86
Views
14
CrossRef citations to date
0
Altmetric
Review

Emerging and potential therapies for osteoporosis

&
Pages 265-278 | Published online: 22 Apr 2005

Bibliography

  • CUMMINGS SR, MELTON LJ: Epidemiology and outcomes of osteoporotic fractures. Lancet (2002) 359:1761–1767.
  • CRANNEY A, TUGWELL P, ADACHI J et al.: Meta-analyses of therapies for postmenopausal osteoporosis. III: meta-analysis of risedronate for the treatment of postmenopausal osteoporosis. Endocr. Rev. (2002) 23:517–523.
  • CRANNEY A, WELLS G, WILLAN A et al.: Meta-analyses of therapies for postmenopausal osteoporosis. II. Meta-analysis of alendronate for the treatment of postmenopausal women. Endocr. Rev. (2002) 23:508–516.
  • ANDERSON GL, LIMACHER M, ASSAF AR et al.: Effects of conjugated equine oestrogen in postmenopausal women with hysterectomy: the women's health initiative randomized controlled trial. JAMA (2004) 291:1701–1712.
  • •Definitive evidence that oestrogen prevents osteoporotic fractures in postmenopausal women.
  • ROSSOUW JE, ANDERSON GL, PRENTICE RU et al.: Risks and benefits of oestrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA (2002) 288: 321–333.
  • •Definitive evidence that oestrogen prevents osteoporotic fractures in postmenopausal women.
  • CRANNEY A, GUYATT G, GRIFFITH L et al.: Meta-analyses of therapies for postmenopausal osteoporosis. IX: summary of meta-analyses of therapies for postmenopausal osteoporosis. Endocr. Rev. (2002) 23:570–578.
  • REID IR, BROWN JP, BURCKHARDT P et al.: Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl. I Med. (2002) 346:653–661.
  • ••Evidence that administration of a potentIntravenous bisphosphonate suppresses bone resorption for 12 months.
  • RECKER RR, STAKKESTAD JA, FELSENBERG D: A new treatment paradigm: quarterly injections of ibandronate reduce the risk of fractures in women with postmenopausal osteoporosis: results of a 3-year trial. Osteoporos. Int. (2000) 11:S209.
  • CHRISTIANSEN C, TANKO LB, WARMING L et al: Dose dependent effects on bone resorption and formation of intermittently administered intravenous ibandronate. Osteoporos. Int. (2003) 14:609–613.
  • CHESNUT CH, SKAG A, CHRISTIANSEN C et al: Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J. Bone Miner. Res. (2004) 19:1241–1249.
  • DUNFORD JE, THOMPSON K, COXON FP et al: Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. Pharmacol Exp. Ther. (2001) 296:235–242.
  • MORII H, NISHIZAWA Y, TAKETANI Y et al.: A randomized controlled trial with ONO-5920 (Minodronate/YM529) in Japanese patients with postmenopausal osteoporosis. J. Bone Mther. Res. (2002) 17:S471.
  • YAMANE I, HAGINO H, OKANO T, ENOKIDA M, YAMASAKI D, TESHIMA R: Effect of minodronic acid (ONO-5920) on bone mineral density and arthritis in adult rats with collagen-induced arthritis. Arthritis Rheum. (2003) 48:1732–1741.
  • RIGGS BL, HARTMANN LC: Selective oestrogen-receptor modulators - mechanisms of action and application to clinical practice. N Engl. J. Med. (2003) 348:618–629.
  • GREY AB, STAPLETON JP, EVANS MC, TATNELL MA, AMES RW, REID IR: The effect of the antiestrogen tamoxifen on bone mineral density in normal late postmenopausal women. Am. J. Med. (1995) 99:636–641.
  • ETTINGER B, BLACK DM, MITLAK BH et al: Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA (1999) 282:637–645.
  • REID IR, EASTELL R, FOGELMAN I et al: A comparison of the effects of raloxifene and conjugated equine oestrogen on bone and lipids in healthy postmenopausal women. Arch. Intern. Med. (2004) 164:871–879.
