113
Views
11
CrossRef citations to date
0
Altmetric
Review

Parathyroid hormone and leptin – new peptides, expanding clinical prospects

Pages 251-264 | Published online: 22 Apr 2005

Bibliography

  • WHITFIELD JF: How to grow bone to treat osteoporosis and mend fractures. Corr. Osteoporosis Rep. (2003) 1:32–40.
  • ••This is the most recent compendium ofinformation on bone anabolics.
  • WHITFIELD JF: In: Crowing Bone. Landes Bioscience, Georgetown, TX, USA (2005).
  • WHITFIELD JF, MORLEY P, WILLICK GE: Parathyroid hormone, its fragments and their analogs for the treatment of osteoporosis. Treat. Endociinol (2002) 1:175–190.
  • WHITFIELD JF, MORLEY P, WILLICK GE: Bone growth stimulators, new tools for treating bone loss and mending fractures. Vitam. Horm. (2002) 65:1–80.
  • DUCY P, AMLING M, TAKEDA S et al:Leptin inhibits bone formation through a hypothalamic relay. Cell (2000) 100:197-207. This is the first paper reporting leptin's indirect, CNS-mediated anti-osteogenic action in obese mice.
  • BARBIER JR, NEUGEBAUER W, MORLEY P et al: Bioactivities and secondary structures of constrained analogues of human parathyroid hormone: cyclic lactams of the receptor binding region. J. Med. Chem. (1997) 40:1373–1380.
  • WHITFIELD JF, MORLEY P, WILLICK G et al.: Cyclisation by a specific lactam increases the ability of human parathyroid hormone (hPTH)-(1–31) NH2 to stimulate bone growth in ovariectomised rats.' Bone Miner. Res. (1997) 12:1246–1252.
  • WHITFIELD JF, MORLEY P, WILLICK GE et al: Stimulation of the growth of femoral trabecular bone in ovariectomised rats by the novel parathyroid hormone fragment, hPTH-(1-31)NH2 (ostabolin). Cakil: Tissue Lit. (1996) 58:81–87.
  • MEHTA N, STERN W, STURMER A, BOLAT A, CHEN J, GILLIGAN J: Oral delivery of PTH analogues by a solid dosage formulation. 'Bone Miner Res. (2001) 16:S540.
  • ••The first report of an oral, 31 amino acidPTH analogue.
  • FDA news, October 14 2004.
  • KOSTENUIK PJ, CAPPARELLI C, MORONY S et al: OPG and PTH-(1-34) have additive effects on bone density and mechanical strength in osteopenic ovariectomised rats. Endocrinology (2001) 142:4295–4304.
  • COSMAN F, NIEVES JW, LUCKEY MM, ZION M, WOELFERT L, LINDSAY R: Daily versus cyclic PTH combined with alendronate versus alendronate alone for treatment of osteoporosis. J. Bone Miner Res. (2003) 18:S32.
  • HODSMAN AB, FRAHER LJ, WATSON PH et al.: A randomized controlled trial to compare the efficacy of cyclical parathyroid hormone versus cyclical parathyroid hormone and sequential calcitonin to improve bone mass in postmenopausal women with osteoporosis. Clin. Endocrinol Metab. (1997) 82:620–628.
  • CHEN XD, STEWART SA, MANOLAGAS SC, JILKA RL: Dissection of PTH-induced signaling network in osteoblastic cells using a novel bioinformatics approach../. Bone Mther. Res. (2004) 19:S76.
  • ALKHIARY YM, GERSTENFELD LC, CULLINANE DM et al.: Parathyroid hormone (1-34; teriparatide) enhances experimental fracture healing. J. Bone Miner. Res. (2003) 18:S24.
  • ANDREASSEN TT, EJERSTED C, OXLUND H: Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing fractures../. Bone Miner. Res. (1999) 14:960–968.
  • •The first demonstration of a PTH's ability to accelerate fracture healing.
  • ANDREASSEN TT, FLEDELIUS C, EJERSTED C, OXLUND H: Increase in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop. Land. (2001) 72:304–307.
