56
Views
21
CrossRef citations to date
0
Altmetric
Review

Development of pro-angiogenic engineered transcription factors for the treatment of cardiovascular disease

Pages 829-839 | Published online: 24 Feb 2005

Bibliography

  • Heart Disease and Stroke Statistics — 2003 Update. (2002).
  • MUKHERJEE D, BHATT DL, ROE MT, PATEL V, ELLIS SG: Direct myocardial revascularization and angiogenesis - how many patients might be eligible? Am. Cardiol. (1999) 84:598-600 (A8).
  • AVILES RJ, ANNEX BH, LEDERMAN RI: Testing clinical therapeutic angiogenesis using basic fibroblast growth factor (FGF-2). Br. J. Pharmacol. (2003) 140:637–646.
  • SCOTT R, BLACKSTONE EH, McCARTHY PM et al.: Isolated bypass grafting of the left internal thoracic artery to the left anterior descending coronary artery: late consequences of incomplete revascularization. ./. Thorac Cardiovasc. Surg. (2000) 120:173–184.
  • TAKESHITA S, TSURUMI Y, COUFFINAHL T et al.: Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Lab. Invest. (1996) 75:487–501.
  • TSURUMI Y, KEARNEY M, CHEN D et al.: Treatment of acute limb ischemia by intramuscular injection of vascular endothelial growth factor gene. Circulation (1997) 96:11–382–388.
  • TANIYAMA Y, MORISHITA R, HIRAOKA K et al: Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: molecular mechanisms of delayed angiogenesis in diabetes. Circulation (2001) 104:2344–2350.
  • RISSANEN TT, MARKKANEN JE, ARVE K et al.: Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model. Fasekl. (2003) 17:100–102.
  • SMITH RS Jr, UN KF, AGATA J, CHAO L, CHAO J: Human endothelial nitric oxide synthase gene delivery promotes angiogenesis in a rat model of hindlimb ischemia. Arteriosc/er. a/MA V3SC. (2002) 22:1279–1285.
  • NAMBA T, KOIKE H, MURAKAMI K et al.: Angiogenesis induced by endothelial nitric oxide synthase gene through vascular endothelial growth factor expression in a rat hindlimb ischemia model. Circulation (2003) 108:2250–2257.
  • TANIYAMA Y, MORISHITA R, AOKI M et al.: Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene The]: (2001) 8:181–189.
  • LEE LY, PATEL SR, HACKETT NR et al.:Focal angiogen therapy using intramyocardial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann. Thome. Surg. (2000) 69:14-23 (Discussion 23–24).
  • GIORDANO FJ, PING P, McKIRNAN MD et al.: Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat. Med. (1996) 2:534–539.
  • CROTTOGINI A, MECKERT PC, VERA JANAVEL G et al.: Arteriogenesis induced by intramyocardial vascular endothelial growth factor 165 gene transfer in chronically ischemic pigs. Hum. Gene Then (2003) 14:1307–1318.
  • LEOTTA E, PATEJUNAS G, MURPHY G et al.: Gene therapy with adenovirus-mediated myocardial transfer of vascular endothelial growth factor 121 improves cardiac performance in a pacing model of congestive heart failure. J. Thorac Cardiovasc. Surg. (2002) 123:1101–1113.
  • GRINES C, RUBANYI GM, KLEIMAN NS, MARROTT P, WATKINS MW: Angiogenic gene therapy with adenovirus 5 fibroblast growth factor-4 (Ad5FGF-4): a new option for the treatment of coronary artery disease. Am. J. Cardiol (2003) 92:24N–31N.
  • DIAZ-SANDOVAL LJ, LOSORDO DW: Gene therapy for cardiovascular angiogenesis. Expert Opin. Biol. Tiler: (2003) 3:599–616.
  • •Thorough recent review of predinical and clinical cardiovascular angiogenesis gene therapy studies.
  • SIMONS M, WARE IA: Therapeutic angiogenesis in cardiovascular disease. Nat. Rev Drug Discov. (2003) 2:863–871.
  • •Thorough recent review of predinical and clinical cardiovascular angiogenesis studies.
  • RAJAGOPALAN S, MOHLER ER 3rd, LEDERMAN RJ et al.: Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a Phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation (2003) 108:1933–1938.
