70
Views
34
CrossRef citations to date
0
Altmetric
Review

Recent developments in the discovery of hepatitis C virus serine protease inhibitors – towards a new class of antiviral agents?

, &
Pages 153-163 | Published online: 02 Mar 2005

Bibliography

  • CHOO QL, KUO G, WEINER AJ etal.: Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science (1989) 24:359–362.
  • ••Original report describing the firstmolecular cloning of HCV.
  • CORNBERG M, WEDEMEYER H, MANNS MP: Treatment of chronic hepatitis C with PEGylated interferon and ribavirin. Carr. Gastroenteral. Rep. (2002) 4:23–30.
  • MANNS MP, MCHUTCHISON JG, GORDON SC et Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet (2001) 358:958–965.
  • ••References 2 and 3 describe the mostefficacious treatment combination presently available.
  • BAZAN JF, FLETTERICK RJ: Detectionof a trypsin-like serine protease motif in flaviviruses and pestiviruses. Virology (1989) 171:637–639.
  • MILLER RH, PURCELL RH: Hepatitis Cvirus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Proc. Natl. Acad. Sci. USA (1990) 87:2057–2061.
  • LOHMANN V, KOCH JO, BARTENSCHLAGER R: Processing pathways of the hepatitis C virus j Hepatal. (1996) 24:11–19.
  • BARTENSCHLAGER R, AHLBORN-LAAKE L, MOUS J et al.: Kinetic and structural analyses of hepatitis C virus polyprotein processing. j Viral. (1994) 68:5045–5055.
  • FAILLA C, TOMEI L, DE FRANCESCOR: Both N53 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. j Viral. (1994) 68:3753–3760.
  • GRAKOUI A, MCCOURT DW, WYCHOWSKI C et al.: A second hepatitis C virus-encoded proteinase. Proc. Nati Acad. Sci. USA (1993) 90:10583–10587.
  • HIJIKATA M, MIZUSHIMA H, AKAGI T: Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. j Viral. (1993) 67:4665–4675.
  • KOLYKHALOV AA, MIHALIK K, FEINSTONE SM et al.: Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J Viral. (2000) 74:2046–2051.
  • •First demonstration that HCV proteases are essential for infectivity.
  • PALLAORO M, LAHM A, BIASIOL G et al.: Characterization of the hepatitis C virus N52/3 processing reaction using a purified precursor protein. I Viral. (2001) 75:9939–9946.
  • WHITNEY M, STACK JH, DARKE PL et al.: A collaborative screening program for the discovery of inhibitors of HCV N52/3 is-cleaving protease activity. J. Biomol. Screen. (2002) 7:149–154.
  • LOHMANN V, KORNER F, KOCH JO et al: Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science (1999) 285:110–113.
  • ••First cell culture system of HCVreplication.
  • BARTENSCHLAGER R: Hepatitis C virus replicons: potential role for drug development. Nature Rev. Drug Discov. (2002) 1:911–916.
  • KOLYKHALOV AA, AGAPOV EV, BLIGHT KJ etal.: Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science (1997) 277:570–574.
  • ••First demonstration of infection by amolecular clone of the HCV genome.
  • MERCER DE SCHILLER DE, ELLIOTT JF et al: Hepatitis C virus replication in mice with chimeric human livers. Nat. Med. (2001) 7:927–933.
  • ILAN E, ARAZI J, NUSSBAUM O etal.: The hepatitis C virus (HCV)-Trimera mouse: a model for evaluation of agents against HCV. j Infect Dis. (2002) 185:153–161.
  • KIM JL, MORGENSTERN KA, LIN C et al: Crystal structure of the hepatitis virus NS3 proteinase domain complexed with a syntehtic NS4A cofactor peptide. Cell (1996) 87:343–355.
  • LOVE RA, PARGE HE, WICKERSHAM JA etal.: The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell (1996) 87:331–342.
  • YAN Y, LI Y, MUNSHI S et al: Complex ofNS3 protease and NS4A peptide of BK strain hepatitis C virus: A 2.2 A resolution structure in a hexagonal crystal form. Protein Li. (1998) 7:837–847.
  • BARBATO G, CICERO DO, NARDI C et al: The solution structure of the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein provides new insights into its activation and catalytic mechanism. J. Mal Biol. (1999) 289:371–384.