  • ANDREASSEN TT, WILLICK GE, MORLEY P, WHITFIELD JF: Treatment with parathyroid hormone hPTH(1-34), hPTH (1-31), and monocyclic hPTH (1-31) enhances fracture strength and callus amount after withdrawal, fracture strength and callus mechanical quality continue to increase. Cakil Tissue Int. (2004) 74:351–356.
  • KIM HW, JHANG JS: Effect of intermittent administration of parathyroid hormone on fracture healing in ovariectomised rats. Iowa Orthop. (1999)19:71–77.
  • NAKAJIMA A, SHIMOJI N, SHIOMI K et al.: Mechanisms for the enhancement of fracture healing in rats treated intermittent low-dose human parathyroid hormone (1–34).j Bone Miner. Res. (2002) 17:2038–2047.
  • BONADIO J: Tissue engineering via local gene delivery: update and future prospects for enhancing the technology. Adv. Drug. Deliv. Rev (2000) 44:185–194.
  • BONADIO J, SMILEY E, PATIL P, GOLDSTEIN S: Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med. (1999) 5:753–759.
  • FANG J, ZHU YY, SMILEY E et al.: Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc. Natl. Acad. Sci. USA (1996) 93:5753–5758.
  • GOLDSTEIN SA, BONADIO J: Potential role for direct gene transfer in the enhancement of fracture healing. Clin. Orthop. (1998) 355(Suppl.):5154–5162.
  • ARCHIBECK MJ: The basic science of periprosthetic osteolysis. AAOS Instruct. Course Lect. (2001) 50:185–195.
  • DAVIES JE: In: Bone Engineering. Em squared Inc., Toronto, ON, Canada (2000).
  • ELLINGSEN JE, LYNGSTADAAS SP: In: Bio-Implant Interface, CRC Press, Boca Raton, FL, USA (2003).
  • INGHAM E, FISHER J: Biological reactions to wear debris in total joint replacement. Proc. Inst. Mech. Eng. IH1 (2000) 214:21–37.
  • SKRIPITZ R, ASPENBERG P: Early effect of parathyroid hormone (1-34) on implant fixation. Clin. Orthop. Rel. Res. (2000) 392:427–432.
  • SKRIPITZ R, ASPENBERG P: Implant fixation enhanced by intermittent treatment with parathyroid hormone. I Bone Joint Surg. (2000) 83B:437–440.
  • SKRIPITZ R, ASPENBERG P: Parathyroid hormone (1-34) increases attachment of PMM cement to bone. I Orthop. (2001) 6:540–544.
  • SHIROTA T, TASHIRO M, OHNO K, YAMAGUCHI A: Effect of intermittent parathyroid hormone (1-34) treatment on the bone response after placement of titanium implants into the tibia of ovariectomised rats. I Ora] Maxillofac. Surg. (2003) 61:471–480.
  • ALLEN MJ, SCHOONMAKER JE, MANN KA et al.: PTH analogs enhance bone formation at a weight-bearing cement-bone interface. 50th Annual Meeting of the Orthopaedic Research Socieoi, San Francisco, USA (2004):Poster 1429.
  • ASTRAND J, SKRIPITZ R, SKOGLUND B, ASPENBERG P: A rat model for testing pharmacological treatments of pressure-related bone loss. Orthop. (2003) 409:296–305.
  • ASTRAND J, ASPENBERG P: Reduction of instability-induced bone resorption using bisphosphonates: big doses are needed in rats. Acta Orthop. Scand. (2002) 73:24–30.
  • SHANBHAG AS, HASSELMAN CT, RUBASH HE: The John Charnley Award. Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin. Orthop. (1997) 344:33–43.
  • THADANI PJ, WAXMAN B, SLADEK E, BARMADA R, GONZALEZ MH: Inhibition of particulate debris-induced osteolysis by alendronate in a rat model. Orthopedics (2002) 25:59–63
  • WHITFIELD JF, CHAKRAVARTHY B: In: Cakium: The Grand-master Cell Signaller. NRC Research Press, Ottawa, ON, Canada (2001).