  • HEDMAN M, HARTIKAINEN J, SYVANNE M et al.: Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: Phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation (2003) 107:2677–2683.
  • GRINES CL, WATKINS MW, MAHMARIAN JJ et al: A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J. Am. Coll Cardiol. (2003) 42:1339–1347.
  • MAKINEN K, MANNINEN H, HEDMAN M et al.: Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded Phase II study. MM. Ther. (2002) 6:127–133.
  • ••Report of a recent clinical trial of VEGF165gene therapy for the treatment of PAD delivered as an adjunct to percutaneous translurninal angioplasty. The authors observed a significant enhancement in vascularity of VEGF165-treated limbs relative to placebo-treated controls.
  • HENRY TD, ANNEX BH, McKENDALL GR et al.: The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation (2003) 107:1359–1365.
  • LEDERMAN RI, MENDELSOHN FO, ANDERSON RD et al.: Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet (2002) 359:2053–2058.
  • SIMONS M, ANNEX BH, LAHAM RI et al.: Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation (2002) 105:788–793.
  • LAHAM RI, SELLKE FW, EDELMAN ERet al.: Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a Phase I randomized, double-blind, placebo-controlled trial. Circulation (1999) 100:1865–1871.
  • RUEL M, LAHAM RI, PARKER JA et al: Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein. J. Thome. Cardiovasc. Surg. (2002) 124:28–34.
  • ••Report of long-term (- 32 months) followup of patients from clinical study of FGF-2 protein therapy delivered as an adjunct to coronary artery bypass grafting. The authors observed significant improvement in symptoms and heart blood flow in 836 Expert Op/n. Investig. Drugs (2004) 13(7) FGF-2-treated patients relative to placebo-treated controls.
  • RUEL M, SELLKE FW: Angiogenic protein therapy. &min. Thorac. Cardiovasc. Surg. (2003) 15:222–235.
  • •Thorough recent review of angiogenic protein therapy.
  • JANG JJ, HO HK, KWAN HH, FAJARDO LF, COOKE JP: Angiogenesis is impaired by hypercholesterolemia: role of asymmetric dimethylarginine. Circulation (2000) 102:1414–1419.
  • DUAN J, MUROHARA T, IKEDA H et al.: Hypercholesterolemia inhibits angiogenesis in response to hindlimb ischemia: nitric oxide-dependent mechanism. Circulation (2000) 102:111370–376.
  • SASAKI K, DUAN J, MUROHARA T et al.: Rescue of hypercholesterolemia-related impairment of angiogenesis by oral folate supplementation. I Am. Coll Cardiol. (2003) 42:364–372.
  • VAN BELLE E, RIVARD A, CHEN D et al.: Hypercholesterolemia attenuates angiogenesis but does not preclude augmentation by angiogenic cytokines. Circulation (1997) 96:2667–2674.
  • MICHAUD SE, MENARD C, GUY LG, GENNARO G, RIVARD A: Inhibition of hypoxia-induced angiogenesis by cigarette smoke exposure: impairment of the HIF-laNEGF pathway. Basel (2003) 17:1150–1152.
  • RUEL M, WU GF, KHAN TA et al.: Inhibition of the cardiac angiogenic response to surgical FGF-2 therapy in a Swine endothelial dysfunction model. Circulation (2003) 108\(Suppl. 1):11335–11340.
  • SHYU KG, CHANG H, ISNER JM: Synergistic effect of angiopoietin-1 and vascular endothelial growth factor on neoangiogenesis in hypercholesterolemic rabbit model with acute hindlimb ischemia. Life Sci. (2003) 73:563–579.
  • RICHARDSON TP, PETERS MC, ENNETT AB, MOONEY DJ: Polymeric system for dual growth factor delivery. Nat. Biotechnol. (2001) 19:1029–1034.
  • ASAHARA T, BAUTERS C, ZHENG LP et al.: Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis M vivo. Circulation (1995) 92:11365–371.
  • CHAE JK, KIM I, LIM ST et al: Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization. Arterioscler: Thromb. Vasc. Biol. (2000) 20:2573–2578.
  • KHAN TA, SELLKE FW, LAHAM RJ: Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia. Gene Ther. (2003) 10:285–291.
  • SIMONS M, BONOW RO, CHRONOS NA et al.: Clinical trials in coronary angiogenesis: issues, problems, consensus: An expert panel summary. Circulation (2000) 102:E73–E86.