  • YAO N, REICHERT P, TAREMI SS et al: Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure Fold Des. (1999) 15:1353–1563.
  • ••References 19–23, describing X-ray and NMR structures, give insight into the mechanisms of activation of the NS3 protease by its cofactor and into the mechanisms and consequences of product inhibition.
  • PIZZI E, TRAMONTANO A, TOMEI L etal.: Molecular model of the specificity pocket of the hepatitis C virus proteinase: implications for substrate recognition. Proc. Natl. Acad. Sci. USA (1994) 91:888–892.
  • •A homology model of the Si pocket of the NS3 protease was used to predict its P1 specificity.
  • FAILLA C, PIZZI E, DE FRANCESCO R etal.: Redesigning the substrate specificity of the hepatitis C virus protease. Folding Design (1996) 1:35–42.
  • KOCH JO, BARTENSCHLAGER R: Determinants of substrate specificity in the NS3 serine proteinase of the hepatitis C virus. Virology (1997) 237:78–88.
  • BARTENSCHLAGER R, AHLBORN-LAAKE L, YASARGIL K et al: Substrate determinants for cleavage in cis and in trans by the hepatitis C virus N53 proteinase. Viral (1995) 69:198–205.
  • STEINKUHLER C, BIASIOL G, BRUNETTI M et al: Product inhibition of the hepatitis C virus N53 protease. Biochemistry (1998) 37:8899–8905.
  • LLINAS-BRUNET M, BAILEY M, FAZAL G et al.: Peptide based inhibitors of the hepatitis C virus serine protease. Bioorg. Med. Chem. Lett.(1998) 8:1713–1718.
  • INGALLINELLA P, ALTAMURA S, BIANCHI E et al.: Potent peptide inhibitors of human hepatitis C virus NS3 protease are obtained by optimising the cleavage products. Biochemistry (1998) 37:8906–8914.
  • ••References 28–30 describe thephenomenon of product inhibition of the N53 protease and how this feature can be used to develop potent peptide inhibitors.
  • URBANI A, BIANCHI E, NARJES F etal.: Substrate specificity of the hepatitis C virus serine protease N53. J. Biol. Chem. (1997) 272:9204–9209.
  • ZHANG R, DURKIN J, WINDSOR WT etal.: Probing the substrate specificity of hepatitis C virus NS3 serine protease by using synthetic peptides. j Viral (1997) 71:6208–6213.
  • PACINI L, VITELLI A, FILOCAMO G etal.: In vivo selection of protease cleavage sites by using chimeric sindbis virus libraries. J. Viral (2000) 74:10563–10570.
  • KIM SY, PARK KW, LEE YJ et al: In vivo determination of substrate specificity of hepatitis C virus N53 protease: genetic assay for site-specific proteolysis. Anal. Biochem. (2000) 15:42–48.
  • KOCH U, BIASIOL G, BRUNETTI M et al.: Role of charged residues in the catalytic mechanism of hepatitis C virus N53 protease: electrostatic precollision guidance and transition state stabilization. Biochemistry (2001) 40:631–640.
  • PERNI RB: NS3.4A protease as a target for interfering with hepatitis C virus replication. Drug News Perspect. (2000) 13:69–77.
  • DYMOCK BW, JONES PS, WILSON FX:Novel approaches to the treatment of hepatitis C virus infection. Antiviral Chem. Chemother. (2000) 11:79–96.
  • STEINKOHLER C, KOCH U, NARJES F et al.: Hepatitis C virus serine protease inhibitors: current progress and future challenges. Cum: Med. Chem. (2001) 8:919–932.
  • BEAULIEU PL, LLINAS-BRUNET M: Therapies for hepatitis C infection: targeting the non-structural proteins of HCV. Curr. Med. Chem.: Anti-Infective Agents (2002) 1:163–176.
  • BIANCHI E, PESSI A: Inhibiting viral proteases: Challenges and opportunities. Biopolymers (2002) 66:101–114.
  • TAN SL, PAUSE A, SHI Y: Hepatitis C virus therapeutics: Current status and emerging strategies. Nat. Rev Drug Discov. (2002) 1:867–881.
  • WEST ML, FAIRLIE DP: Targeting HIV protease: a test of drug design methodologies. Trends Pharmacol Sci. (1995) 16:67–75.
