depolarized human skeletal-muscle fibers. Naurryn Schmiedebergs Arch. Pharmacal. (1989) 339:327–331.
  • GRAFE P, QUASTHOFF S, STRUPP M, LEHMANNHORN F: Enhancement of K+ conductance improves in vitro the contraction force of skeletal-muscle in hypokalemic periodic paralysis. Muscle Nerve (1990) 13:451–457
  • TRICARICO D, BARBIERI M, CAMERINO DC: Acetazolamide opens the muscular Kca channel: a novel mechanism of action that may explain the therapeutic effect of the drug in hypokalemic periodic paralysis. Ann. Neural (2000) 48:304–312.
  • CHRIST GJ, SPRAY DC, BRINK PR: Characterization of K-currents in cultured human corporal smooth-muscle cells. J. Andra (1993) 14:319–328.
  • LEE SW, WANG H-Z, CHRIST GJ: Characterization of ATP-sensitive potassium channels in human corporal smooth muscle cells. Int. J. Impotence Res. (1999) 11:189–199.
  • CHRIST GJ: Gene therapy: future strategies and therapies. Drugs Today (2000) 36:175–184.
  • CHRIST GJ, REHMAN J, DAY N et al:Intracorporal injection of hSlo cDNA in rats produces physiologically relevant alterations in penile function. Am. J. Physial (1998) 275:H600–H608.
  • CHRIST GJ, SMITH WL, SANTIZO C et al.: K+ channel gene therapy is associated with increased nerve-stimulated intracavernous pressure (ICP) responses despite diminished neuronal innervation following 3-4 months of experimental diabetes in rats. FASEB J. (1999) 13:A192.
  • DAY NS, MELMAN A, SMITH WL et al.: tiSlo Transcript is locally restricted after a single intracavernous injection of naked hSlo/pcDNA. FASEB J. (2000)13:A356.
  • PALMER L, VALCIC M, MELMAN A, GIRALDI A, WAGNER G, CHRIST GJ: Characteristation of cAMP accumulation in cultured human corpus cavernosum smooth muscle cells. J. Ural (1994) 152:1308–1314.
  • CAHN DJ, MELMAN A, VALCIC M, CHRIST GJ: Forskolin: a promising new adjunct to intracavernous pharmacotherapy. J. Ural (1996) 155:1789–1794.
  • MOON DG, BYUN HS, KIM JJ: A KATp-channel opener as a potential treatment modality for erectile dysfunction. EN Int. (1999) 83:837–841.
  • PARIVAR K: Systemic PK, erectile efficacy and safety of PNU-83757 in patients with erectile dysfunction (ED). OM. Pharmacy]. net: (2000) 67:PII167.
  • PRYOR JL, REDMON B: New therapies and delivery mechanisms for treatment of erectile dysfunction. Intl Impotence Res. (2000) 12:S158–S162.
  • MELMAN A, CHRIST GJ: Integrative erectile biology: The effects of age and disease on gap junctions and ion channels and their potential value to the treatment of erectile dysfunction. UN Am. (2001)(In press).
  • ANDERSSON KE: Pathways for relaxation of detrusor smooth muscle. Adv. Esp. Med. Biol. (1999) 462:241–252.
  • HOWE BB, HALTERMAN TJ, YOCHIM CL et al: ZENECA-ZD6169 - A novel Kpap channel opener with in-vivo selectivity for urinary-bladder. J. Pharmacy]. Exp. Ther. (1995) 274:884–890.
  • WOJDAN A, FREEDEN C, WOODS M et al: Comparison of the potassium channel openers, WAY-133537, ZD6169, and celikalim on isolated bladder tissue and in vivo bladder instability in rat. J. Pharmacy]. Exp. Ther. (1999) 289:1410–1418.
  • GOPALAKRISHNAN M, WHITEAKER KL, MOLINARI EJ et al: Characterization of the ATP-sensitive potassium channels (KATO expressed in guinea pig bladder smooth muscle cells. J. Pharmacy]. Esp. Ther. (1999) 289:551–558.
  • YU YB, DE GROAT WC: Effects of ZD6169, a KATp channel opener, on bladder hyperactivity and spinal c-fos expression evoked by bladder irritation in rats. Brain Res. (1998) 807:11–18.
  • PANDITA RK, ANDERSSON KE: Effects of intravesical administration of the K+ channel opener, ZD6169, in conscious rats with and without bladder outflow obstruction. J. Ural (1999) 162:943–948.
  • MARTIN SW, RADLEY SC, CHESS-WILLIAMS R, KORSTANJE C, CHAPPLE CR: Relaxant effects of potassium-channel openers on normal and hyper-reflexic detrusor muscle. BE J. Ural (1997) 80:405–413.
  • BUCKNER SA, MILICIC I, DAZA A et al.: Pharmacological and molecular analysis of ATP-sensitive K+ channels in the pig and human detrusor. Eur. I Pharmacy]. (2000) 400:287–295.