  • •A randomised comparison of the skeletal effects of oestrogen and raloxifene.
  • CAULEY JA, NORTON L, LIPPMAN ME et al: Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Multiple outcomes of raloxifene evaluation. Breast Cancer Res. Treat. (2001) 65:125–134.
  • BARRETT-CONNOR E, GRADY D, SASHEGYI A et al.: Raloxifene and cardiovascular events in osteoporotic postmenopausal women: four-year results from the MORE (Multiple Outcomes of Raloxifene Evaluation) randomized trial. JAMA (2002) 287:847–857.
  • MORELLO KC, WURZ GT, DEGREGORIO MW: SERIVIs: current status and future trends. Grit. Rev Oncol Hematol. (2002) 43:63–76.
  • KE HZ, QI H, CRAWFORD DT, CHIDSEY-FRINK KL, SIMMONS HA, THOMPSON DD: Lasofoxifene (CP-336156), a selective oestrogen receptor modulator, prevents bone loss induced by aging and orchidectomy in the adult rat. Endocrinology (2000) 141:1338–1344.
  • KE HZ, QI H, CHIDSEY-FRINK KL, CRAWFORD DT, THOMPSON DD: Lasofoxifene (CP-336156) protects against the age-related changes in bone mass, bone strength, and total serum cholesterol in intact aged male rats. ./. Bone Miner. Res. (2001) 16:765–773.
  • KE HZ, FOLEY GL, SIMMONS HA, SHEN V, THOMPSON DD: Long-term treatment of lasofoxifene preserves bone mass and bone strength and does not adversely affect the uterus in ovariectomized rats. Endocrinology (2004) 145:1996–2005.
  • MOFFETT AH, ETTINGER M, BOLOGNESE M et al: Lasofoxifene, a next generation SERM, is effective in preventing loss of BMD and reducing LDL-C in postmenopausal women. J. Bone Miner Res. (2004) 19:S96.
  • McCLUNG M, OMIZO M, WEISS S et al.: Comparison of lasofoxifene and raloxifene for the prevention of bone loss in postmenopausal women. J. Bone Miner. Res. (2004) 19:S96.
  • McCLUNG M, PORTMAN D, EMKEY R et al.: Comparison of the extraskeletal effects of lasofoxifene and raloxifene. ./. Bone Miner. Res. (2004) 19:S174.
  • RAGHOW S, OKOLICANY J, SHEN V,VEVERKA K, STEINER M: Effect of toremifene on orchiectomy-induced osteopenia in the male rat. J. Bone Miner. Res. (2004) 19:S456.
  • MODELSKA K, CUMMINGS S: Clinical review 140 - tibolone for postmenopausal women: Systematic review of randomized trials. ./. Clin. Endocrinol Metab. (2002) 87:16–23.
  • GALLAGHER JC, BAYLINK DJ, FREEMAN R, McCLUNG M: Prevention of bone loss with tibolone in postmenopausal women: results of two randomized, double-blind, placebo-controlled, dose-finding studies. J. Clin. Endocrinol. Metab. (2001) 86:4717–4726.
  • BEARDSWORTH SA, KEARNEY CE, PURDIE DW: Prevention of postmenopausal bone loss at lumbar spine and upper femur with tibolone: a two-year randomised controlled trial. BE Obstet. Gynaecol. (1999) 106:678–683.
  • PAVLOV PW, GINSBURG J, KICOVIC PM, VAN DER SCHAAF DB, PRELEVIC G, BENNINK H: Double-blind, placebo-controlled study of the effects of tibolone on bone mineral density in postmenopausal osteoporotic women with and without previous fractures. Gynecol Endocrinol (1999) 13:230–237.
  • STUDD J, ARNALA I, KICOVIC PM, ZAMBLERA D, KROGER H, HOLLAND N: A randomized study of tibolone on bone mineral density in osteoporotic postmenopausal women with previous fractures. Obstet. Gyrrecol (1998) 92:574–579.