  • ORLOFF JJ, KATS Y, URENA P et al: Further evidence for a novel receptor for amino-terminal parathyroid hormone-related protein on keratinocytes and squamous carcinoma cell lines. Endocrinology (1995) 136:3016–3023.
  • WHITFIELD JF, CHAKRVARTHY BL, DURKIN JP et al.: Parathyroid hormone stimulates protein kinase C but not adenylate cyclase in mouse epidermal keratinocytes. I Cell. Physic] (1992) 150:299–303.
  • TU C-L, ODA Y, KOMUVES L, BIKLE D: The role of the calcium-sensing receptor in epidermal differentiation. Cell Calcium (2004) 35:265–273.
  • LOWELL S, JONES P, LE ROUX I, DUNNE J, WATT F: Stimulation of human differentiation by 8-Notch signalling at the boundaries of stem cell clusters. Curr. Biol. (2000) 10:491–500.
  • RANGARAJAN A, TALORA C, OKUYAMA R et al: Notch signalling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO 1 (2001) 20:3427–3436.
  • OKUYAMA R, NGUYEN B-C, TALORA C et al.: High commitment of embryonic keratinocytes to terminal differentiation through Notch 1-caspase 3 regulatory mechanism. Devi.] Cell (2004) 6:551–562.
  • NICKOLOFF BJ, QIN JZ, CHATURVEDI V, DENNING ME BONISH B, MIELE L: Jagged-1 mediated activation of notch signalling induces complete maturation of human keratinocytes through NF-KB and PPAR-y. Cell Death Differ. (2002) 9:642–855.
  • POTTEN C, WILSON J: Apoptosis, Cambridge University Press, Cambridge, UK (2004).
  • LEFORT K, DOTTO GP: Notch signalling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Smith. Cancer Biol. (2004) 14:374–386.
  • HANAFIN NM, CHEN TC, HEINRICH G, SEGRE GV, HOLICK MF: Cultured human fibroblasts and not cultured human keratinocytes express a PTH/PTHrP receptor mRNA. J. Invest. Dermatol. (1995) 105:133–137.
  • MAIOLI E, FORTINO V, TORRICELLI C, AREZZINI B, GARDI C: Effect of parathyroid hormone-related protein on fibroblast proliferation and collagen metabolism in human skin. Exp. Dermatol. (2002) 11:302–310.
  • PUN KK, TAM SM: Parathyroid hormone-activated phosphoinositide degradation and calcium channels in human dermal fibroblasts. Biol. Signals (1995) 4:19–23.
  • HOLICK MF, RAYS, CHEN TC, TIAN X, PERSONS KS: A parathyroid hormone antagonist stimulates epidermal proliferation and hair growth in mice. Proc. Natl. AcadSd. USA (1994) 91:8014–8016.
  • CALVI LM, ADAMS GB, WEILBRECHT KW et al.: Osteoblastic cells regulate the haematopoietic stem cell niche. Nature (2003) 425:841–846.
  • ••The first 'modem' demonstration of aPTH's ability to affect haematopoiesis.
  • WEBER JM, ADAMS GB, GUZMAN ML et al.: Parathyroid treatment improves survival after bone marrow transplantation and increases osteoblastic expression of the Notch ligand Jagged 1. J. Bone Miner. Res. (2004) 19:S407.
  • AHO S: Soluble form of Jagged 1: unique product of epithelial keratinocytes and a regulator of keratinocyte differentiation. I Cell. Biochem. (2004) 92:1271–1281.
  • NICOLAS M, WOLFER A, RAJ K et al.: Notch 1 functions as a tumour suppressor in mouse skin. Nature Gen. (2003) 33:416–421.
  • THELU J, ROSSIO P, FAVIER B: Notch signalling is linked to epidermal cell differentiation in basal cell carcinoma, psoriasis, and wound healing. BMC Dermatol. (2002) 2:7.
  • ••One of the keys to the cause of psoriasis.
  • WHITFIELD JF: Taming psoriatic keratinocytes-PTHs' uses go up another notch." Cell. Biochem. (2004) 93:251–256.
