65
Views
27
CrossRef citations to date
0
Altmetric
Miscellaneous

Concepts in the use of TRAIL/Apo2L: an emerging biotherapy for myeloma and other neoplasias

Pages 1521-1530 | Published online: 24 Feb 2005

Bibliography

  • WILEY SR, SCHOOLEY K, SMOLAK PJ et al.: Identification and characterization of anew member of the TNF family that induces apoptosis. Immunity (1995) 3:673–682.
  • PITTI RM, MARSTERS SA, RUPPERT S et al.: Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. (1996) 271:12687–12690.
  • SCHULZE-OSTHOFF K, FERRARI D,LOS M et al.: Apoptosis signaling by death receptors. Eur. Biochem. (1998) 254:439–459.
  • PAN G, O'ROURKE K, CHINNAIYAN AM etal.: The receptor for the cytotoxic ligand TRAIL. Science (1997) 276:111–113.
  • PAN G, NI J, WEI YF et al.: An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science (1997) 277:815–818.
  • SHERIDAN JP, MARSTERS SA, PITTI RIVI et al.: Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science (1997) 277:818–821.
  • WALCZAK H, DEGLI-ESPOSTI MA, JOHNSON RS et al.: TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. (1997) 16:5386–5397.
  • SCHNEIDER P, BODMER JL, THOME M et al.: Characterization of two receptors for TRAIL. FEBS Lett. (1997) 416:329–334.
  • DEGLI-ESPOSTI MA, SMOLAK PJ, WALCZAK H et al.: Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp. Med. (1997) 186:1165–1170.
  • PANG, NI J, YU G etal.: TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett. (1998) 424:41–45.
  • DEGLI-ESPOSTI MA, DOUGALL WC, SMOLAK PJ et al.: The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity (1997) 7:813–820.
  • MARSTERS SA, SHERIDAN JP, PITTI RIVI etal.: A novel receptor for Apo2L/ TRAIL contains a truncated death domain. Curr. BioL (1997) 7:1003–1006.
  • EMERY JG, MCDONNELL P, BURKE MB et al.: Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem. (1998) 273:14363–14367.
  • GRIFFITH TS, CHIN WA, JACKSON GC et al.: Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. Immunol. (1998) 161:2833–2840.
  • IRMLER M, THOME M, HAHNE M et al.: Inhibition of death receptor signals by cellular FLIP. Nature (1997) 388:190–195.
  • ZHANG XD, FRANCO A, MYERS K et al.: Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res. (1999) 59:2747–2753.
  • PANKA DJ, MANO T, SUHARA T et al.: Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J. Biol. Chem. (2001) 276:6893–6896.
  • NESTEROV A, LU X, JOHNSON M etal.: Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. j Biol. Chem. (2001) 276:10767–10774.
  • MITSIADES N, POULAKI V, TSELENI-BALAFOUTA S et al.: Thyroid carcinoma cells are resistant to FAS-mediated apoptosis but sensitive to tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. (2000) 60:4122–4129.
  • HEDLUND TE, DUKE RC, SCHLEICHER MS, MILLER GJ: Fas- mediated apoptosis in seven human prostate cancer cell lines: correlation with tumor stage. Prostate (1998) 36:92–101.
  • BEUTLER B, MILSARK IW, CERAMI AC: Passive immunization against cachectin/ tumor necrosis factor protects mice from lethal effect of endotoxin. Science (1985) 229:869–871.
  • OGASAWARA J, WATANABE- FUKUNAGA R, ADACHI M et al.: Lethal effect of the anti-Fas antibody in mice. Nature (1993) 364:806–809.
  • WALCZAK H, MILLER RE, ARIAIL K et al.: Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. (1999) 5:157–163.
  • MITSIADES CS, TREON SP, MITSIADES N et al.: TNF-related apoptosis-inducing ligand/Apo2L selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood (2001) 98:795–804.
  • MITSIADES N, POULAKI V, MITSIADES C, TSOKOS M: Ewing's sarcoma family tumors are sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and express DR4 and DR5 receptors. Cancer Res. (2001) 61:2704–2712.