  • ROUX C, PELISSIER C, FECHTENBAUM J, LOISEAU-PERES S, BENHAMOU CL: Randomized, double-masked, 2-year comparison of tibolone with 17 B-estradiol and norethindrone acetate in preventing postmenopausal bone loss. Osteoporos. Int. (2002) 13:241–248.
  • BOTS NL, EVANS GW, RILEY W et al: The Osteoporosis Prevention and Arterial effects of tiboLone (OPAL) study: design and baseline characteristics. Control. Clin. Trials (2003) 24:752–775.
  • KHOSLA S: Minireview: the OPG/ RANKURANK system. Endocrinology (2001) 142:5050–5055.
  • •Overview of a critical mechanism by which osteoclastogenesis is regulated.
  • HOFBAUER LC, KHOSLA S, DUNSTAN CR, LACEY DL, BOYLE WJ, RIGGS BL: The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. ./. Bone Miner. Res. (2000) 15:2–12.
  • MIZUNO A, AMIZUKA N, IRIE K et al: Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/ osteoprotegerin. Biochem. Biophys. Res. Commun. (1998) 247:610–615.
  • BUCAY N, SAROSI I, DUNSTAN CR et al.: Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. (1998) 12:1260–1268.
  • CUNDY T, HEGDE M, NAOT D et al: A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum. Mol. Genet. (2002) 11:2119–2127.
  • LI J, SAROSI I, YAN XQ et al.: RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Nati Acad. Li. USA (2000) 97:1566–1571.
  • KONG YY, YOSHIDA H, SAROSI I et al.: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature (1999) 397:315–323.
  • CAPPARELLI C, KOSTENUIK PJ, MORONY S et al.: Osteoprotegerin prevents and reverses hypercalcemia in a murine model of humoral hypercalcemia of malignancy. Cancer Res. (2000) 60:783–787.
  • MORONY S, CAPPARELLI C, LEER et al.: A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-113, TNF-a, PTH, PTHrP, and 1,25-(OH)2D3.1 Bone Miner. Res. (1999) 14:1478–1485.
  • BEKKER PJ, HOLLOWAY DL, RASMUSSEN AS et al: A single-dose placebo-controlled study of AMG-162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Miner. Res. (2004) 19:1059–1066.
  • McCLUNG MR, LEWIECKI EM, BOLOGNESE MA et al: AMG-162 increases bone mineral density (BMD) within 1 month in postmenopausal women with low BMD. J. Bone Miner Res. (2004) 19:S20.
  • •Evidence that intermittent administration of a RANKL antibody produces antiresorptive effects in postmenopausal women.
  • SORIANO P, MONTGOMERY C, GESKE R, BRADLEY A: Targeted disruption of the c-srcproto-oncogene leads to osteopetrosis in mice. Cell (1991) 64:693–702.
  • BOYCE BF, YONEDA T, LOWE C, SORIANO P, MUNDY GR: Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J. Clin. Invest. (1992) 90:1622–1627.
  • METCALF CA, VAN SCHRAVENDIJK MR, DALGARNO DC, SAWYER TK: Targeting protein kinases for bone disease: discovery and development of Src inhibitors. Curr. Pharm. Des. (2002) 8:2049–2075.
  • VIOLETTE SM, SHAKESPEARE WC, BARTLETT C et al.: A Src 5H2 selective binding compound inhibits osteoclast-mediated resorption. Chem. Biol. (2000) 7:225–235.
  • MISSBACH M, JESCHKE M, FEYEN J et al.: A novel inhibitor of the tyrosine kinase Src suppresses phosphorylation of its major cellular substrates and reduces bone resorption in vitro and in rodent models in vivo. Bone (1999) 24:437–449.
  • FENG X, NOVACK DV, FACCIO R et al: A Glanzmann's mutation in 03 integrin specifically impairs osteoclast function. Clin. Invest. (2001) 107:1137–1144.
  • LARK MW, STROUP GB, HWANG SM et al.: Design and characterization of orally active Arg-Gly-Asp peptidomimetic vitronectin receptor antagonist SB-265123 for prevention of bone loss in osteoporosis. Pharmacol Exp. Ther. (1999) 291:612–617.