  • JUHLIN L, HAGFORSEN E, JUHLIN C: Parathyroid hormone-related protein is localized in the granular layer of normal skin and in the dermal infiltrates of mycosis fungoides but is absent in psoriatic lesions. Acta Berm. Venereol. (1992) 72:81–83.
  • MENON GK, ELIAS PM: Ultrastructural localization of calcium in psoriatic and normal human epidermis. Arch. Dermatol. (1991) 127:57–63.
  • KARVONEN SL, KORKIAMAKI T, YLA-OUTINEN H et al.: Psoriasis and altered calcium metabolism: downregulated capacitative calcium influx and defective calcium-mediated cell signaling in cultured psoriatic keratinocytes." Invest. Dermatol. (2000) 114:693–700.
  • McKENZIE R, ODA Y, SZEPIETOWSKI JC, BEHNE MJ, MAURO T: Defective cyclic guanosine monophosphate-gated calcium channels and the pathogenesis of psoriasis. Acta Berm. Venereol. (2003) 83:414–418.
  • HOLICK MF, CHIMEH FN, RAY S: Topical PTH (1-34) is a novel, safe and effective treatment for psoriasis: a randomized self-controlled trial and an open trial. Br. .1 Dermatol. (2003) 149:370–376.
  • ••The first demonstration of the ability ofhPTH-(1–34)0H to treat psoriasis.
  • RIXON RH, WHITFIELD JF: The radioprotective action of parathyroid extract. Int. J. Radiat. Biol. (1961) 3:361–367.
  • •The first indication of PTH having a role In bone marrow function.
  • CHEN XD, STEWART SA, MANOLAGAS SC, JILKA RL: Dissection of PTH-induced signaling network in osteoblastic cells using a novel bioinformatics approach." Bone Mther. Res. (2004) 19:S76.
  • PERRIS AD, MacMANUS JP, WHITFIELD JF, WEISS LA: Parathyroid glands and mitotic stimulation in rat bone marrow after hemorrhage. Am. J. Physiol. (1971) 220:773–778.
  • GALLIEN-LARTIGUE 0, CARREZ D: Induction in vitro de la phase S dans cellules souches multipotentes de la moelle osseuse par f hormone Parathyro-dienne. C. R. Acad. Sci. Herbd. Seances Acad. Sci. Paris (D) (1974) 278:1765–1768.
  • ••The very first demonstration of PTHbeing able to target haematopoietic stem cells.
  • OHISHI K, KATAYAMA N, SHIKU H, VARNUM-FINNEY B, BERNSTEIN ID: Notch signaling in hematopoiesis. Sermin. Cell Bevel. Biol. (2003) 14:143–150.
  • SCHWEISGUTH F: Regulation of Notchsignaling activity. Curr. Biol. (2004) 14:R129–R138.
  • ZHU J, EMERSON SG: A new bone to pick: osteoblasts and haematopoietic stem cell niche. BioEssays (2004) 26:595–599.
  • BOSTROM K, DEMER LL: Regulatory mechanisms in vascular calcification. Grit. Rev Eukaryotic Gene Expr. (2000) 12:151–158.
  • DEMER LL: Vascular calcification and osteoporosis: inflammatory responses to oxidized lipids. Int. J. Epidenhol. (2002) 31:737–741.
  • DEMER LL, TINTUT Y: Osteopontin: Between a rock and a hard plaque. Circ. Res (1999) 84:250–252.
  • DOHERTY TM, FITZPATRICK LA, INOUE D et al: Molecular endocrine, and genetic mechanisms of arterial calcification. Endocrine Rev. (2004) 25:629–672.
  • ••The most recent collection of informationon vascular ossification.
  • VATTIKUTI R., TOWLER DA: Osteogenic regulation of vascular calcification: an early perspective. Am. J. Physiol. Endocrinol. Metab. (2004) 286:E686–E696.
  • CHEN NX, MOE SM: Arterial calcification in diabetes. Curr. Diab. Rep. (2003) 3:28–32.
  • VIRCHOW R: Cellular Pathology: As Based Upon Physiological and Pathological Histology. Dover. New York (1863/1971):408.
  • LIBBY P: Inflammation in atherosclerosis. Nature (2002) 420:868–874.
