36
Views
21
CrossRef citations to date
0
Altmetric
Miscellaneous

The therapeutic potential of inhibitors of the trypanothione cycle

&
Pages 217-231 | Published online: 24 Feb 2005

Bibliography

  • DENISE H, MATTHEWS K, LINDERGARD G, CROFT S, BARRETT MP: Trypanosomiasis and leishmaniasis. Between the idea and the reality of control. Parasite]. Today (1999) 15:43–45.
  • BARRETT MP, FAIRLAMB AH: The biochemical basis of arsenical-diamidine crossresistance in African trypanosomes. Parasite]. Today (1999) 15:136–140.
  • NAVIN TR, ARANA BA, ARANA FE, BERMAN J, CHAJON JF: Placebo-controlled clinical trial of sodium stibogluconate (Pentostam) versus keto-conazole for treating cutaneous leishmaniasis in Guatemala. j Infect. Dis. (1992) 165:528–534.
  • BACCHI CJ, GAROFALO J, CIMINELLI M et al.: Resistance to DL-a- difluoromethylornithine by clinical isolates of Tryparresema brucei rhodesiense. Role of S-adenosylmethionine. Biechem. Pharmacy]. (1993) 46:471–481.
  • ••ITEN M, METT H, EVANS A, ENYARU JCK, BRUN R, KAMINSKY, R: Alterations in ornithine decarboxylase characteristics account for tolerance of Tryparresema brucei rhodesiense to DL-a-dfflooro-methylornithine. Aritimicreb. Agents Chemether. (1997) 41:1922–1925.
  • PEPIN J, MILFORD F: The treatment of human African trypanosomiasis. Adv. Parasitol (1994) 33:1–47.
  • •FAIRLAMB AH, CERAMI A: Metabolism and functions of trypanothione in the kinetoplastida. Ann. Rev Microbial (1992) 46:695–729.
  • DE CASTRO SL: The challenge of Chagas' disease chemotherapy: an update of drugs assayed against Tryparrosoma cruzi. Acta Tropica (1993) 53:83–98.
  • DE CASTRO SL, SOEIRO MNC, HIGASHI KO, MEIRELLES MNL: Differential effect of Amphotericin B on the three evolutive stages of Tryparrosoma cruzi and on the host cell-parasitic interaction. Braz. J. Med. Biol. Res. (1994) 26:1219–1229.
  • DAVIDSON RN, DIMARTINO L, GRADONI L et al: Liposomal amphotericin B (AmBisome) in Mediterranean visceral leishmaniasis: a multi-centre trial. Quaterly Med. (1996) 87:217–219.
  • CROFT SL, URBINA JA, BRUN R: Chemotherapy of human leishmaniasis and trypanosomiasis. In: Tryparrosamiasis, and Leishmaniasis: biology and control. Hide G, Mottram JC, Coombs GH, Holmes PH (Eds). CAB International, Wallingford, UK (1997):245–257.
  • HARTSEL S, BOLARD J: Amphotericin B: new life for an old drug. Trends Pharmacal. Sci. (1996) 17:445–449.
  • EL-ON J, HALVEY, S, GRUNWALD MH, WEINRAUCH L: Topical treatment of Old World cutaneous leishmaniasis caused by Leishmania major-a double-blind study. Amer. Acad. Dermatal. (1992) 27:227–231.
  • OLLIARO PL, BRYCESON ADM: Practical progress and new drugs for changing patterns of leishmaniasis. Parasital. Today (1993) 9:323–328.
  • KREIGER S, SCHWARZ W, ARIYANAYAGAM MR, FAIRLAMB AH, KRAUTH-SIEGEL RL, CLAYTON C: Trypanothione lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mal Microbial. (2000) 35:542–552.
  • WOSTER PM: Sleeping sickness: irreversibleinhibitors of S-adenosylmethionine decarboxylase as antitrypanosomal agents. In: Biomedical Chemistry: Applying Chemical Principles in the Understanding and Treatments of Disease. Torrance P (Ed.) Wiley & Sons., New York, USA (2000):3–39.