  • MURPHY M, CERCHIO K, STOCH S, GOTTESDIENER K, WU M, RECKER R: Effect of MRL123, an orally administered av(33 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women." Bone Mther. Res. (2004) 19:S99.
  • •Evidence that an orally active integrin Inhibitor exerts antiresorptive effects in postmenopausal women.
  • GRAMOUN A, MANOLSON ME HEERSCHE JNM, TREBEC DP, MAO SY: Vitaxin®, an av(33 blocking antibody, inhibits osteoclastic resorption by decreasing the number of attached osteoclasts. J. Bone Miner. Res. (2004) 19:S154.
  • SAFTIG P, HUNZIKER E, WEHMEYER 0 et al.: Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl. Acad. Sci. USA (1998) 95:13453–13458.
  • LARK MW, STROUP GB, JAMES IE et al: A potent small molecule, nonpeptide inhibitor of cathepsin K (SB 331750) prevents bone matrix resorption in the ovariectomized rat. Bone (2002) 30:746–753.
  • AL-AWQATI Q: Chloride channels of intracellular organelles. Curr. Opin. Cell Biol. (1995) 7:504–508.
  • SCHALLER S, HENRIKSEN K, SVEIGAARD C et al.: The chloride channel inhibitor N53736 prevents bone resorption in ovariectomized rats without changing bone formation." Bone Miner. Res. (2004) 19:1144–1153.
  • KORNAK U, KASPER D, BOSL MR et al.: Loss of the C1C-7 chloride channel leads to osteopetrosis in mice and man. Cell (2001) 104:205–215.
  • FRATTINI A, PANGRAZIO A, SUSANI L et al: Chloride channel C1CN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J. Bone Mther. Res. (2003) 18:1740–1747.
  • HENRIKSEN K, GRAM J, SCHALLER Set al.: Characterization of osteoclasts from patients harboring a G215R mutation in C1C-7 causing autosomal dominant osteopetrosis type II. Am. .1 Pathol. (2004) 164:1537–1545.
  • VAN'T HOF RJ, RALSTON SH: Nitric oxide and bone. Immunology (2001) 103:255–261.
  • BRANDI ML, HUKKANEN M, UMEDA T et al: Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms. Proc. Natl. Acad. Sci. USA (1995) 92:2954–2958.
  • KASTEN TP, COLLIN-OSDOBY P, PATEL N et al.: Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase. Proc. Nati Acad. Sci. USA (1994) 91:3569–3573.
  • WANG FS, WANG CJ, CHEN YJ et al: Nitric oxide donor increases osteoprotegerin production and osteoclastogenesis inhibitory activity in bone marrow stromal cells from ovariectomized rats. Endocrinology (2004) 145:2148–2156.
  • AFZAL F, POLAK J, BUTTERY L: Endothelial nitric oxide synthase in the control of osteoblastic mineralizing activity and bone integrity. J. Pathol (2004) 202: 503–510.
  • WIMALAWANSA SJ, DE MARCO G, GANGULA P, YALLAMPALLI C: Nitric oxide donor alleviates ovariectomy-induced bone loss. Bone (1996) 18:301–304.
  • WIMALAWANSA SJ, CHAPA MT, YALLAMPALLI C, ZHANG R, SIMMONS DJ: Prevention of corticosteroid-induced bone loss with nitric oxide donor nitroglycerin in male rats. Bone (1997) 21:275–280.
  • JAMAL SA, CUMMINGS SR, HAWKER GA: Isosorbide mononitrate increases bone formation and decreases bone resorption in postmenopausal women: a randomized trial. J. Bone Miner. Res. (2004) 19:1512–1517.
  • •A randomised, controlled trial that demonstrates antiresorptive activity of a commonly prescribed NO donor.
  • BONE HG, HOSKING D, DEVOGELAER JP et al.: Ten years' experience with alendronate for osteoporosis in postmenopausal women. N Engl. Med. (2004) 350:1189–1199.