  • JOHANSSON A, HUBATSCH I, AKERBLOM E et al.: Inhibition of hepatitis C virus N53 protease activity by product-based peptides is dependent on helicase domain. Bioorg. Med. Chem. Lett. (2001) 11:203–206.
  • JOHANSSON A, POLIAKOV A, AKERBLOM E et al.: Tetrapeptides as potent protease inhibitors of hepatitis C virus full-Length N53 (protease-helicasei NTPase). Bioorg. Med. Chem. (2002) 10:3915–3922.
  • POUPART MA, CAMERON DR, CHABOT C etal.: Solid phase synthesis ofpeptidomimetic inhibitors for the hepatitis C virus protease. j Org. Chem. (2001) 66:4743–4751.
  • LLINAS-BRUNET M, BAILEY M, BORDELEAU J et al.: Discovery of novel tri-peptide inhibitors of the Hepatitis C virus serine protease. Abstr. Pap. Am. Chem. Soc. (2000) 220:MEDI–018.
  • •First report on tripeptide inhibitors of the NS3 protease with cell-based activity.
  • LLINAS-BRUNET M: NS3 serine protease inhibitors as potential antiviral agents for the treatment of hepatitis C virus infections. 3rd International Antiviral & Vaccine Discovery & Development Summit, Princeton, NJ, USA (2002).
  • LLINAS-BRUNET M: XVIIth International Medicinal Chemistry Symposium, Barcelona, Spain (2002).
  • EDE NJ, EAGLE SN, WICKHAM G et al.: Solid phase synthesis of peptide aldehyde protease inhibitors. Probing the proteolytic sites of hepatitis C virus polyprotein. j Pept. Li. (2000) 6:11–18.
  • PRIESTLEY ES, DE LUCCA I, GHAVIMI B et al.: P1 Phenethyl peptide boronic acid inhibitors of HCV N53 protease. Bioorg. Med. Chem. Lett. (2002) 12:3199–3202.
  • NARJES F, KOEHLER KF, KOCH U et al: A designed P1 cysteine mimetic for covalent and non-covalent inhibitors of HCV N53 protease. Bioorg. Med. Chem. Lett. (2002) 12:701–704.
  • NARJES E BRUNETTI M, COLARUSSO S et al: Alpha-ketoacids are potent slow binding inhibitors of the Hepatitis C virus N53 protease. Biochemistry (2000) 39: 1849-1861.
  • •References 51 and 52 describe the rational design of a cysteine mimetic and its successful incorporation into mechanism-based inhibitors.
  • COLARUSSO S, GERLACH B, KOCH U et al.: Evolution, synthesis and SAR of tripeptide lalphal-ketoacid Inhibitors of the hepatitis C virus N53/NS4A serine protease. Bioorg. Med. Chem. Lett. (2002) 12:705–708.
  • NIZI E, KOCH U, PONZI S et al.: Capped dipeptide lalphal-Ketoacid inhibitors of the HCV N53 protease. Bioorg. Med. Chem. Lett. (2002) 12:3325–3328.
  • BEEVERS R, CARR MG, JONES PS et al.:Solution and solid-Phase synthesis of potent inhibitors of hepatitis C Virus N53 proteinase. Bioorg. Med. Chem. Lett. (2002) 12:641–643.
  • BENNETT JM, CAMPBELL AD, CAMPBELL AJ et al: The identification of a-ketoamides as potent inhibitors of Hepatitis C virus N53-4A Proteinase. Bioorg. Med. Chem. Lett. (2001) 11:355–357.
  • COLARUSSO S, GERLACH B, KOCH U et al: Solid phase synthesis of novel non-covalent amide inhibitors of the hepatitis C virus serine protease.Drugs Future (2002) 27(Suppl. A):179.
  • INGALLINELLA P, FATTORI D, ALTAMURA S et al.: Prime site binding inhibitors of a serine protease: NS3/4A of hepatitis C virus. Biochemistry (2002) 41:5483–5492.
  • •First report on inhibitors binding exclusively to the prime site of a serine protease.
  • SING WT, LEE CL, YEO SL et al.: Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV N53 protease inhibitor. Bioorg. Med. Chem. Lett. (2001) 11:91–94.
  • SPERANDIO D, GANGLOFF AR, LITVAK J et al.: Highly potent non-peptidic inhibitors of the HCV N53/4A serine protease. Bioorg. Med. Chem. Lett. (2002) 12:3129–3133.

Websites

  • http://www.cdc.gov/ncidod/diseases/ hepatitis/slideset/hep_c/ hcv_epi_for_distrib_000925.pdf HEPATITIS BRANCH: CDC- Centers for Disease Control and Prevention Report (2000).
  • http://consensus.nih.gov/cons/116/ Hepc091202.pdf NIH Consensus Development conference statement.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.