  • STEINBERG D: Atherogenesis in perspective: hyper cholesterolemia and inflammation as partners in crime. Nat. Med. (2002) 8:1211–1217.
  • STOCKER R, KEANEY JF: Role of oxidative modifications in atherosclerosis. Physiol. Rev (2004) 84:1381–1478.
  • GROENEVELD EHJ, BURGER EH: Bone morphogenic proteins in human bone regeneration. Eur. Endocrinol. (2000) 142:9–21.
  • ABEDIN M, TINTUT Y, MEMER LL: Vascular calcification: mechanisms and clinical ramifications. Arterioscler. Thromb. Vasc. Biol. (2004) 24:1161–1170.
  • BROSTROMK, WATSON KE, HORNS, WORTHAM HC, HERMAN IM, DEMER LL: Bone morphogenic protein expression in human atherosclerotic lesions. Clin. Invest. (1993) 91:1800–1809.
  • DEMER LL, TINTUT Y: Mineral exploration: search for the mechanism of vascular calcification and beyond. Arterioscler. Thromb. Vase. Biol. (2003) 23:1739–1743.
  • DEMER LL, TINTUT Y, PARHAMI F: Novel mechanisms in accelerated vascular calcification in renal disease patients. Curr. Opin. Nephrol Hypertens. (2002) 11:437–443.
  • ENGELSE MA, NEELE JM, BRONKERS ALJJ, PANNEKOEK H, DE VRIE CJ: Vascular calcification: expression patterns of the osteoblast-specific gene core binding factor a-1 and the protective factor matrix gla protein in human atherogenesis. Cardiovascular Res. (2001) 52:281–289.
  • FUKUI N, ZHU Y, MALONEY WJ, CLOHISY J, SANDELL LJ: Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-a in normal and osteoarthritic chondrocytes. Bone Joint Surg. Am. (2003) 85-A\(Suppl. 3):59–66.
  • JAKOBY MG, SEMENKOVICH CF: The role of osteoprogenitors in vascular calcification. Curr. Opin. Nephrol Hypertens. (2000) 9:11–15.
  • JONO S, NISHIZAWA Y, SHIOI A, MORII H: Parathyroid hormone-related peptide as a local regulator of vascular calcification. Arterioscler. Thromb. Vase. Biol. (1997) 17:1135–1142.
  • ••One of the first assessments of PTH'spossible effects on vascular ossification.
  • JONO S, PEINADO C, GIACHELLI CM: Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J. Biol. Chem. (2000) 275:20197–20203.
  • MODY N, TINTUT Y, RADCLIFF K, DERMER LL: Vascular calcification and its relation to bone calcification: possible underlying mechanisms. J. Nucl. Cardiol (2003) 10:177–183.
  • TINTUT Y, ALFONSO Z, SAINT T et al: Multilineage potential of cells from the artery wall. Circulation (2003) 108:2505–2510.
  • WADA T, McKEE MD, STEITZ S, GIACHELLI CM: Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ. Res. (1999) 84:166–178.
  • ISHIKAWA M, AKISHITA M, KOZAKI Ket al.: Expression of parathyroid hormone-related protein in human and experimental atherosclerotic lesions: functional role in arterial intimal thickening. Atherosclerosis (2000) 152:97–105.
  • SHAO JS, CHENG SL, CHARLTON-KACHIGIAN N, LOEWY AP, TOWLER DA: Teriparatide human parathyroid hormone (1-34) inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice../. Biol. Chem. (2003) 278:50195–50202.
  • ••A very important demonstration of aPTH's ability to inhibit, instead of stimulate, vascular ossification.
  • MARTIN-VENTURA JL, ORTEGO M, ESBR P, HERNANDEZ-PRESA MA, ORTEGA L, EGIDO J: Possible role of parathyroid hormone-related protein as a proinflammatory cytokine in atherosclerosis. Stroke (2003) 34:1783–1789.
  • NAKAYAMA T, OHTSURU A, ENOMOTO H et al: Coronary atherosclerotic smooth muscle cells over express human parathyroid hormone-related peptides. Biochem. Biophys. Res. Commun. (1994) 200:1028–1035.
