92
Views
50
CrossRef citations to date
0
Altmetric
Miscellaneous

Current status and future development of antitubercular chemotherapy

&
Pages 1033-1049 | Published online: 24 Feb 2005

Bibliography

  • ENARSON DA, CHRETIEN J: Epidemiology of respiratory infectious diseases. Cup: Opin. Pam. Med. (1999) 5(3):128–135.
  • MURRAY CJ, SALOMON JA: Modelling the impact of global tuberculosis control strategies. Proc. Nati Acad. Sci. USA (1998) 95(23):13881–13886.
  • ESPINAL MA, KIM SJ, SUAREZ PG et al.: Standard short-course chemotherapy for drug-resistant tuberculosis. JAMA (2000) 283(19):2537–2545.
  • TURETT GS, TELZAK EE, TORIAN LV et al.: Improved outcomes for patients with multidrug-resistant tuberculosis. Clio. Infect. Dis. (1995) 21(5):1238–1244.
  • BLANCHARD J: Molecular mechanisms of drug resistance in Mycobacterium tuberculosis Ann. Rev Biochem. (1996) 65:215–239.
  • ••A thorough review of antitubercularmechanisms of resistance.
  • CHOPRA I, BRENNAN P: Molecular action of anti-mycobacterial agents. Tuber. Lung Dis. (1997) 78(2):89–98.
  • RAMASWAMY S, MUSSER JM: Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis. 1998 update. Tuber. Lung Dis. (1998) 79(1):3–29. A thorough review of antitubercular mechanisms of resistance.
  • KREMER L, BAULARD A, BESRA GS: Genetics of mycolic acid biosynthesis. In: Molecular Genetics of Mycobacteria. Hatfull GF, Jacobs WR (Eds.), ASM Press, Washington DC, USA (2000):173–190.
  • ••A thorough review on mycolic acidbiosynthesis.
  • ZHANG Y, HEYM B, ALLEN B, YOUNG D, COLE S: The catalase-peroxidase gene and isoniazid resistance in Mycobacterium tuberculosis. Nature (1992) 358(6387):591–593.
  • ••Evidence that KatG activates INH.
  • JOHNSSON K, SCHULTZ, P: Mechanism studies of the oxidation of isoniazid by the catalase-perioxidase from Mycobacterium tuberculosis J. Am. Chem. Soc. (1994) 116:7425–7426.
  • BANERJEE A, DUBNAU E, QUEMARD A et al.: inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis Science (1994) 263 (5144) : 227–230.
  • ••First report of the molecular target of INH.
  • DESSEN A, QUEMARD A, BLANCHARD JS, JACOBS WR JR, SACCHETTINI JC: Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis Science (1995) 267(5204):1638–1641.
  • ••Important information relating to thecrystal structure of the target of INH.
  • QUEMARD A, SACCHETTINI JC, DESSEN A et al.: Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis Biochemistry (1995) 34(26):8235–8241.
  • VILCHEZE C, MORBID ONI HR, WEISBROD TR et al.: Inactivation of the inhA-encoded fatty acid synthase II (FASH) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. Bacteria (2000) 182(14):4059–4067.
  • LARSEN MH, VILCHEZE C, KREMER L et al.: Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M bovis BCG, and M tuberculosis Ma. Microbia (In press).
  • ••InhA as the target of INH.
  • ROZWARSKI DA, GRANT GA, BARTON DH, JACOBS WR, SACCHETTINI JC: Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis Science (1998) 279(5347):98–102.
  • RISKA PF, JACOBS WR, ALLAND D: Molecular determinants of drug resistance in tuberculosis. Int. J. Tuberc. Lung Dis. (2000) 4(2):54–S10.
  • MIESEL L, WEISBROD TR, MARCINKEVICIENE JA, BITTMAN R, JACOBS WR JR: NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J. Bacteria (1998) 180(9):2459–2467.
  • LEE AS, TEO AS, WONG SY: Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. (2001) 45(7):2157–2159.
  • PAYTON M, AUTY R, DELGODA R, EVERETT M, SIM E: Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J. Bacteria (1999) 181(4):1343–1347.