  • EISENTHAL R, CORNISH-BOWDEN A: Prospects for antiparasitic drugs. I Biol. Chem. (1998) 273:5500–5505.
  • HUNTER WN: A structure-based approach to drug discovery; crystallography and implications for the development of antiparasitic drugs. Parasitology (1997) 114(Suppl.):S17–S29.
  • WANG CC: Validating targets for antiparasitic chemotherapy. Parasitology (1997) 114(Suppl.):531–544.
  • HEUCKEROTH RO, GLASER L, GORDON JI: Heteroatom-substituted fatty acid analogs as substrates for N-myristoyltransferase: An approach for studying both enzymology and function of protein acylation. Proc. Nat. Acad. Sri. USA (1988) 85:8795–8799.
  • DOERING TL, RAPER J, BUXBAUM LU, ADAMS T, GORDON JI, HART GW, ENGLUND PT: An analog of myristic acid with selective toxicity for African trypanosomes. Science (1991) 252:1851–1854.
  • INGRAM GM, KINNAIRD JH: Ribonucleotide reductase: a new target for antiparasite therapies. Parasital. Today (1999) 15:338–342.
  • HUNTER KJ, Le QUESNE SA, FAIRLAMB AH: Identification and biosynthesis of Ni N9- bis(glutathiony0 aminopropylcadaverine (homotrypanothione) in Tryparrosoma cruzi. Eur. Biochem. (1994) 226:1019–1027.
  • KRAUTH-SIEGEL RL, COOMBS GH: Enzymes of parasite thiol metabolism as drug targets. Parasital Today (1999) 15:404–409.
  • WILKINSON SR, MEYER DJ, KELLY JM:Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity. Biochem. (2000) 352:755–761.
  • BARRETT SV, BARRETT MP: Anti-sleeping sickness drugs and cancer chemotheraphy. Parasital Today (2000) 16:7–9.
  • SCHRIMER RH, MULLER JG, KRAUTH-SIEGEL RL: Disulphide-reductase inhibitors as chemotherapeutic agents: The design of drugs of trypanosomiasis and malaria. Arigew. Chem. mt. Ed. (1995) 34:141–154.
  • AUSTIN SE, OMAR M, KHAN F, DOUGLAS KT: Rational drug design using trypanothione reductase as a target for anti-trypanosomal and anti-leishmanial drug leads. Drug Design & Discovery (1999) 16:5–23.
  • SHAMES, SL, FAIRLAMB, AH, CERAMI A, WALSH CT: Purification and Characterization of Trypanothione Reductase from Crithidia fasciculata, a newly discovered member of the family of disulphide-containing flavoprotein reductases. Biochemistry (1986) 25:3519–3526.
  • FAIRLAMB AH, HENDERSON GB: NATO ASI Series. Host-parasite cellular and molecular interactions in protozoal infections. K. P C. a. D. Snary. Berlin Heidelberg, Springer Verlag Berlin Heidelberg. (1987), 1111:29–40.
  • HENDERSON G, FAIRLAMB A, ULRICH P, CERAMI A: Substrate specificity of the flavoprotein trypanothione disulfide reductase from Crithidia fasciculata. Biochemistry (1987) 26:3023–3027.
  • ABOAGYE-KWARTENG, T, SMITH K, FAIRLAMB, AH: Molecular characterization of the trypanothione reductase gene from Crithidia fasciculata and Tryparrosoma brucei: comparison with other flavoprotein disulfide oxidoreductases with respect to substrate specificity and catalytic mechanism. Mal ll/licrobial. (1992) 6:3089–3099.
  • FIELD H, CERAMI A, HENDERSON GB:Cloning, sequencing and demonstration of polymorphism in trypanothione reductase from Crithidia fasciculata. Mol. Biochem. Parasital. (1992) 50:47–56.