  • JAIN RK: Molecular regulation of vessel maturation. Nat. Med. (2003) 9:685–693.
  • CARMELIET P: Angiogenesis in health and disease. Nat. Med. (2003) 9:653–660.
  • FERRARA N: Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. (1999) 56:794–814.
  • TISCHER E, MITCHELL R, HARTMAN T et al.: The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing.' Biol. Chem. (1991) 266:11947–11954.
  • POLTORAK Z, COHEN T, SIVAN R et al.: VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix.' Biol. Chem. (1997) 272:7151–7158.
  • LANGE T, GUTTMANN-RAVIV N, BARUCH L, MACHLUF M, NEUFELD G: VEGF162, a new heparin-binding vascular endothelial growth factor splice form that is expressed in transformed human cells." Biol. Chem. (2003) 278:17164–17169.
  • NEUFELD G, COHEN T, GITAY-GOREN H et al: Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants. Cancer Metastasis Rev (1996) 15:153–158.
  • GRUNSTEIN J, MASBAD JJ, HICKEY R,GIORDANO F, JOHNSON RS: Isoforms of vascular endothelial growth factor act in a coordinate fashion To recruit and expand tumor vasculature. MM. Cell Biol. (2000) 20:7282–7291.
  • WHITLOCK PR, HACKETT NR, LEOPOLD PL, ROSENGART TK, CRYSTAL RG: Adenovirus-mediated transfer of a minigene expressing multiple isoforms of VEGF is more effective at inducing angiogenesis than comparable vectors expressing individual VEGFcDNAs. MM. Ther. (2004) 9:67–75.
  • DENT CL, LAU G, LIANG Y, CASE CC,PABO CO: Transcriptional activation of the endogenous VEGF gene by small molecule regulated engineered transcription factors. American Socieg, of Gene Therapy.. Washington DC, USA (2003) (Abstract 786).
  • ABRUZZESE RV, GODIN D, BURCIN M et al.: Ligand-dependent regulation of plasmid-based transgene expression in vivo. Hum. Gene Ther. (1999) 10:1499–1507.
  • POLLOCK R, GIEL M, LINHER K, CLACKSON T: Regulation of endogenous gene expression with a small-molecule dimerizer. Nat. Biotechnol (2002) 20:729–733.
  • FRANKEL AD, KIM PS: Modular structure of transcription factors: implications for gene regulation. Cell (1991) 65:717–719.
  • WILLS KN, MANO T, AVANZINI JB et al.: Tissue-specific expression of an anti-proliferative hybrid transgene from the human smooth muscle a-actin promoter suppresses smooth muscle cell proliferation and neointima formation. Gene Ther. (2001) 8:1847–1854.
  • YOU XM, MUNGRUE IN, KALAIR W et al.: Conditional expression of a dominant-negative c-Myb in vascular smooth muscle cells inhibits arterial remodeling after injury. Circ. Res. (2003) 92:314–321.
  • SEMENZA GL: Regulation of mammalian02 homeostasis by hypwda-inducible factor 1. Ann. Rev Cell. Dev. Biol. (1999) 15:551–578.
  • IVAN M, KONDO K, YANG H et al.: HIFa targeted for VHL-mediated destruction by proline hydroxylation: implications for 02 sensing. Science (2001) 292:464–468.
  • JAAKKOLA P, MOLE DR, TIAN YM et al.: Targeting of HIF-a to the von Hippel-Lindau ubiquitylation complex by 02-regulated prolyl hydroxylation. Science (2001) 292:468–472.
  • BRUICK RK, McKNIGHT SL: A conserved family of proly1-4-hydroxylases that modify HIE Science (2001) 294:1337–1340.
  • EPSTEIN AC, GLEADLE JM, McNEILL LA et al.: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell (2001) 107:43–54.
  • LANDO D, PEET DJ, WHELAN DA, GORMAN JJ, WHITELAW ML: Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science (2002) 295:858–861.
  • VINCENT KA, SHYU KG, LUO Yet al.: Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1aNP16 hybrid transcription factor. Circulation (2000) 102:2255–2261.
  • ••First paper describing HIF-laNP16.Includes an efficacy demonstration in the rabbit ischaemic hindlimb model of PAD.
  • KELLY BD, HACKETT SF, HIROTA K et al.: Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ. Res. (2003) 93:1074–1081.