  • DUCY P, ZHANG R, GEOFFROY V, RIDALL AL, KARSENTY G: Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell (1997) 89:747–754.
  • LEE B, THIRUNAVUKKARASU K, ZHOU L et al.: Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor osf2/cbfal in cleidocranial dysplasia. Nat. Genet. (1997) 16:307–310.
  • NAKASHIMA K, ZHOU X, KUNKEL G et al: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell (2002) 108:17–29.
  • AKUNE T, OHBA S, KAMEKURA S et al: PPARy insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J. Clin. Invest. (2004) 113:846–855.
  • MANOLAGAS SC: Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev (2000) 21:115–137.
  • HOCK JM, KRISHNAN V, ONYIA JE, BID WELL JP, MILAS J, STANISLAUS D: Osteoblast apoptosis and bone turnover. J. Bone Miner. Res. (2001) 16:975–984.
  • JILKA RL, WEINSTEIN RS, BELLIDO T, ROBERSON P, PARFITT AM, MANOLAGAS SC: Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone Clin. Invest. (1999) 104:439–446.
  • NEER RM, ARNAUD CD, ZANCHETTA JR et al.: Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. (2001) 344:1434–1441.
  • BARBEHENN EK, LURIE P, WOLFE SM: Osteosarcoma risk in rats using PTH 1-34. Trends Endo. Metab. (2001) 12:383.
  • MITLAK BH: Parathyroid hormone as a therapeutic agent. Curr. Opin. Pharmacol (2002) 2:694–699.
  • VAHLE JL, SATO M, LONG GG et al: Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol (2002) 30:312–321.
  • BLACK DM, GREENSPAN SL, ENSRUD KE et al.: The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl. J. Med. (2003) 349:1207–1215.
  • •A randomised comparison of the skeletal effects of an anabolic agent, an antiresorptive agent and combination therapy.
  • FUJITA T, INOUE T, MORII H et al: Effect of an intermittent weekly dose of human parathyroid hormone (1-34) on osteoporosis: a randomized double-masked prospective study using three dose levels. Osteoporos. Int. (1999) 9:296–306.
  • MATSUMOTO T, SHIRAKI M, NAKAMURA T, HAGINO H, IINUMA H: Daily nasal spray of hPTH(1-34) for 3 months increases bone mass in osteoporotic subjects. ./. Bone Miner. Res. (2004) 19:S44.
  • GOPALAKRISHNAN V, HWANG S, LOUGHREY H et al.: Administration of ThPTH to humans using Macroflux® transdermal technology results in the rapid delivery of biologically active PTH. J. Bone Miner Res. (2004) 19:S460.
  • MIAO DS, TONG XK, CHAN GK, PANDA D, McPHERSON PS, GOLTZMAN D: Parathyroid hormone-related peptide stimulates oesteogenic cell proliferation through protein kinase C activation of the Ras/mitogen-activated protein kinase signaling pathway. J. Biol. Chem. (2001) 276:32204–32213.
  • FROLIK CA, CAIN RL, SATO M et al: Comparison of recombinant human PTH(1-34) (LY333334) with a C-terminally substituted analog of human PTH-related protein (1-34) (RS-66271): In vitro activity and in vivo pharmacological effects in rats. ./. Bone Miner. Res. (1999) 14:163–172.
  • STEWART AF, CAIN RL, BURR DB, JACOB D, TURNER CH, HOCK JM: Six-month daily administration of parathyroid hormone and parathyroid hormone-related protein peptides to adult ovariectomized rats markedly enhances bone mass and biomechanical properties: a comparison of human parathyroid hormone 1-34, parathyroid hormone-related protein 1-36, and SDZ-parathyroid hormone 893. J. Bone Miner. Res. (2000) 15:1517–1525.
  • STEWART AF: PTHrP (1-36) as a skeletalanabolic agent for the treatment of osteoporosis. Bone (1996) 19:303–306.