  • KEANE MM, ETTENBERG SA, NAU MM et al.: Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res. (1999) 59:734–741.
  • MITSIADES CS, MITSIADES NS, ANDERSON KC, TREON SP: TRAIL induces differentiation-stage specific apoptosis in B-cell malignancies, overcomes drug resistance in multiple myeloma and its anti-myeloma effect is enhanced by doxorubicin NF-icB inhibition. Proc. Am. Assoc. Cancer Res. (2001)
  • JO M, KIM TH, SEOL DW etal.: Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat. Med. (2000) 6:564–567.
  • LAWRENCE D, SHAHROKH Z, MARSTERS S et al.: Differential hepatocyte toxicity of recombinant Apo2L/ TRAIL versions. Nat. Med. (2001) 7:383–385.
  • SUDA T, TAKAHASHI T, GOLSTEIN P, NAGATA S: Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell (1993) 75:1169–1178.
  • RUNIC R, LOCKWOOD CJ, LACHAPELLE L et al.: Apoptosis and Fas expression in human fetal membranes. J. Chu. Eridocnhol. Metab. (1998) 83:660–666.
  • GRIFFITH TS, BRUNNER T, FLETCHER SM etal.: Fas ligand-induced apoptosis as a mechanism of immune privilege. Science (1995) 270:1189–1192.
  • BELLGRAU D, GOLD D, SELAWRY H et al.: A role for CD95 ligand in preventing graft rejection. Nature (1995) 377:630–632.
  • MARTINEZ-LORENZO MJ, ALAVA MA, GAMEN S etal.: Involvement of AP02 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. Eur. j Immurrol. (1998) 28:2714–2725.
  • PHILLIPS TA, NI J, PAN G et al.: TRAIL(Apo-2L) and TRAIL receptors in human placentas: implications for immune privilege. J. Immurrol. (1999) 162:6053–6059.
  • THOMAS WD, HERSEY P: TNF-relatedapoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J. Immurrol. (1998) 161:2195–2200.
  • RIEGER J, NAUMANN U, GLASER T etal.: AP02 ligand: a novel lethal weapon against malignant glioma? FEBS Lett (1998) 427:124–128.
  • MORETTI F, FARSETTI A, SODDU S et al.: p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oricogerre (1997) 14:729–740.
  • NARIMATSU M, NAGAYAMA Y, AKINO K et al.: Therapeutic usefulness of wild-type p53 gene introduction in a p53-null anaplastic thyroid carcinoma cell line. J. Chu. Eridocnhol. Metab. (1998) 83:3668–3672.
  • TSOKOS M, VASSILOPOULOS D, SZENTENDREI T etal.: Fas-mediated apoptosis in peripheral primitive neuroectodermal tumor (PNET) /Ewing's sarcoma (ES). FASEB J. (1996) 10:A1009.
  • MITSIADES N, POULAKI V, LEONE A, TSOKOS M: Fas-mediated apoptosis in Ewing's sarcoma cell lines by metalloproteinase inhibitors. J. Natl. Cancer Inst. (1999) 91:1678–1684.
  • ASHKENAZI A, PAI RC, FONG S et al.: Safety and antitumor activity of recombinant soluble Apo2 ligand. I Chu. Invest. (1999) 104:155–162.
  • BODMER JL, HOLLER N, REYNARD S et al.: TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat. Cell. Biol. (2000) 2:241–243.
  • HOPKINS-DONALDSON S, BODMER JL, BOURLOUD KB et al.: Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res. (2000) 60:4315–4319.
  • SPRICK MR, WEIGAND MA, RIESER E et al.: FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity (2000) 12:599–609.
  • KISCHKEL FC, LAWRENCE DA, CHUNTHARAPAI A etal.: Apo2L/ TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity (2000) 12:611–620.
  • WANG J, ZHENG L, LOBITO A et al.: Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome Type II. Cell (1999) 98:47–58.