  • SADOWSKI I, MA J, TRIEZENBERG S, PTASHNE M: GAL4-VP16 is an unusually potent transcriptional activator. Nature (1988) 335:563–564.
  • TRIEZENBERG SJ, KINGSBURY RC, MCKNIGHT SL: Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. (1988) 2:718–729.
  • LIU LX, LU H, LUO Y et al.: Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun. (2002) 291:908–914.
  • BELANGER AJ, LU H, DATE T et al.: Hypoxia up-regulates expression of peroxisome proliferator-activated receptor gamma angiopoietin-related gene (PGAR) in cardiomyocytes: role of hypoxia inducible factor lalpha. Mol. Cell. Cardiol. (2002) 34:765–774.
  • YAMAKAWA M, LIU LX, DATE T et al.: Hypwda-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ. Res. (2003) 93:664–673.
  • JIANG C, LU H, VINCENT KA et al.: Gene expression profiles in human cardiac cells subjected to hypoxia or expressing a hybrid form of HIF- la. Physiol. Cenomics (2002) 8:23–32.
  • SHYU KG, WANG MT, WANG BW et al.: Intramyocardial injection of naked DNA encoding HIF- laNP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc. Res. (2002) 54:576–583.
  • •First predinical test of HIF-1a/VP16 for efficacy in heart tissue (rat infarct model).
  • RAJAGOPALAN S, DEITCHER S, OLIN J et al.: Harnessing the response to hypoxia: use of a constitutively active hypoxia-inducible factor 1-a transgene in no-option critical limb ischemia patients. American Heart Association Scientific Sessions. Orlando, USA (2003) (Abstract 2034).
  • MILLER J, McLACHLAN AD, KLUG A:Repetitive zinc-binding domains in the protein transcription Factor IIIA from Xenopus oocytes. EMBO J. (1985) 4:1609–1614.
  • BROWN RS, SANDER C, ARGOS P: The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Lett. (1985) 186:271–274.
  • PABO CO, PEISACH E, GRANT RA: Design and selection of novel Cys2His2 zinc finger proteins. Ann. Rev Biochem. (2001) 70:313–340.
  • ••Thorough review of ZFP structure, DNArecognition and design strategies.
  • SEEMAN NC, ROSENBERG JM, RICH A: Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl. Acad. Sci. USA (1976) 73:804–808.
  • CHRISTY B, NATHANS D: DNA binding site of the growth factor-inducible protein Zif268. Proc. Nati Acad. Sci. USA (1989) 86:8737–8741.
  • PAVLETICH NP, PABO CO: Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science (1991) 252:809–817.
  • DESJARLAIS JR, BERG JM: Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc. Nati Acad. Sci. USA (1993) 90:2256–2260.
  • LIU Q, XIA Z, ZHONG X, CASE CC: Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J. Biol. Chem.(2002) 277:3850-3856. ao.BAE KH, KWON YD, SHIN HC et al.: Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat. Biotechnol. (2003) 21:275–280.
  • REBAR EJ, PABO CO: Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science (1994) 263:671–673.
  • REBAR EJ, GREISMAN HA, PABO CO: Phage display methods for selecting zinc finger proteins with novel DNA- binding specificities. Methods Enzymol. (1996) 267:129–149.
  • JAMIESON AC, KIM SH, WELLS JA: hi vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry (1994) 33:5689–5695.
  • CHOO Y, KLUG A: Toward a code for theinteractions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc. Nati Acad. Sci. USA (1994) 91:11163–11167.
  • JOUNG JK, RAMM El, PABO CO: A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc. Nati Acad. Sri. USA (2000) 97:7382–7387.
  • SEGAL DJ, DREIER B, BEERLI RR, BARBAS CF 3rd: Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5'-GNN-3' DNA target sequences. Proc. Nati Acad. Sci. USA (1999) 96:2758–2763.
  • DREIER B, BEERLI RR, SEGAL DJ, FLIPPIN JD, BARBAS CF 3rd: Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. (2001) 276:29466–29478.
  • GREISMAN HA, PABO CO: A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science (1997) 275:657–661.
  • ISALAN M, KLUG A, CHOO Y: A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat. Biotechnol. (2001) 19:656–660.
  • LIU PQ, REBAR EJ, ZHANG L et al.: Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. Biol. Chem. (2001) 276:11323–11334.