  • HORWITZ MJ, TEDESCO MB, GUNDBERG C, GARCIA-OCANA A, STEWART AF: Short-term, high-dose parathyroid hormone-related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J. Endocrinol. Metab. (2003) 88:569–575.
  • •Preliminary evidence for anabolic skeletal effects of PTHrP in humans.
  • BROWN EM, GAMBA G, RICCARDI D et al: Cloning and characterization of an extracellular Ca2*-sensing receptor from bovine parathyroid. Nature (1993) 366:575–580.
  • GOWEN M, STROUP GB, DODDS RA et al: Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J. Clin. Invest. (2000) 105:1595–1604.
  • NEMETH EF, DELMAR EG, HEATON WL et al.: Calcilytic compounds: Potent and selective Ca.2* receptor antagonists that stimulate secretion of parathyroid hormone. I Pharmacol Exp. Ther. (2001) 299:323–331.
  • SEUWEN K, HALLEUX C, BOUHELAL R et al.: A new class of non-competitive antagonists of the human calcium-sensing receptor releasing parathyroid hormone (PTH) from parathyroid glands. J. Bone Miner. Res. (2004) 19:S196.
  • MARIE PJ, AMMANN P, BOIVIN G, REY C: Mechanisms of action and therapeutic potential of strontium in bone. CalciE Tissue Int. (2001) 69:121–129.
  • MARIE PJ, HOTT M, MODROWSKI D et al: An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in oestrogen-deficient rats. J. Bone Miner. Res. (1993) 8:607–615.
  • MEUNIER PJ, SLOSMAN DO, DELMAS PD et al: Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis, a 2-year randomized placebo controlled trial. Clin. Endocrinol Metab. (2002) 87:2060–2066.
  • NIELSEN SP, SLOSMAN D, SORENSEN OH et al: Influence of strontium on bone mineral density and bone mineral content measurements by dual X-ray absorptiometry. I Clin. Densitom. (1999) 2:371–379.
  • MEUNIER PJ, ROUX C, SEEMAN E et al.: The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl. J. Med. (2004) 350:459–468.
  • SEEMAN E, VELLAS B, ROUX C et al: First demonstration of the efficacy of an anti-osteoporotic treatment in very elderly osteoporotic women. ./. Bone Miner. Res. (2004) 19:S57.
  • •Evidence that strontium may prevent non-vertebral fractures in elderly women.
  • HASSOUN AA, NIPPOLDT TB, TIEGS RD, KHOSLA S: Hepatitis C-associated osteosclerosis: an unusual syndrome of acquired osteosclerosis in adults. Am. J. Med. (1997) 103:70–73.
  • KHOSLA S, HASSOUN AA, BAKER BK et al.: Insulin-like growth factor system abnormalities in hepatitis C-associated osteosclerosis. Potential insights into increasing bone mass in adults. ./. Invest. (1998) 101:2165–2173.
  • CONOVER CA, JOHNSTONE EW, TURNER RT et al.: Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis. Growth Horm. IGF Res. (2002) 12:178–183.
  • BUCHANAN CM, PHILLIPS AR, COOPER GJ: Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet 13-cells and enhances insulin secretion. Biochem. (2001) 360:431–439.
  • CORNISH J, CALLON KE, BAVA U et al.: Preptin, another peptide product of the pancreatic 13 cell, is osteogenic in vitro and in vivo. I Bone Miner. Res. (2003) 18:S213.
  • VAN BEZOOIJEN RL, ROELEN BA, VISSER A et al: Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. (2004) 199:805–814.
  • WINKLER DG, SUTHERLAND MK, GEOGHEGAN JC et al: Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. (2003) 22:6267–6276.
  • BALEMANS W, EBELING M, PATEL N et al: Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol Genet. (2001) 10:537–543.
  • BRUNKOW ME, GARDNER JC, VAN NESS J et al: Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. (2001) 68:577–589.
  • WARMINGTON K, MORONY S, SAROSI I et al: Sclerostin antagonism in adult rodents, via monoclonal antibody mediated blockade, increases bone mineral density and implicates sclerostin as a key regulator of bone mass during adulthood. J. Bone Miner. Res. (2004) 19:S56.