  • KRAUTH-SIEGEL RL, ENDERS B, HENDERSON GB. FAIRLAMB AH, SHIRMER RH: Trypanothione reductase from Tryparrosoma cruzi. Purification and characterization of the crystalline enzyme. Eur. Biochem. (1987)164: 123–128.
  • FAIRLAMB AH, CARTER NS, CUNNINGHAM M, SMITH K: Characterization of melarsen-resistant Tryparrosoma.brucei brucei with respect to cross resistance to other drugs and trypanothione metabolism. Mal Biochem. Parasital. (1992) 53:213–222.
  • SHAMES SL, KIMMEL BE, PEOPLES OP, AGABIAN N,WALSH CT: Trypanothione reductase of Trypanosoma Congolense: gene isolation, primary sequence determination, and comparison to glutathione reductase. Biochemistry (1988) 27:5014–5019.
  • SULLIVAN FX, SHAMES SL, WALSH CT: Expression of Tryparrosoma corigalense trypanothione reductase in Eschericha coli: Overproduction, purification and characterisation. Biochemistry (1989) 28:4986–4992.
  • SULLIVAN FX, WALSH CT: Cloning, sequencing, overproduction and purification of trypanothione reductase from Tryparrosoma Cruzi. Mol. Biochem. Parasital. (1991) 44:145–148.
  • KRAUTH-SIEGEL RL, JOCKERS-SCHERUBL MC, BECKER K, SCHIRMER RH: NADPH-dependent disulphide reductases. Biochem. Soc. Trans. (1989) 17:315–317.
  • WILLIAMS CH, Jr: Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase- a family of flavoenzyme transhydrogenases. In: Chemistry and Biochemistry of Flavoerizymes. Muller F (Ed.), (vol III) CRC Press, Boston, USA (1992) 121–211.
  • BOND CS, ZHANG Y, BERRIMAN M, CUNNINGHAM ML, FAIRLAMB AH, HUNTER WN: Crystal structure of Trypariosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure (1999) 7:81–89.
  • BAILEY S, SMITH K, FAIRLAMB AH, HUNTER WN: Substrate interactions between trypanothione reductase and NI-glutathionylspermidine disulphide at 0.28-nm resolution. Eur. j Biochem. (1993) 213:67–75.
  • JACOBY EM, SCHLICHTING I, LANTWIN CB, KABSCH W, KRAUTH-SIEGEL RL: Crystal structure of the Trypariosoma cruzi trypanothione reductase mepacrine complex. Proteins (1996) 24:73–80.
  • EL-WAER AE DOUGLAS KT, SMITH K, FAIRLAMB AH: Synthesis of N-benzyloxycarbonyl-L-cysteinylglycine 3-dimethylaminopropylamide disulphide: A cheap and convenient new assay for trypanothione reductase. Anal. Biochem. (1991) 198:212–216.
  • GARFORTH J, McKIE JH, JAOUHARI R, BENSON TJ, FAIRLAMB AH, DOUGLAS KT: Rational design of peptide-based inhibitors of trypanothione reductase as potential antitrypanosomal drugs. Amino Adds (1994) 6:259–300.
  • BENSON TJ, Mc KIE JH, GARFORTH J, BORGES A, FAIRLAMB AH, HUNTER WN: Rationally designed selective inhibitors of trypanothione reductase. Biochem. (1992) 286:9–11.
  • AUSTIN SE, KHAN MO F, DOUGLAS KT: Rational drug design using trypanothione reductase as a target for anti-trypanosomal and anti-leishmanial drug leads. Drug Des. Dis. (1999) 16:5–23.
  • TROMELIN A, MOUTIEZ M, MEZIANE-CHERIF D, AUMERCIER M, TARTAR A, SERGHERAERT C: Synthesis of non reducible inhibitors for trypanothione reductase from Trypariosoma cruzi. Bioorg. Med. Chem. Lett. (1993) 3:1971–1976.
  • GARRARD EA, BORMAN EC, COOK BN, PIKE EJ, ALBERG DG: Inhibition of trypanothione reductase by substrate analogues. Org. Letts. (2000) 2:3639–3642.