  • OZEKI S, OHTSURU A, SETO S et al:Evidence that implicates the parathyroid hormone-related peptide in vascular stenosis. Increased gene expression in the intima of injured carotid arteries and human restenoic coronary lesions. Arterioscler. Thromb. Vase. Biol. (1996) 16:565–575.
  • DE MIGUEL F, FIASCHI-TAESCH N, LOPEZ-TELAVERA JC et al: The C-terminal region of PTHrP, in addition to the nuclear localization signal, is essential for the intracrine stimulation of proliferation in vascular smooth muscle cells. Endocrinology (2001) 142:4096–4105.
  • FIASCHI-TAESCH N, TAKANE KK, MASTERS S, LOPEZ-VERA JC, STEWART AF: Parathyroid hormone-related protein as a regulator of pRb and the cell cycle in arterial smooth muscle. Circulation (2004) 110:177–185.
  • MASSFELDER T, DANK P, WU TL, VASAVADA R, HELWIG J-J: Opposing mitogenic and anti-mitogenic actions of parathyroid hormone-related protein in vascular smooth muscle cells: a critical role for nuclear targeting. Proc. Natl. Acad. Li. USA (1997) 94:13630–13635.
  • MURRAY TM, RAO LG, DIVIETI P, BRINGHURST FR: Parathyroid hormone secretion and action: Evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocrine Revs. (2005) (In press).
  • YLITALO R: Bisphosphonates and atherosclerosis. Gen. Pharmacol (2002) 35:287–296.
  • ••The discovery of the 'bisphosphonateparadox', which is the ability of bisphosphonates to prevent skeletal bone resorption but to reduce vascular bone.
  • NIITA K, AKIBA T, SUZUKI K et al: Effects of cyclic intermittent etidronate therapy on coronary artery calcification in patients receiving long-term hemodialysis. Am. J. Kidney Dis. (2004) 44:680–688.
  • BLUM WF: Leptin: the voice of the adipose tissue. Hormone Res. (1997) 48 (Suppl. 4):2–8.
  • AHIMA RS, FLIER JS: Leptin. Ann. Rev Physiol (2000) 62:413–437.
  • HIMMS-HAGEN J: Physiological roles of the leptin endocrine system: differences between mice and humans. Grit. Rev Clin. Lab. ScL (1999) 36:575–655.
  • TAKEDA S, ELEFTERIOU F, KARSENTY G: Commen endocrine control of body weight, reproduction, and bone mass. Ann. Rev Nutr. (2003) 23:403–411.
  • TAKEDA S, ELEFTERIOU F, LEVASSEUR R et al: Leptin regulates bone formation via the sympathetic nervous system. Cell (2002) 111:305–317.
  • ••The first indication that intracerebroventricularly injected leptin inhibits bone formation by stimulating adrenergic agonist release.
  • RAHMOUNI K, HAYNES WG: Leptin and the cardiovascular system. Recent Progr. Holm. Res. (2004) 59:225–244.
  • BONNET N, BRUNET-IMBAULT B, PARNAUD CJ et al.: 132-Adrenergic agonists have negative effects on bone architecture and density in rat. J. Bone Miner. Res. (2003) 18:S42.
  • LAVASSEUR R, SABATIER JP, POTRELBURGOT C, LECOQ B, CREVEUIL C, MARCELLI C: Sympathetic nervous system as transmitter of mechanical loading in bone. John Bone Spine (2003) 70:515–519.
  • PIERROZ DD, BOUXSEIN ML, GLATT V, RIZZOLI R, FERRARI SL: Intermittent PTH and propranolol have synergistic effects on vertebral trabecular bone in ovariectomised mice. J. Bone Miner. Res. (2004) 19:S460.
  • PASCO JA, HENRY MJ, SANDERS KM, KOTOWICZ MA, SEEMAN E, NICHOLSON GC: B-Adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J. Bone Miner. Res. (2004) 19:19–24.
  • HAMRICK MW: Leptin, bone mass, and the thrifty phenotype. I Bone Miner. Res. (2004) 19:1607–1611.