  • •Paper describing the design and initial in vitro characterisation of VZ+434–p65.
  • REBAR EJ, HUANG Y, HICKEY R et al.: Induction of angiogenesis in a mouse model using engineered transcription factors. Nat. Med. (2002) 8:1427–1432.
  • ••First scientific publication reporting that designed ZFP activators of VEGF can function in vivo to induce angiogenesis.
  • SNOWDEN AW, ZHANG L, URNOV F et al.: Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors. Cancer Res. (2003) 63:8968–8976.
  • BEERLI RR, DREIER B, BARBAS CF 3rd: Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Nati Acad. Sci. USA (2000) 97:1495–1500.
  • ZHANG L, SPRATT SK, LIU Q et al.: Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J. Biol Chem. (2000) 275:33850–33860.
  • BARTSEVICH VV, MILLER JC, CASE CC, PABO CO: Engineered zinc finger proteins for controlling stem cell fate. Stem Cells (2003) 21:632–637.
  • FALKE D, FISHER M, YE D, JULIANO RL: Design of artificial transcription factors to selectively regulate the pro-apoptotic bax gene. Nucleic Acids Res. (2003) 31:e10.
  • BARTSEVICH VV, JULIANO RL: Regulation of the MDR1 gene by transcriptional repressors selected using peptide combinatorial libraries. Ma Pharmacol (2000) 58:1–10.
  • JOUVENOT Y, GINJALA V, ZHANG L et al.: Targeted regulation of imprinted genes by synthetic zinc-finger transcription factors. Gene Ther. (2003) 10:513–522.
  • TANS, GUSCHIN D, DAVALOS A et al: Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc. Natl. Acad. Sci. USA (2003) 100:11997–12002.
  • ••Recent paper demonstrating targeted generegulation by a designed ZFP with unique specificity in the monitored genome.
  • BLANCAFORT P, MAGNENAT L, BARBAS CF 3rd: Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol (2003) 21:269–274.
  • REND, COLLINGWOOD TN, REBAR EJ, WOLFFE AP, CAMP HS: PPARy knockdown by engineered transcription factors: exogenous PPARy2 but not PPARyl reactivates adipogenesis. Genes Dev. (2002) 16:27–32.
  • LIANG Y, LI XY, REBAR EJ et al.: Activation of vascular endothelial growth factor A transcription in tumorigenic glioblastoma cell lines by an enhancer with cell type-specific DNase I accessibility. Biol. Chem. (2002) 277:20087–20094.
  • REBAR EJ, ZHANG L, DENT C et al.: Robust activation of vascular endothelial growth factor a using designed zinc finger protein transcription factors. American Society of Gene Therapy Washington DC, USA (2003) (Abstract 1192).
  • JOHNSTONE B, VENSTROM K, ZHANG L et al: Induction of angiogenesis in rat skeletal muscle using a designed zinc finger protein transcriptional activator targeted to vascular endothelial growth factor A (VEGF-A). American Society of Gene Therapy Washington DC, USA (2003) (Abstract 603).
  • DAI Q, HUANG J, KLITZMAN B et al.: A genetically engineered plasmid encoding a zinc finger vegf-activating transcription factor induces angiogenesis in the rabbits with hind-limb ischemia. American Society of Gene Therapy Washington DC, USA (2003) (Abstract 855).
  • OZAWA CR, BANFI A, GLAZER NL et al.: Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. Gin. Invest. (2004) 113:516–527.
  • CHAPMAN-SMITH A, LUTWYCHE JK, WHITELAW ML: Contribution of the Per/ Arnt/Sim (PAS) domains to DNA binding by the basic helix-loop-helix PAS transcriptional regulators. J. Biol. Chem. (2004) 279:5353–5362.
  • JIANG BH, ZHENG JZ, LEUNG SW, ROE R, SEMENZA GL: Transactivation and inhibitory domains of hypoxia-inducible factor 1 a. Modulation of transcriptional activity by oxygen tension. J. Biol. Chem. (1997) 272:19253–19260.
  • ELROD-ERICKSON M, ROULD MA, NEKLUD OVA L, PABO CO: Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure (1996) 4:1171–1180.
  • SCHAAL TD, HOLMES MC, REBAR EJ, CASE CC: Novel approaches to controlling transcription. Genet. Eng. (NY) (2002) 24:137–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.