  • KOSOWER EM, RADKOWSKY AE, FAIRLAMB AH, CROFT SL, NEAL RA: Bimane cyclic esters, possible stereologues of trypanothione as antitrypanosomal agents. Bimanes 29. Eur. 1. Med. Chem. (1995) 30:659–671.
  • PONASIK JA, STRICKLAND C, FAERMAN C, SAVVIDES S, KARPLUS PA, GANEM, B: Kukoamine A and other hydrophobic acylpolyamines: potent And selective inhibitors of Crithidia fasciculata trypanothione reductase. Biochem. 1 (1995) 311:371-375.
  • O'SULLIVAN MC, ZHOU Q: Novel Polyamine derivatives as potent competitive inhibitors of Trypanosoma cruzi trypanothione reductase. Bioorg. Med. Chem. Lett. (1995) 5:1957–1960.
  • LIZ, FENNIE MW, GANEM B et al.: Polyamines with N-(3-phenylpropyl) substituents are effective competitive inhibitors of trypanothione reductase and trypanocidal agents. Bioorg. Med. Chem. Lett. (2001) 11:251–254.
  • O'SULLIVAN MC, ZHOU Q, Li Z, DURHAM T, RATTENDI D, LANES, BACCHI CJ: Polyamine derivatives as inhibitors of trypanothione reductase and assessment of their trypanocidal Activities. Bioorg. Med. Chem. Lett. (1997) 5:2145–2155.
  • SMITH HK, BRADLEY M: Comparison of resin and solution screening methodologies in combinatorial chemistry and the identification of a 100 nM inhibitor of trypanothione reductase. 1. Comb. Chem. (1999) 1:326–322.
  • BENSON TJ, McKIE JH, GARFORTH J, BORGES A, FAIRLAMB AH, DOUGLAS KT: Rationally designed selective inhibitors of trypanothione reductase. Phenothiazines and related tricyclics as lead structures. Biochem. J. (1992) 286:9–11.
  • MORENO SNJ, CARNIERI EGS, DOCAMPO R: Inhibition of Trypariosoma cruzitrypanothione reductase by crystal violet. Ma. Biochem. ParistoL (1994) 67:313–320.
  • CHIBALE K, HAUPT H, KENDRICK H et al.: Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorg. Med. Chem. (2001) 11:2655–2657.
  • CHAN C, YIN H, GARFORTH J et al.: Phenothiazines inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. 1. Med. Chem. (1998) 41:148–156.
  • BONSE S, SANTELLI-ROUVIR C, BARBE J, KRAUTH-SIEGEL L: Inhibition of Trypariosoma cruzi trypanothione reductase by acridines: Kinetic studies and structure-activity relationships. I Med. Chem. (1999) 42:5448–5454.
  • GARFORTH J, YIN H, McKIE JH, DOUGLAS KT, FAIRLAMB AH: Rationally design of selective ligands for trypanothione reductase from Trypariothione cruzi. Structurally effects on the inhibition by dibenzazepines based on impipramine. Enzyme Inhibition (1997) 12:161–173.
  • HAN OF, AUSTIN SE, CHAN C et al.: Use of an additional hydrophobic binding site, the Z site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines. 1. Med. Chem. (2000) 43:5148–3156.
  • FAROOQUI T, MARKOVICH K, WALLACE L, MILLER D, URETSKY N: Interaction of aza analogs of chloropromazine with the dopamine A2 receptor. Gen. Pharmac. (1993) 24:147–151.
  • BAILEY S, SMITH K, FAIRLAMB AH, HUNTER WN: Substrate interactions between trypanothione reductase and N1 - glutathionylspermidine diulphide at 0.28-nm resolution. Eur. j Biochem. (1993) 213: 67–75.
  • FERNANDEZ-GOMEZ R, MOUTIEZ M, AUMERCIER M et al.: 2-Amino diphenyldisulphides as new inhibitors of trypanothione reductase. Int. 1. Aritimicrob. Agents (1995) 6:111–118.