  • BUTERA JA, ANTANE MM, ANTANE SA et al.: Design and SAR of novel potassium channel openers targeted for urge urinary incontinence. 1. N-cyanoguanidine bioisosteres possessing in vivo bladder selectivity. J. Med. Chem (2000) 43:1187–1202.
  • HU SL, FINK CA, KIM HS, LAPPE RW: Novel and potent BK channel openers: CGS 7181 and its analogs. Drug Dev. Res. (1997) 41:10–21.
  • SIEMER C, BUSHFIELD M, NEWGREEN D, GRISSMER S: Effects of N51608 on MaxiK channels in smooth muscle cells from urinary bladder. J. Membr. Biol. (2000) 173:57–66.
  • DUNNE MJ: Ions, genes and insulin release; from basic science to clinical disease. Diabetic Med. (2000) 17:91–104.
  • HENQUIN JC: Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes (2000) 49:1751–1960.
  • AIZAWA T, KOMATSU M, ASANUMA N, SATO Y, SHARP GWG: Glucose action 'beyond ionic events' in the pancreatic 13-cell. Trends Pharmacy]. Sri. (1998) 19:496–499.
  • STURGESS NC, ASHFORD ML, COOK DL, HALES CN: The sulphonylurea receptor may be an ATP sensitive potassium channel. Lancet (1985) 2:474–475.
  • AYNSLEY-GREEN A, HUSSEIN K, HALL JL et al: The practical management of hyperinsulinism in infancy. Arch. Dis. Child (2000) 82:98–107.
  • MENNI F, DE LONLAY P, SEVIN C et al.: Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia. Pediatrics (2001) 107:476–479.
  • HUOPIO H, REIMANN F, ASHFIELD R et al: Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. 1 Chu. Invest. (2000) 106:897–906.
  • GLASER B, THORNTON PS, OTONKOSKI T, JUNIEN C: The genetics of neonatal hyperinsulinism. Arch. Dis. Child (2000) 82:79–86.
  • KLEIN I, SARKADI B, VARADI A: An inventory of the human ABC proteins. Biochim. Biophys. Acta (1999) 1461:237–262.
  • KANE C, SHEPHERD RIVI, SQUIRES PEet al: Loss of functional Kpap channels in I3-cells causes persistent hyperinsulinaemic hypoglycaemia of infancy. Nat. Med. (1996) 2:1344–1347.
  • DUNNE MJ, KANE C, SHEPHERD RM et al.: Familial persistent hyperinsulinemic hypoglycaemia of infancy and mutations in the sulfonylurea receptor. N Engl. I Med. (1997) 336:703–706.
  • BITNER-GLINDZICZ M, LINDLEY KJ, RUTLAND P et al.: A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher Type 1C gene. Nat. Genet. (2000) 26:56–60.
  • OTONKOSKI T, AMMALA C, HUOPIO H et al.: A point mutation inactivating the sulfonylurea receptor causes the severe form of persistent hyperinsulinemic hypoglycaemia of infancy in Finland. Diabetes (1999) 48:408–415.
  • KANE C, LINDLEY KJ, JOHNSON PRV et al.: Therapy for persistent hyperinsulinaemic hypoglycaemia of infancy (PHHI); understanding the responsiveness of 13-cells to diazoxide and somatostatin. j Clin. Invest. (1997) 100:1888–1893.
  • STRAUB SG, COSGROVE KE, AMMALA C et al.: Hyperinsulinism of Infancy; the regulated release of insulin by Kpap channel-independent pathways. Diabetes (2001) 50:329–339.
  • LINDLEY KJ, DUNNE MJ, KANE C et al.: Ionic control of beta cell function in nesidioblastosis. A possible therapeutic role for calcium channel blockade. Arch. Dis. Child (1997) 74:373–378.
  • CARTIER EA, CONTI LR, VANDENBERG CA, SHYNG S-L: Defective trafficking and function of Kpap channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc. Natl. Acad. Sci. USA (2001) 98:2882–2887.
  • SHYNG S-L, FERRIGNI T, SHEPARD J etal.: Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes (1998) 47:1145–1151.
  • NICHOLS CG, SHYNG S-L, NESTOROWICZ A et al: Adenosine diphosphatate an intracellular regulator of insulin secretion. Science (1996) 272:1785–1787.
  • SHEPHERD RIVI, COSGROVE KE, O'BRIEN RE, BARNES PD, AMMALA C, DUNNE MJ: Neonatal Hypoglycaemia: Towards understanding the unregulated release of insulin. Arch. Dis. Child (2000) 82:87–97.
  • STANLEY CA, LIEU YK, HSU BY etal.: Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl. Med. (1998); 338:1352–1357.