  • UPTON AM, MUSHTAQ A, VICTOR TC et al.: Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Ma Microbia (2001) 42(2):309–317.
  • WILSON TM, COLLINS DM: alipC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. Moi Microbia (1996) 19(5):1025–1034.
  • DUBNAU E, SOARES S, HUANG TJ, JACOBS WR JR: Overproduction of mycobacterial ribosomal protein S13 induces catalase/peroxidase activity and hypersensitivity to isoniazid in Mycobacterium smegmatis. Gene (1996) 170(1):17–22.
  • CHEN P, BISHAI WR Novel selection for isoniazid (INH) resistance genes supports a role for NAD±-binding proteins in mycobacterial INH resistance. Infect. Immun. (1998) 66(11):5099–5106.
  • SLAYDEN RA, BARRY CE: The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis. Microbes Infect. (2000) 2(6):659–669.
  • ••A thorough review of resistance mechanismsto INH.
  • KUSHNER S, DALALIAN H, SANJURO JL et al.: Experimental chemotherapy of tuberculosis. II. The synthesis of pyrazinamides and related compounds. J. Am. Chem. Soc. (1952) 74:3617–3621.
  • GORDIN F, CHAISSON RE, MATTS JP et al.: Rifampin and pyrazinamide versus isoniazid for prevention of tuberculosis in HIV-infected persons. An international randomized trial. JA/VIA (2000) 283(11):1445–1449.
  • CYNAMON MH, SPEIRS RJ, WELCH JT: In vitro antimycobacterial activity of 5-chloropyrazinamide. Antimicrob. Agents Chemother. (1998) 42(2):462–463
  • SCORPIO A, ZHANG Y: Mutations in pncA, a gene encoding pyrazinamidase/ nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. (1996) 2(6):662–667.
  • ••Evidence that PncA activates PZA.
  • ZIMHONY 0, COX JS, WELCH JT, VILCHEZE C, JACOBS WR, Jr: Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FAST) of Mycobacterium tuberculosis Nat. Med. (2000) 6(9):1043–1047.
  • ••Presents FAS-I as the target for PZA.
  • BOSHOFF HI, MIZRAHI V, BARRY CE, III. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase 1.1 Bacteria (2002) 184(8):2167–2172.
  • MASUR H: Recommendations on prophylaxis and therapy for disseminated Mycobacterium avium complex disease in patients infected with the human immunodeficiency virus. Public Health Service Task Force on Prophylaxis and Therapy for Mycobacterium avium Complex. N Eng]. J. Med. (1993) 329(12):898–904.
  • TAKAYAMA K, ARMSTRONG EL, KUNIGI KA, KILBURN JO: Inhibition by ethambutol of mycolic acid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob. Agents Chemother. (1979) 16(2):240–242.
  • KILBURN JO, TAKAYAMA K: Effects of ethambutol on accumulation and secretion of trehalose mycolates and free mycolic acid in Mycobacterium smegmatis. Antimicrob. Agents Chemother. (1981) 20(3):401–404.
  • TAKAYAMA K, KILBURN JO: Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis Antimicrob. Agents Chemother. (1989) 33(9):1493–14999.
  • BELANGER AE, BESRA GS, FORD ME et al.: The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Nati Acad. Sci USA (1996) 93(21):11919–11924.
  • ••The identification of the mode of action ofEMB.
  • TELENTI A, PHILIPP WJ, SREEVATSANet al. The emb operon, a gene cluster ofMycobacterium tuberculosis involved in resistance to ethambutol. Nat. Med. (1997) 3(5):567–570.
  • ESCUYER VE, LETY MA, TORRELLESJB et al.: The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. Biol. Chem. (2001) 276(52):48854–48862.
  • •Analysis of Emb mutants in relation to arabinogalactan biosynthesis.
  • SREEVATSAN S, STOCKBAUER KE, PAN X et al.: (1997) Ethambutol resistance in Mycobacterium tuberculosic critical role of embB mutations. Antimicrob. Agents Chemother: 41(8):1677–1681.
  • WOODLEY CL, KILBURN JO, DAVID HL, SILCOX VA: Susceptibility of mycobacteria to rifampin. Antimicrob. Agents Chemother: (1972) 2 (4) :245–249.