  • BAILLET S, BUISINE E, HOERVART D, MAES L, BONNET B, SERGHERAERT C: 2-Aminodiphenylsulfides as inhibitors of trypanothione reductase modification of the side chain. Bioorg. Med. Chem. (1996) 4:891–899.
  • GIRAULT S, BAILLET S, HORVART D et al.: New potent inhibitors of trypanothione reductase from Trypariosoma cruzi in the 2-aminodiphenylsulfide series. Eur. 1. Med. Chem. (1997) 32:39–52.
  • ATTWOOD D: The mode of association ofamphiphilic drugs in aqueous solution. Adv. Coll Interface. ScL (1995) 55:271–303.
  • GIRAULT S, DAVIOUD-CHARVET E, MAES L et al.: Potent and specific inhibitors of trypanothione reductase from Tryparrosoma cruzi: Bis(2- aminodiphenylsulfides) for fluorescent labeling studies. Bioorg. Med. Chem. (2001) 9:837–846.
  • CENAS NK, ARSCOTT D, WILLIAMS CH, BLANCHARD JS: Mechanism of reduction of quinines by Tryparrosoma corigolense trypanothione reductase. Biochemistry (1994) 33:2509–2515.
  • HENDERSON GB, ULRICH B, FAIRLAMB AH et al: Subversive substrates for the enzyme trypanothione disulphide reductase: alternative approach to chemotherapy of Chagas disease. Proc. Nat. Acad. ScL USA (1988) 85:5374–5378.
  • JOCKERS-SCHERUBL MC, SCHIRMER RH, KRAUTH-SIEGEL RL: Trypanothione reductase from Tryparrosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Eur. Biochem. (1989) 180:267–272.
  • SALMON-CHEMIN L, BUISINE E, YARDLEY V et al.: 2- and 3-Substituted 1,4-Naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Tryparrosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J. Med. Chem. (2001) 44:548–565.
  • BLOCK E: The organosulfur chemistry of the genus allium. Implications for the organic chemistry of sulfur. Angew Chem. 'Ili Ed. Engl. (1992) 31:1135–1178.
  • URBINA JA, MARCHAN E, LAZARDI K et al.: Inhibition of phosphatidylcholine biosynthesis and cell proliferation in Tryparrosoma cruzi by Ajoene an antiplatelet compound isolated from garlic. Biochem. Pharmacol (1993) 45:2381–2387.
  • GALLWITZ H, BONSE S, MARTINEZ-CRUZ A, SCHLICHTING I, SCHUMACHER K, KRAUTH-SIEGEL RL: Ajoene is an inhibitor and subversive substrate of human glutathione reductase: crystallographic, kinetic, and spectroscopic studies. J Med. Chem. (1999) 42:364–372.
  • BONSE S, RICHARDS JM, ROSS SA, LOWE G, KRAUTH-SIEGEL RL: (2,2:6', 2"-Teryridine)platinum(II) complexes are irreversible inhibitors of Tryparrosoma cruzi trypanothione reductase but not of human glutathione reductase. J. Med. Chem. (2000) 43:4812–4821.
  • MONTEMARTINI M, NOGOCEKE E, SINGH M, STEINERT E FLOHE L. KALISZ HM: Sequence analysis of the tryparedoxin peroxidase gene from Crithidia fasciculata and its functional expression in Escherichia colt. J Biol. Chem. (1998) 273:4864–4871.
  • NOGOCEKE E, DANIEL UG. MESS M, KALISZ HM, FLOHE' L: A unique cascade of oxidoreductases catalyses trypanothione-dependent peroxide metabolism in Crithidia fasciculata. Biol. Chem. Hoppe-Seyler. (1997) 378:827–836.
  • GOMMEL DU, NOGOCEKE E, MORR M, MESS M, KALISZ HM, FLOHE' L: Catalytic characteristics of tryparedoxin. Eur. Biochem. (1997) 248:913–918.