  • SCHLOTTMANN KC, KM.: CD95/Fas/ Apo-1 mediated signal tranduction. Cell Physio] Biochem. (1996) 6:345–360.
  • LUO X, BUDIHARDJO I, ZOU H et al.: Bid, a Bc12 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell (1998) 94:481–490.
  • LI H, ZHU H, XU CJ, YUAN J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell (1998) 94:491–501.
  • ZOU H, LI Y, LIU X, WANG X: An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. I Biol. Chem. (1999) 274:11549–11556.
  • OZOREN N, FISHER MJ, KIM K et al.: Homozygous deletion of the death receptor DR4 gene in a nasopharyngeal cancer cell line is associated with TRAIL resistance. Int. ▪Oricol. (2000) 16:917–925.
  • PAI SI, WU GS, OZOREN N et al.: Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res. (1998) 58:3513–3518.
  • KIM K, FISHER MJ, XU SQ, EL-DEIRY WS: Molecular determinants of response to TRAIL in killing of normal and cancer cells. Chu. Cancer Res. (2000) 6:335–346.
  • FRANKS, KOHLER U, SCHACKERT G, SCHACKERT HK: Expression of TRAIL and its receptors in human brain tumors. Biochem. Biophys. Res. Commun. (1999) 257:454–459.
  • GRIFFITH TS, RAUCH CT, SMOLAK PJ et al.: Functional analysis of TRAIL receptors using monoclonal antibodies. J. Immurrol. (1999) 162:2597–2605.
  • MITSIADES N, POULAKI V, MASTORAKOS G et al.: Fas ligand expression in thyroid carcinomas: a potential mechanism of immune evasion. J. Chu. Endocrirrol. Metab. (1999) 84:2924–2932.
  • SCAFFIDI C, SCHMITZ I, ZHA J et al.: Differential modulation of apoptosis sensitivity in CD95 Type I and Type II cells. J. Biol. Chem. (1999) 274:22532–22538.
  • HU S, VINCENZ C, NI J et al.: I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1- and CD- 95-induced apoptosis. J. Biol. Chem. (1997) 272:17255–17257.
  • LIN Y, DEVIN A, COOK A etal.: The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase. Ma] Cell Biol. (2000) 20:6638–6645.
  • HALLEK M, LEIF BERGSAGEL P, ANDERSON KC: Multiple myeloma: increasing evidence for a multistep transformation process. Blood (1998) 91:3–21.
  • TREON SP, MOLLICK JA, URASHIMAM etal.: Muc-1 core protein is expressed on multiple myeloma cells and is induced by dexamethasone. Blood (1999) 93:1287–1298.
  • ANDERSON K: Advances in the biology ofmultiple myeloma: therapeutic applications. Semin. Oncol. (1999) 26:10–22.
  • BATAILLE R, HAROUSSEAU JL: Multiple myeloma. N Engl. I Med. (1997) 336:1657–1664.
  • ATTAL M, HAROUSSEAU JL, STOPPA AM et al.: A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl. J. Med. (1996) 335:91–97.
  • SCHLOSSMAN RL, ANDERSON KC: Bone marrow transplantation in multiple myeloma. Curr. Opirr. Duca (1999) 11:102–108.
  • HARDIN J, MACLEOD S, GRIGORIEVA I et al: Interleukin-6 prevents dexamethasone-induced myeloma cell death. Blood (1994) 84:3063–3070.
  • CHAUHAN D, KHARBANDA S, OGATA A et al: Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood (1997) 89:227–234.
  • FILELLA X, BLADE J, GUILLERMO ALet al: Cytokines (IL-6, TNF-alpha, IL-lalpha) and soluble interleukin-2 receptor as serum tumor markers in multiple myeloma. Cancer Detect. Prey (1996) 20:52–56.
  • KYRTSONIS MC, DEDOUSSIS G, ZERVAS C et al: Soluble interleukin-6 receptor (sIL-6R), a new prognostic factor in multiple myeloma. Br. I Haematol (1996) 93:398–400.