  • DAVIDSON PT, LE HQ: Drug treatment of tuberculosis-1992. Drugs (1992) 43(5):651–673.
  • LEVIN ME, HATFULL GF: Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Ma Microbia (1993) 8(2):277–285.
  • TELENTI A, IMBODEN P, MARCHESI F et al.: Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet (1993) 341(8846):647–650.
  • DAVIES J, WRIGHT GD: Bacterial resistance to aminoglycoside antibiotics. Trends MicrobioL (1997) 5(6):234–240.
  • HONORE N, COLE ST: Streptomycin resistance in mycobacteria. Antimicrob. Agents Chemother: (1994) 38(2):238–242.
  • DOUGLASS J, STEYN LM: A ribosomal gene mutation in streptomycin-resistant Mycobacterium tuberculosis isolates. J. Infect. Dis. (1993) 167(6):1505–1506.
  • FINKEN M, KIRSCHNER P, MEIER A, WREDE A, BOTTGER EC: Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Ma. Microbia (1993) 9(6):1239–1246.
  • MEIER A, KIRSCHNER P, BANGE FC, VOGEL U, BOTTGER EC: Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob. Agents Chemother: (1994) 38(2):228–233.
  • MORRIS S, BAI GH, SUFFYSP, PORTILLO-GOMEZ L, FAIRCHOK M, ROUSE D: Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J. Infect. Dis. (1995) 171(4):954–960.
  • BAULARD AR, BETTS JC, ENGOHANG-NDONG J et al.: Activation of the pro-drug ethionamide is regulated in mycobacteria. Biol. Chem. (2000) 275(36):28326–28331.
  • ••Description of the mechanism of activationof the pro-drug ETH.
  • DeBARBER AE, MDLULI K, BEKKER LG, BARRY CE, 3rd: Ethionamide activation and sensitivity in multi-drug resistant Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA (2000) 97(17):9677–9682.
  • ••Description of the mechanism of activationof the pro-drug ETH.
  • VANNELLI TA, DYKMAN A, ORITZ De MONTELLANO PR: The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. Biol. Chem. (2002) 277(15):12824–12829.
  • GAY JD, DEYOUNG DR, ROBERTS GD: ha vitro activities of norfloxacin and ciprofloxacin against Mycobacterium tuberculosis, M. avium complex, M chelonei, M fortuitum, and M kansasii Antimicrob. Agents Chemother. (1984) 26(1):94–96.
  • LEYSEN DC, HAEMERS A, PATTYN SR: Mycobacteria and the new quinolones. Antimicrob. Agents Chemother (1989) 33(1):1–5.
  • BRYSKIER A, LOWTHER J: Fluoroquinolones and tuberculosis. Expert. Opin. Investig. Drugs (2002) 11(2):233–258.
  • FRIEDEN TR, SHERMAN LF, MAW KL et al.: A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. JAMA (1996) 276(15):1229–1235.
  • TAKIFF HE, SALAZAR L, GUERRERO C et al.: Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob. Agents Chemother (1994) 38(4):773–780.
  • SULLIVAN EA, KREISWIRTH BN, PALUMBO L et al: Emergence of fluoroquinolone-resistant tuberculosis in New York City. Lancet (1995) 345(8958):1148–1150.
  • JI B, LOUNIS N, MASLO C, TRUFFOT-PERNOT C, BONNAFOUS P, GROSSET J: ha vitro and in vivo activities of mwdfloxacin and clinafloxacin against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. (1998) 42(8):2066–2069.
  • MIYAZAKI E, MIYAZAKI M, CHEN JM, CHAISSON RE, BISHAI WR: Mwdfloxacin (BAY12-8039), a new 8-methoxyquinolone is active in a mouse model of tuberculosis. Antimicrob. Agents Chemother. (1999) 43(1):85–89.
  • WINDER FG: Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of mycobacteria. In: The biology of the mycobacteria (Volume D. Ratledge C, Stanford J (eds), Academic Press, London, UK (1982):354–441.