  • TETAUD E, FAIRLAMB AH: Cloning, expression and reconstitution of the trypanothione-dependent peroxidase system of Crithidia fasciculata. Mal Biochem. Parasitol (1998) 96:111–123.
  • LUDEMANN H, DORMEYER M, STICHERLING C, STALLMANN D, FOLLMANN H, KRAUTH-SIEGEL RH: Tryparrosoma brucei tryparedoxin, a thioredoxin-like protein in African trypanosomes. FEBS Lett. (1998) 431:381–385.
  • HOLMGREN A: Thioredoxin. Ann. Rev Biochem. (1985) 54:237–271.
  • HOLMGREN A: Thioredoxin and glutaredoxin systems. J. Biol. Chem. (1989) 264:13963–13966.
  • FOLLMANN H, HABERLEIN I: Thioredoxins : universal, yet specific thiol disulfide redox cofactors. BioFactors (1995) 5:147–156.
  • MONTEMARTINI MM, KALISZ H, KIESS M, NOGOCEKE E, SINGH M, STEINERT P, FLOHE L: Sequence heterologous expression and functional characterisation of a novel tryparedoxin from Crithic/ia fasciculata. Biol. Chem. Hoppe-Seyler. (1998) 379:1137–1142.
  • RECKENFELDERBAUMER N, LUDEMANN H, SCHMIDT H, STEVERDING D, KRAUTH-SIEGEL RL: Identification and functional characterization of thioredoxin from Tryparrosoma brucei brucei J Biol. Chem. (2000) 275:7547–7552.
  • DORMEYER M, STALLMANN D, FOLLMANN H, KRAUTH-SIEGEL RL: In: The first regional meeting on medical sciences: the role of free radicals in health and disease, Jerusalem and Amman, (1998), March 22–27, CHEVION M & AZZI A eds., Book of Abstracts p.38.
  • STEINERT E DITTMAR K, KALISZ HM et al.: Cytoplasmic localization of the trypanothione peroxidase system in Crithidia fasciculata. Free Radical Biology & Medicine (1999) 26:844–849.
  • SMITH K, OPPERDOES FR, FAIRLAMB AH: Subcellular distribution of trypanothione reductase in blood-stream and procyclic forms of Tryparrosoma brucei. Mal Biochem. Parasitol. (1991) 48:109–112.
  • MEZIANE-CHERIF D, AUMERCIER M, KORA I, SERGHERAERT C, TARTAR A, DUBREMETZ J.F, OUAISSI MA: Tryparrosoma cruzi immunolocalization of trypanothione reductase. Esp. Parasitol (1994) 79:536–541.
  • WILKINSON SR, TEMPERTON NJ, MONDRAGON A, KELLY JM: Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Tryparrosoma cruzi. J. Biol. Chem. (2000) 275:8220–8225.
  • TETAUD E, GIROUD C, PRESCOTT AR,PARKIN DW, BALTZ D, BITEAU N, BALTZ T, FAIRLAMB AH: Molecular characterisation of mitochondrial and cytosolic trypanothione-dependent tryparedoxin peroxidases in Tryparrosoma brucei. Mal Biochem. Parasitol. (2001) 116:171–183.
  • ALPHEY MS, LEONARD GA, GOURLEY DG, TETAUD E, FAIRLAMB AH, HUNTER WN: The high resolution crystal structure of recombinant Crithidia fasciculata tryparedoxin-I. J.Biol. Chem. (1999) 274:25613–25622.
  • HOFMANN B, BUDDE H, BRUNS K et al.: Structures of tryparedoxins revealing interaction with trypanothione. Biol. Chem. Hoppe-Selyer. (2001) 382:459–471.
  • D'SILVA C, SEDDON AP, DOUGLAS KT: Photoafflnity labels for enzymes capable of binding glutathione of its disulphide. J. Chem. Soc. Perkin (1981) 1:3029–3033.