  • SCHAAR CG, KAISER U, SNIJDER S et al.: Serum interleukin-6 has no discriminatory role in paraproteinaemia nor a prognostic role in multiple myeloma. Br Haematol (1999) 107:132–138.
  • ZHANG XD, FRANCO AV, NGUYEN T et al: Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. bronurrol (2000) 164:3961–3970.
  • WU GS, BURNS TF, MCDONALD ERI et al: KILLER/DR5 is a DNA damage-inducible p53-regulated receptor gene. Nat. Genet. (1997) 17:141–143.
  • SHEIKH MS, BURNS TF, HUANG Y et al.: p53-dependent and -independent regulation of the death receptor KILLER/ DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res. (1998) 58:1593–1598.
  • NAGANE M, PAN G, WEDDLE JJ et al: Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res. (2000) 60:847–853.
  • GAZITT Y, SHAUGHNESSY E MONTGOMERY W: Apoptosis-induced by TRAIL AND TNF-alpha in human multiple myeloma cells is not blocked by BCL-2. Cytokine (1999) 11:1010–1019.
  • AHMAD M, SHI Y: TRAIL-induced apoptosis of thyroid cancer cells: potential for therapeutic intervention. Oricogerre (2000) 19:3363–3371.
  • ZHENG TS, HUNOT S, KUIDA K et al: Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat. Med. (2000) 6:1241–1247.
  • MUELLER CM, SCOTT DW: Distinct molecular mechanisms of Fas resistance in murine B lymphoma cells. I bronurrol (2000) 165:1854–1862.
  • WILLEMS F, AMRAOUI Z, VANDERHEYDE N et al: Expression of c-FLIP(L) and resistance to CD95-mediated apoptosis of monocyte-derived dendritic cells: inhibition by bisindolylmaleimide. Blood(2000) 95:3478–3482.
  • MERCURIO E MANNING AM: Multiple signals converging on NF-kappaB. Cum: Opirr. Cell Biol. (1999) 11:226–232.
  • CHAUDHARY PM, EBY M, JASMIN A et al.: Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity (1997) 7:821–830.
  • MUHLENBECK E HAAS E, SCHWENZER R et al: TRAIL/Apo2L activates c-Jun NH2-terminal kinase °NM via caspase-dependent and caspase-independent pathways. j Biol. Chem. (1998) 273:33091–33098.
  • SCHNEIDER E THOME M, BURNS K etal.: TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-icB. Immurrig, (1997) 7:831–836.
  • FEINMAN R, KOURY J, THAMES M et al.: Role of NF-kappaB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bc1-2. Blood (1999) 93:3044–3052.
  • JEREMIAS I, KUPATT C, BAUMANN B et al.: Inhibition of nuclear factor kappaB activation attenuates apoptosis resistance in lymphoid cells. Blood (1998) 91:4624–4631.
  • WANG CY, CUSACK JC, JR., LIU R, BALDWIN AS JR.: Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-icB. Nat. Med. (1999) 5:412–417.
  • WANG CY, MAYO MW, KORNELUK RG et al: NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science (1998) 281: 1680-1683.
  • CHU ZL, MCKINSEY TA, LIU L et al: Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-icB control. Proc. Natl. Acad. Sri. USA (1997) 94:10057–10062.
  • GLINIAK B, LE T: Tumor necrosis factor-related apoptosis-inducing ligand's antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res. (1999) 59:6153–6158.
  • KEANE MM, RUBINSTEIN Y, CUELLO M et al.: Inhibition of NF-kappaB activity enhances TRAIL mediated apoptosis in breast cancer cell lines. Breast Cancer Res. Treat. (2001) 64:211–219.
  • RAVI R, BEDI GC, ENGSTROM LW et al.: Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-icB. Nat. Cell Biol. (2001) 3:409–416.
  • JIN Z, EL-DEIRY WS: Enhanced sensitivity of G1 arrested human cancer cells suggests a novel therapeutic strategy using a combination of simvastatin and TRAIL. Proc. Am. Assoc. Cancer Res. (2001) 42:438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.