  • MUNDY G, GARRETT R, HARRIS S et al.: Stimulation of bone formation in vitro and in rodents by statins. Science (1999) 286:1946–1949.
  • GARRETT IR, MUNDY GR: The role of statins as potential targets for bone formation. Arthritis Res. (2002) 4:237–240.
  • REID IR, HAGUE W, EMBERSON J et al.: Effect of pravastatin on frequency of fracture in the LIPID study: secondary analysis of a randomised controlled trial. Lancet (2001) 357:509–512.
  • BAUER DC, MUNDY GR, JAMAL SA et al.: Use of statins and fracture - results of 4 prospective studies and cumulative meta-analysis of observational studies and controlled trials. Arch. Intern. Med. (2004) 164:146–152.
  • REJNMARK L, BUUS NH, VESTERGAARD P et al.: Effects of simvastatin on bone turnover and BMD: a 1-year randomized controlled trial in postmenopausal osteopenic women. J. Bone Miner. Res. (2004) 19:737–744.
  • LUPATTELLI G, SCARPONI AM, VAUDO G et al: Simvastatin increases bone mineral density in hypercholesterolemic postmenopausal women. Metabolism (2004) 53:744–748.
  • HSIA J, MORSE M, LEVIN V: Effect of simvastatin on bone markers in osteopenic women: a placebo-controlled, dose-ranging trial. BMC Musculoskelet. Disord. (2002) 3:7.
  • KUZUYA M, SUZUKI Y, ASAI T et al.: Atorvastatin, 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, reduces bone resorption in the elderly../. Am. Geriatr. Soc. (2003) 51:1677–1678.
  • OXLUND H, ANDREASSEN TT: Simvastatin treatment partially prevents ovariectomy-induced bone loss while increasing cortical bone formation. Bone (2004) 34:609–618.
  • TAKEDA S, ELEFTERIOU F, LEVASSEUR R et al: Leptin regulates bone formation via the sympathetic nervous system. Cell (2002) 111:305–317.
  • •Evidence that activation of the sympathetic nervous system may be catabolic to bone.
  • MOORE RE, SMITH CK II, BAILEY CS, VOELKEL EF, TASHJIAN AH Jr: Characterization of 0-adrenergic receptors on rat and human osteoblast-like cells and demonstration that 0-receptor agonists can stimulate bone resorption in organ culture. Bone Miner. (1993) 23:301–315.
  • KELLENBERGER S, MULLER K, RICHENER H, BILBE G: Formoterol and isoproterenol induce c-fos gene expression in osteoblast-like cells by activating 02-adrenergic receptors. Bone (1998) 22:471–478.
  • IMAI Y, RODAN SB, RODAN GA: Effects of retinoic acid on alkaline phosphatase messenger ribonucleic acid, catecholamine receptors, and G proteins in ROS 17/2.8 cells. Endocrinology (1988) 122:456–463.
  • TAKEUCHI T, TSUBOI T, ARAI M, TOGARI A: Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem. Pharmacol (2001) 61:579–586.
  • MINKOWITZ B, BOSKEY AL, LANE JM, PEARLMAN HS, VIGORITA VJ: Effects of propranolol on bone metabolism in the rat. J. Orthop. Res. (1991) 9:869–875.
  • DIETRICH JW, MUNDY GR, RAISZ LG: Inhibition of bone resorption in tissue culture by membrane-stabilizing drugs. Endocrinology (1979) 104:1644–1648.
  • LEVASSEUR R, SABATIER JP, POTREL-BURGOT C, LECOQ B, CREVEUIL C, MARCELLI C: Sympathetic nervous system as transmitter of mechanical loading in bone. Joint Bone Spine (2003) 70:515–519.
  • PASCO JA, HENRY MJ, SANDERS KM, KOTOWICZ MA, SEEMAN E, NICHOLSON GC: 0-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J. Bone Miner. Res. (2004) 19:19–24.