  • YAWALKAR SJ, VISCHER W: Lamprene (clofazimine) in leprosy. Lep. Rev (1979) 50(2):135–144.
  • REDDY VM, O'SULLIVAN JF, GANGADHARAM PRJ: Antimycobacterial activities of riminophenazines. I Antimibrob. Chemother. (1999) 43(5):615–623.
  • BARRY VC, BELTON JG, CONALTY ML et al.: A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature (1957) 179(4568):1013–1015.
  • MORRISON NE, MARLEY GM: The mode of action of clofazimine DNA binding studies. hat. J. Lepr. Other Mycobact. Dis. (1976) 44(1-2):133–134.
  • DAVID HL, TAKAYAMA K, GOLDMAN DS: Susceptibility of mycobacterial D-alanyl-D-alanyl synthetase to D-cycloserine. Am. Rev Respir. Dis. (1969) 100(4):579–581.
  • CACERES NE, HARRIS NB, WELLEHAN JF, FENG Z, KAPUR V, BARLETTA RG: Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis .1. Bacteria (1997) 179(16):5046–5055.
  • LEHMANN J: Para-aminosalicylic acid intreatment of tuberculosis. Lancet (1946) 1:15–16.
  • PELOQUIN CA, BERNING SE, HUITT GA et al.: Once-daily and twice-daily dosing of p-aminosalicylic acid granules. Am. J. Respir. Crit. Care Med. (1999) 159(3):932–934.
  • BROWN KA, RATLEDGE C: The effect of p-aminosalicyclic acid on iron transport and assimilation in mycobacteria. Biochim. Biophys. Acta (1975) 385(2):207–220.
  • HEIFETS, LB, LINDHOLM-LEVY PJ, FLORY M: Thiacetazone: in vitro activity against Mycobacterium avium and M tuberculosis Tubercle (1990) 71(4):287–291.
  • HERR EB, Jr, REDSTONE MO: Chemical and physical characterization of capreomycin. Ann. NY Acad. Sci. (1966) 135(2):940–946.
  • SINGLA R, GUPTA S, GUPTA R, ARORA VK: Efficacy and safety of sparfloxacin in combination with kanamycin and ethionamide in multidrug-resistant pulmonary tuberculosis patients: preliminary results. Ira] j Tuberc. Lung Dis. (2001) 5(6):559–563.
  • ALANGADEN GJ, KREISWIRTH BN, AOUAD A et al: Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. (1998) 42(5):1295–1297.
  • TSUKAMURA M, MIZUNO S: Cross-resistant relationships among the aminoglycoside antibiotics in Mycobacterium tuberculosis. .1. Gen Microbia (1975) 88(2):269–274.
  • HEGDE SS, JAVID-MAJD F, BLANCHARD JS: Overexpression and mechanistic analysis of chromosomally encoded aminoglycoside 2'-N-acetyltransferase (AAC(2')-Ic) from Mycobacterium tuberculosis. I Biol. Chem. 276(49):45876–45881.
  • REDDY VM, NADADHUR G, DANELUZZI D, O'SULLIVAN JF, GANGADHARAM PRJ: Antituberculosis activities of clofazimine and its new analogs B4154 and B4157. Antimicrobial. Agents Chemother. (1996) 40(3):633–636.
  • TUCKER IA, ALLWINE DA, GREGA KC et al.: Piperazinyl oxazolidinone antibacterial agents containing a pyridine, diazene, or triazene heteroaromatic ring. J. Med. Chem. (1998) 41(19):3727–3735.
  • BARBACHYN MR, HUTCHINSON DK, BRICKNER SJ et al.: Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity. J. Med. Chem. (1996) 39(3):680–685.
  • CYNAMON MH, KLEMENS SP, SHARPE CA, CHASE S: Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob. Agents Chemother. (1999) 43(5):1189–1191.
  • YAMAMOTO T, AMITANI R, SUZUKI K, TANAKA E, MURAYAMA T, KUZE F: In vitro bactericidal and in vivo therapeutic activities of a new rifamycin derivative, KW-1648, against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. (1996) 40(2):426–428.