  • WELT CK, CHAN JL, BULLEN J et al: Recombinant human leptin in women with hypothalamic amenorrhea. N Engl. I Med. (2004) 351:959–962.
  • HAMRICK MW, PENNINGTON C, NEWTON D, XIE D, ISALES C: Leptin deficiency produces contrasting phenotypes in the bones of the limb and spine. Bone (2004) 34:369–371.
  • TAMASI JA, AREY BJ, BERTOLINI DR, FEYEN JH: Characterization of bone structure in leptin receptor-deficient Zucker (fa/fa) rats. ./. Bone Miner. Res. (2003) 18:1605–1611.
  • BURGUERA B, HOFBAUER LC, THOMAS T et al: Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology (2001) 142:3546–3553.
  • GORDELADZE JO, DREVON CA, SYVERSEN U, RESELAND JE: Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. ./. Cell. Biochem. (2002) 85:825–836.
  • ••A summary of the evidence for leptin'sdirect stimulation of osteogenesis.
  • HOLLOWAY WR, COLLIER FM, AITKEN CJ et al: Leptin inhibits osteoclast generation. J. Bone Mther. Res. (2002) 17:200–209.
  • LIU C, GROSSMAN A, BAIN S: Leptin stimulates cortical bone formation in obese mice. J. Bone Miner. Res. (1997) 12:S115.
  • RESELAND JE, SYVERSEN U, BAKKE I et al: Leptin is exressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J. Bone Miner. Res. (2001) 16:1426–1433.
  • STEPPAN CM, CRAWFORD DT, CHIDSEY-FRINK KL, KE H, SWICK AG: Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. (2000) 92:73–78.
  • ••The first demonstration of the directosteogenic action of leptin in obese mice.
  • THOMAS T, GORI F, KHOSLA S, JENSEN MD, BURGUERA H, RIGGS BL: Leptin acts on human marrowstromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology (1999) 140:1630–1638.
  • TORDAY JS, SUN H, WANG L, TORRES E: Leptin mediates the parathyroid hormone-related protein paracrine stimulation of foetal lung maturation. Am. I Physiol Lung Cell. Mol Physiol (2002) 282:L405–L410.
  • •An indication that leptin might be a mediator of PTH's osteogenis action.
  • YAMAUCHI M, SUGIMOTO T, YAMAGUCHI T et al.: Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin. Endocrinol. (2001) 55:341–347.
  • ROUX C, ARABIA, PORCHER R, GARNERO P: Serum leptin as a determinant of bone resorption in healthy postmenopausal women. Bone (2003) 33:847–852.
  • HADJI P, BOCK K, GOTSCHALK M et al: The influence of serum leptin concentration on bone mass assessed by quantitative ultrasonography in pre- and postmenopausal women. Maturitas (2003) 44:141–148.
  • ODABASI E, OZATA M, TURAN M et al: Plasma leptin concentration in postmenopausal women with osteoporosis. Eur.j Endocrinol. (2002) 142:170–173.
  • SAHIN G, POLAT G, BAETHIS S et al: Body composition, bone mineral density, and circulating leptin levels in post-menopausal Turkish women. Rheumatol Int. (2003) 23:87–91.
  • SHAARAWY M, ABASSI AF, HASSAN H, SALEM ME: Relationship between serum leptin concentration and bone mineral density as well as biochemical markers of bone turnover in women with postmenopausal osteoporosis. Fern] Stern. (2003) 79:919–924.
  • PARHAMI F, TINTUT Y, BALLARD A, FOGELMAN AM, DEMER LL: Leptin enhances the calcification of vascular cells. Artery wall as a target of leptin. Circ. Res. (2001) 88: 954–960.
  • ••A 'red flag' report that leptin stimulatesvascular ossification, which, if confirmed, means that it should be avoided for treating bone loss.
  • SINGHAL A, FAROOQI S, COLE TJ et al.: Influence of leptin on arterial distensibility. Circulation (2002) 106:1919–1924.
  • FACCIO R, LAM J, AYA K et al: Oligomeric RANKL induces bone formation via the ERK pathway. J. Bone. Miner. Res. (2003) 18:S141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.