  • SCHLIENGER RG, KRAENZLIN ME, JICK SS, MEIER CR: Use of 0-blockers and risk of fractures. JAMA (2004) 292:1326–1332.
  • REID IR, GAMBLE GD, GREY AB et al: 0-Blocker use, bone mineral density and fractures in the study of osteoporotic fractures. J. Bone Miner. Res. (2004) (In press).
  • LEVASSEUR R, DARGENT-MOLINA P, SABATIER JP, MARCELLI C, BREART G: 0-Blocker use, bone mineral density and fracture risk in older women: results from the EPIDOS prospective study. J. Bone Miner. Res. (2004) 19:S455.
  • GONG YQ, SLEE RB, FUKAI N et al: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell (2001) 107:513–523.
  • •Demonstration of a critical role for LRP5 In osteoblast function and skeletal homeostasis.
  • KATO M, PATEL MS, LEVASSEUR R et al: Cbfal-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Dp5, a Wnt coreceptor. J. Cell Biol. (2002) 157:303–314.
  • BABIJ P, ZHAO WG, SMALL C et al: High bone mass in mice expressing a mutant LRP5 gene. J. Bone Miner Res. (2003) 18:960–974.
  • KULKARNI NH, LIU M, HALLADAY DL et al: An orally bioavailable GSK3 a/13 dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J. Bone Miner. Res. (2004) 19:S57.
  • CORNISH J, CALLON KE, NAOT D et al: Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology (2004) 145:4366–4374.
  • LORGET F, CLOUGH J, OLIVEIRA M, DAURY MC, SABOKBAR A, OFFORD E: Lactoferrin reduces in vitro osteoclast differentiation and resorbing activity. Biochem. Biophys. Res. Commun. (2002) 296:261–266.
  • GREY A, BANOVIC T, ZHU Q et al: The low density lipoprotein-receptor-related protein 1 (LRP1) is a mitogenic receptor for lactoferrin in osteoblastic cells. Mol. Endocrinol (2004) 18:2268–2278.
  • QUARLES LD: FGF23, PHEX and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am. J. Physic] Endocrinol Metab. (2003) 285:E1–E9.
  • NAMPEI A, HASHIMOTO J, HAYASHIDA K et al: Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human bone. J. Bone Miner. Metab. (2004) 22:176–184.
  • GOWEN LC, PETERSEN DN, MANSOLF AL et al.: Targeted disruption of the osteoblast/osteocyte factor 45 gene (0F45) results in increased bone formation and bone mass. Biol. Chem. (2003) 278:1998–2007.
  • ROWE PSN, KUMAGAI Y, GUTIERREZ G et al.: MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone (2004) 34:303–319.
  • HAYASHIBARA T, HIRAGA T, YI B et al.: A synthetic peptide fragment of human MEPE stimulates new bone formation in vitro and in vivo. J. Bone Miner. Res. (2004) 19:455–462.
  • LAZAROV M, SHIH M, NEGRON A, BLACHER R, KUMAGAI Y, ROSEN DM: AC-100, a fragment of MEPE, promotes fracture healing in a femoral closed fracture model in rats. J. Bone Miner. Res. (2004) 19:S456.
  • FINKELSTEIN JS, HAYES A, HUNZELMAN JL, WYLAND JJ, LEE H, NEER RIVI: The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl. J. Med. (2003) 349:1216–1226.
  • ETTINGER B, SAN MARTIN J, CRANS G, PAVO I: Differential effects ofteriparatide on BMD after treatment with raloxifene or alendronate. Bone Miner. Res. (2004) 19:745–751.
  • COSMAN F, NIEVES JW, LUCKEY MM, ZION M, WOELFERT L, LINDSAY R: Daily versus cyclic PTH combined with alendronate versus alendronate alone for treatment of osteoporosis. J. Bone Mther. Res. (2003) 18:S32.
  • ETTIN GER B, PRESSMAN A, SCHEIN J: Clinic visits and hospital admissions for care of acid-related upper gastrointestinal disorders in women using alendronate for osteoporosis. Am. J. Managed Care (1998) 4:1377–1382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.