  • POTKAR C, GOGTAY N, GOKHALE P et al.: Phase I pharmacokinetic study of a new 3-azinomethyl-rifamycin (rifametane) as compared to rifampicin. Chemotherapy (1999) 45(3):147–153.
  • WAYNE LG, SRAMEK HA: Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob. Agents Chemother (1994) 38(9):2054–2058.
  • ASHTEKAR DR, COSTA-PERIRA R, NAGRAJAN K, VISHVANATHAN N, BHATT AD, RITTEL W: ha vitro and in vivo activities of the nitroimidazole CGI 17341 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother: (1993) 37(2):183–186.
  • STOVER CK, WARRENER P, VanDEVANTER DR et al.: A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature (2000) 405(6789):962–966.
  • ••Description of a new potent moleculeagainst TB.
  • WINDER FG, COLLINS PB, WHELAN D: Effects of ethionamide and isoxyl on mycofic acid synthesis in Mycobacterium tuberculosisBCG. Gen. Microbiol. (1971) 66(3):379–380.
  • PHETSUKSIRI B, BAULARD AR, COOPER AM et al.: Antimycobacterial activities of isoxyl and new derivatives through the inhibition of mycofic acid synthesis. Antimicrob. Agents Chemother: (1999) 43(5):1042–1051.
  • •Interesting report examining a series of old antitubercular agents.
  • OISHI H, NOTO T, SASAKI H et al: Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological properties. Antibiot. (Tokyo) (1982) 35(4):391–395.
  • SASAKI H, OISHI H, HAYASHI T, MATSUURA I, ANDO K, SAWADA M: Thiolactomycin, a new antibiotic. II. Structure elucidation. Antibiot (Tokyo) (1982) 35(4):396–400.
  • NOTO T, MIYAKAWA S, OISHI H, ENDO H, OKAZAKI H: Thiolactomycin, a new antibiotic. III. ha vitro antibacterial activity. Antibiot. (Tokyo) (1982) 35(4):401–410.
  • SLAYDEN RA, LEE RE, ARMOUR JW et al.: Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycofic acid synthesis. Antimicrob. Agents Chemother. (1996) 40(12):2813–2819.
  • ••Description of antimycobacterial activity ofthiolactomycin.
  • MIYAKAWA S, SUZUKI K, NOTO T, HARADA Y, OKAZAKI H: Thiolactomycin, a new antibiotic. IV. Biological properties and chemotherapeutic activity in mice. Antibiot. (Tokyo) (1982) 35(4):411–419.
  • KREMER L, DOUGLAS JD, BAULARD AR et al.: Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. Biol. Chem. (2000) 275(22):16857–16864.
  • ••The potential of thiolactomycin as a novelTB agent.
  • SCHAEFFER ML, AGNIHOTRI G, VOLKER C, KALLENDER H, BRENNAN PJ, LONSDALE JT: Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases, KasA and KasB. Biol. Chem. (2001) 276(50):47029–47037.
  • KREMER L, DOVER LG, CARRERE S. et al.: Mycolic acid biosynthesis and enzymatic characterization of the 13-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochem. (2002) 364\(Pt2): 423–430.
  • LIN YM, FLAVIN MT, CASSIDY CS, MAR A, CHEN FC: Biflavonoids as novel antituberculosis agents. Bioorg. Med. Chem. Lett. (2001) 11:2101–2104.
  • DEIDDA D, LAMPIS G, FIORAVANTI R et al.: Bactericidal activities of the pyrrole derivative BM212 against multi-drug resistant and intramacrophagic Mycobacterium tuberculosis strains. Antimicrob. Agents Chemother. (1998) 42(11):3035–3037.
  • PARRISH NM, HOUSTON T, JONES PB, TOWNSEND C, DICK JD: ha vitro activity of a novel antimycobacterial compound, N octanesulfonylacetamide, and its effects on lipid and mycolic acid synthesis. Antimicrob. Agents Chemother. (2001) 45(4):1143–1150.
  • OLEKSIJEW A, MEULBROEK J, EWING P et al.: In vivo efficacy of ABT-255 against drug-sensitive and -resistant Mycobacterium tuberculosis strains. Antimicrob. Agents Chemother. (1998) 42(10):2674–2677.