  • GLASER B, KESAVAN P, HEYMAN M et al.: Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl. Med. (1998) 338:226–230.
  • EISENBETH GS: Type I diabetes mellitus. A chronic autoimmune disease. N Engl. Med. (1986) 314:1360-1368. Ica LEAHY JL, BONNERWEIR S, WEIR GC: Beta-cell dysfunction induced by chronic hyperglycemia - current ideas on mechanism of impaired glucose-induced insulin-secretion. Diabetes Care (1992) 15:442–455.
  • BACH JF: Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr. Rev (1994) 15:516–542.
  • GODFRESDSEN CF, BUSCHARD K, FRANDSEN E: Reduction of diabetes incidence of BB Wistar rats by early prophylactic insulin treatment of diabetes-prone animals. Diabetologia (1985) 28:933–935.
  • VLAHOS WD, SEEMAYER TA, YALE JF: Diabetes prevention in BB rats by inhibition of endogenous insulin secretion. Metabolism. (1991) 40:825–829.
  • ATKINSON MA, MACLAREN NK, LUCHETTA R: Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapy. Diabetes (1990) 39:933–937.
  • EIZIRIK D, SANDLER S: Repair of pancreatic beta-cells. A relevant phenomenon in early IDDM? Diabetes (1993) 42:1383–1391.
  • BJORK E, KAMPE 0, ANDERSSON A, KARLSSON FA: Expression of the 64kDa/ glutamine acid decarboxylase rat islet cell autoantigen is influenced by the rate of insulin secretion. Diabetologia (1992) 35:490–493.
  • BJORK E, KAMPE 0, GRAWE J, HALLBERG A, NORHEIM I, KARLSSON FA: Modulation of beta-cell activity and its influence on islet cell antibody (ICA) and islet cell surface antibody (ICSA) reactivity. Autoimmunity (1993) 16:181–188.
  • BJORK E, BERNE C, KAMPE 0, WIBELL L, OSKARSSON P, KARLSSON FA: Diazoxide treatment at onset preserves residual insulin secretion in adults with autoimmune diabetes. Diabetes (1996) 45:1427–1430.
  • PIROTTE B, ANTOINE MH, DE TULLIO P et al.: A pyridothiadiazine (BPDZ 44) as a new and potent activator of ATP-sensitive K+ channels. Biochem. Pharmacol (1994) 47:1381–1386.
  • ANTOINE MH, PIROTTE B, HERMANN M et al: Cationic and secretory effects of BPDZ 44 and diazoxide in rat pancreatic islets. Experientia (1994) 50:830–832.
  • LEBRUN P, ANTOINE MH, OUEDRAOGO R et al: Activation of ATP-dependent K+ channels and inhibition of insulin release: effect of BPDZ 62. 1 Pharmacol Exp. Ther. (1996) 277:156–162.
  • KHELILI S, DE TULLIO P, LEBRUN Pet al.: Preparation and pharmacological evaluation of the R- and S-enantiomers of 3-(2-butylamino)-4H- and 3-(3-methy1-2-butylamino)-4H-pyrido [4,3-el-1,2,4-thiadiazine 1,1-dioxide, two tissue selective ATP-sensitive potassium channel openers. Bioorg. Med. Chem (2000) 7:1513–1520.
  • KULLIN M, LIZ, HANSEN JB, BJORK E, SANDLER S, KARLSSON FA: K(ATP) channel openers protect rat islets against the toxic effect of streptozotocin. Diabetes (2000) 49:1131–1136.
  • LE STUNFF C, BOUGNERES P: Early changes in postprandial insulin-secretion, not in insulin sensitivity, characterize juvenile obesity. Diabetes (1994) 43:696–702.
  • ALEMZADEH R, JACOBS W, PITUKCHEEWANONT P: Antiobesity effect of diazoxide in obese Zucker rats. Metabolism (1996) 45:334–341.
  • STANDRIDGE M, ALEMZADEH R, ZEMEL M, KOONTZ J, MOUSTAID-MOUSSA N: Diazoxide down-regulates leptin and lipid metabolizing enzymes in adipose tissue of Zucker rats. FASEB (2000) 14:455–460.
  • ALEMZADEH R, LANGLEY G, UPCHURCH L, SMITH P, SLONIM AE: Beneficial effect of diazoxide in obese hyperinsulinemic adults. J. Chi]. Endo. Metabol. (1998) 83:1911–1915.
  • SIMON DB, KARET FE, RODRIGUEZ-SORIANO J et al: Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat. Genet. (1996) 14:152–156.
  • SIMON DB, KARET FE, HAMDAN JM, DIPIETRO A, SANJAD SA, LIFTON RP: Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2C1 cotransporter NKCC2. Nat. Genet. (1996) 13:183–188.
  • SIMON DB, BINDRA RS, MANSFIELD TA et al: Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome Type III. Nat. Genet. (1997) 17:171–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.