  • DOUGLAS KT, SEDDON AP, D'SILVA C, BUNNI M: Photoaffinity labels for glutathione and glutathione disulphide-utilizing systems. Biochem. Soc. Trans. (1982) 124–125.
  • HOOG J-0, HOLMGREN A, D'SILVA C, DOUGLAS KT, SEDDON AP: Glutathione derivatives as inhibitors of glutaredoxin and ribonucleotide reductase from Escherichia colt. FEBS Lett. (1982) 13:59–61.
  • D'SILVA C: Reinvestigation of the roles ofthe carboxyl groups of glutathione with yeast glyoxalase I. FEBS Lett. (1986) 202:240–244.
  • D'SILVA C: Inhibition and recognition studies on the glutathione-binding site of equine liver glutathione S-transferase. Biochem. J. (1990) 271:161–165.
  • HOOG JO, DOUGLAS KT, D'SILVA C, HOLMGREN A: Photoaffinity labelling of glutaredoxin from Escherischia coll. Biochem. Biophys. Res. Commun. (1982) 107:1475–1481.
  • D'SILVA C, DOUGLAS KT: Photoaffinity labelling of yeast glutathione reductase by a bifunctional aryl azide derivative of oxidised glutathione. Photobiochem. & Photobiophys. (1983) 5:151–158.
  • DOUGLAS KT, TIMARI AA., D'SILVA C, GOHEL DI: Role of the N-terminus of glutathione in the action of yeast glyoxalase I. Biochem. J. (1982) 207:323–329.
  • D'SILVA C, DAUNES S, ROCK P, YARDLEY. V, CROFT S: Structure-activity study on the in vitro antiprotozoal activity of glutathione derivatives. j. Med. Chem. (2000) 43:2072–2078.
  • BLIZER M, KRAUTH-SIEGEL RL, SCHRIMER RH, AKERBOOM TPM, SIES H, SCHULZ GE: Interaction of a glutathione S-conjugate with glutathione reductase: Kinetic and x-ray crystallographic studies. Eur. Biochem. (1984) 138:373–378.
  • DAUNES S, D'SILVA C, KENDRICK H, YARDLEY V, CROFT SL: A QSAR Study on the Contribution of Log P and Es to the In vitro antiprotozoal activity of glutathione derivatives. j. Med. Chem. (2001) 44:2976–2983.
  • DAUNES S, D'SILVA C: Glutathione derivatives active against Tb.rhodesierice & Tb.brucei in vitro. Antimicrob. Agents Chemother. (2002) 46:434–437.
  • D'SILVA C, DAUNES S: The mode of action of glutathione derivatives as antiprotozoal agents active against trypanosomes. (in Preparation).
  • D'SILVA C: Receptor based biosensors. In: Bioserisors (Current Topics in Biophysics); FRANGOPOL. PT., SANDULOVICIU. M. Eds.; Iasy University Press: Iasy, Romania. (1995) 5: 1–19.
  • BARNES C, D'SILVA C, JONES JP, LEWIS TJ: A concanavilin a coated piezoelectric crystal biosensor. Sensors & Actuators. B. (1991) 3:295–304.
  • FARRELL C, ROWEL FJ, CUMMING RH, D'SILVA C: Enzyme-linked immunosorbent assay for ceftazidime in airborne samples. Analyst (1994) 119:2411–2316.
  • KAVARANA MJ, KOVALEVA EG, CREIGHTON DJ, WOLLMAN MB, EISEMAN JL: Mechanism-based competitive inhibitors of glyoxalase I: intracellular delivery, in vitro antitumor activities, and stabilities in human serum and mouse serum. J. Med. Chem. (1999) 42:221–228.
  • The Global Parasite Contol for the 21st Century; WHO Centre for Health Development (WHO Kobe Centre), May 1998, pp 35–40. Patent
  • MANCHESTER METROPOLITAN UNIV.: GB2332676 (2001).
  • Protein Data Bank at the Research Collaboratory for Structural Bioinformatics, New Brunswick, NJ, USA (http://www.rcsh.org/)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.