  • TRAMONTANA JM, UTAIPAT T, MOLLOY A et al.: Thalidomide treatment reduces tumor necrosis factor alpha production and enhances weight gain in patients with pulmonary tuberculosis. Ma Med. (1995) 1(4):384–397.
  • WALLIS RS, NSUBUGA P, WHALEN C et al: Pentoxifylfine therapy in human immunodeficiency virus-seropositive persons with tuberculosis: a randomized, controlledtrial. Infect. Dis. (1996) 174(4):727–733.
  • CONDOS R, ROM WN, SCHLUGER NW: Treatment of multidrug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet (1997) 349(9064):1513–1515.
  • BRENNAN PJ, NIKAIDO H: The envelope of mycobacteria. Ann. Rev Biochem. (1995) 64:29–63.
  • ••Retrospective description of themycobacterial cell wall.
  • DENG L, MIKUSOVA K, ROBUCK KG, SCHERMAN M, BRENNAN PJ, McNEIL MR: Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Antimicrob. Agents Chemother: (1995) 39(3):694–701.
  • MIKUSOVA K, MIKUS M, BESRA GS, HANCOCK I, BRENNAN PJ: Biosynthesis of the linkage region of the mycobacterial cell wand, Biol. Chem. (1996) 271(13):7820–7828.
  • ••Biochemical studies detailing the synthesisof the key linkage unit involved in cell wall biosynthesis.
  • COLE ST, BROSCH R, PARKHILL J et al: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature (1998) 393(6685):537–544.
  • ••Complete description of the M tuberculosisgenome sequence.
  • MAY, MILLS JA, BELISLE JT et al: Determination of the pathway for rhamnose biosynthesis in mycobacteria: cloning, sequencing and expression of the Mycobacterium tuberculosis gene encoding alpha-D-glucose-l-phosphate thymidylyltransferase. Microbiology (1997) 143(Pt 3):937–945.
  • STERN, RJ, LEE TY, LEE TJ et al: Conversion of dTDP-4-keto-6-deoxyglucose to free dTDP-4-keto-rhamnose by the rmIC gene products of Escherichia coil and Mycobacterium tuberculosis. Microbiology (1999) 145(3):663–671.
  • MAY, STERN RJ, SCHERMAN MS et al: Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Antimicrob. Agents Chemother: (2001) 45(5):1407–1416.
  • BESRA GS, BRENNAN PJ: The mycobacterial cell wall: biosynthesis of arabinogalactan and lipoarabinomannan. Biochem. Soc. Trans (1997) 25(3):845–850.
  • KREMER L, DOVER LG, MOREHOUSE C et al: Galactan biosynthesis in Mycobacterium tuberculosic identification of a bifunctional UDP-Galactofuranosyltransferase. J. Biol. Chem. (2001) 276(28): 26430–26440.
  • ••The identification of how the galactansegment of arabinogalactan is synthesised.
  • VVESTON A, STERN RJ, LEE RE et al: Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues. Tuber. Lung Dis. (1997) 78(2):123–131.
  • SANDERS DA, STAINES AG, McMAHON SA, McNEIL MR, WHITFIELD C, NAISMITH JH: UDP-galactopyranose mutase has a novel structure and mechanism. Nat. Struct. Biol. (2001) 8(10):858–863.
  • PAN F, JACKSON M, MAY, McNEIL M: Cell wall core galactofuran synthesis is essential for growth of mycobacteria. Bacteria. (2001) 183(13):3991–3998.
  • •An important piece of research examining the essentiality issue of cell wall galactan biosynthesis.
  • WOLUCKA BA, MCNEIL MR, DE HOFFMANN E, CHOJNACKI T, BRENNAN PJ: Recognition of the lipid intermediate for arabinogalactan/ arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. Biol. Chem. (1994) 269(37):23328–23335.
  • SCHERMAN MS, KALBE- BOURNONVILLE L, BUSH D, XIN Y, DENG L, McNEIL MR: Polyprenylphosphate-pentoses in mycobacteria are synthesized from 5-phosphoribose pyrophosphate. I Biol. Chem. (1996) 271(47):29652–29658.
  • BLOCH K: Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis Adv Enzymol Relat. Areas Mol Biol. (1977) 45:1–84.
  • WOOD WI, PETERSEN DO, BLOCH K: Mycobacterium smegmatis fatty acid synthetase, a mechanism based on steady state rates and product distributions. J. Biol. Chem. (1977) 252(16):5745–5749.
  • CAMPBELL JVV, CRONAN JE: Bacterial fatty acid biosynthesis: Targets for antibacterial drug discovery. Ann. Rev Microbiol (2001) 55:305–332.
  • CHOI KH, KREMER L, BESRA GS, ROCK CO: Identification and substrate specificity of beta-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis I Biol. Chem. (2000) 275(36):28201–28207.
  • ••Key report on the initiation step involved inFAS-II biosynthesis.
  • SCARSDALE JN, KAZANINA G, HEX, REYNOLDS KA, WRIGHT HT: Crystal structure of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase 111.j Biol. Chem. (2001) 276(23):20516–20522.
  • MDLULI K, SLAYDEN RA, ZHU Y et al: Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science (1998) 280(5369):1607–1610.
  • BELISLE JT, VISSA VD, SIEVERT T, TAKAYAMA K, BRENNAN PJ, BESRA GS: Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science (1997) 276(5317):1420–1422.
  • ••Conclusive evidence of a mycolyltransferaseenzyme involved in cell wall mycolylation.
  • JACKSON M, RAYNAUD C, LANEELLE MA et al.: Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Micro. (1999) 31(5):1573–1587.
  • KREMER L, MAUGHAN W, WILSON RA, DOVER LG, BESRA GS: The M tuberculosis antigen 85 complex and mycolyltransferase activity. Lett. Appl. Microbial. (2002) 34(4):233–237.
  • BESRA GS, SIEVERT T, LEE RE, SLAYDEN RA, BRENNAN PJ, TAKAYAMA K: Identification of the apparent carrier in mycolic acid synthesis. Proc. Nati Acad. Sci. USA (1994) 91(26):12735–12739.
  • SCHULBACH MC, BRENNAN PJ, CRICK DC: Identification of a short (C15) chain Z-isoprenyl diphosphate synthase and a homologous long (C50) chain isoprenyl diphosphate synthase in Mycobacterium tuberculosis .1. Biol. Chem. (2000) 275(30):22876–22881.
  • MCKINNEY JD, HONER ZU, BENTRUP K, MUNOZ-ELIAS EJ et al: Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature (2000) 406(6797):735–738.
  • GLICKMAN MS, COX JS, JACOBS WR JR: A novel mycolic acid cyclopropane synthase is required for cording, persistence and virulence of Mycobacterium tuberculosis. Cell(2000) 5(4):717–727.
  • COX JS, CHEN B, MCNEIL M, JACOBS WR: Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature (1999) 402 (6757) :79–83.
  • ••An interesting report demonstrating theimportance of cell wall lipids.
  • CAMACHO LR, CONSTANT P, RAYNAUD C et al.: Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis Evidence that this lipid is involved in the cell wall permeability barrier. I. Biol. Chem. (2001) 276(23):19845–19854.
  • MINNIKIN DE, KREMER L, DOVER LG, BESRA GS: The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol (2002) 9(5):545–553.
  • HONDALUS MK, BARDAROV S, RUSSELL R, CHAN J, JACOBS WR JR, BLOOM BR: Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect. Immun. (2000) 68(5):2888–2898.
  • GORDHAN BG, SMITH DA, ALDERTON H, McADAM RA, BANCROFT GJ, MIZRAHI V: Construction and phenotypic characterization of an auxotrophic mutant of Mycobacterium tuberculosis defective in L-arginine biosynthesis. Infect. Immun. (2002) 70(6):3080–3084.
  • BARDAROV S, KRIAKOV J, CARRIERE C et al.: Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA (1998) 94(20):10961–10966.
  • BESRA GS, KREMER L: Re-emergence of tuberculosis: strategies and treatment. Expert Opin. Investig. Drugs (2002) 11(2):153–157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.