238
Views
74
CrossRef citations to date
0
Altmetric
Review

Inhibitors of the mammalian target of rapamycin

Pages 313-328 | Published online: 22 Apr 2005

Bibliography

  • VIVANCO I, SAWYERS CL: The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev Cancer (2002) 2(7):489–501.
  • HUANG S, HOUGHTON PJ: Targeting mTOR signalling for cancer therapy. Curr. Opin. Pharmacol (2003) 3(4):371–377.
  • GINGRAS AC, RAUGHT B, SONENBERG N: Control of translation by the target of rapamycin proteins. Frog. Mol. Subcell Biol. (2001) 27:143–174.
  • BRUGAROLAS J, LEI K, HURLEY RL et al.: Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumour suppressor complex. Genes Dev. (2004) 18(23):2893–2904.
  • EDINGER AL, LINARDIC CM, CHIANG GG, THOMPSON CB, ABRAHAM RT: Differential effects of rapamycin on mammalian target of rapamycin signalling functions in mammalian cells. Cancer Res. (2003) 63(23):8451–8460.
  • HAY N, SONENBERG N: Upstream and downstream of mTOR. Genes Dev. (2004) 18(16):1926–1945.
  • KWIATKOWSKI DJ: Tuberous sclerosis: from tubers to mTOR. Ann. Hum. Genet. (2003) 67\(Part 1):87–96.
  • KWIATKOWSKI DJ: Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol. Ther. (2003) 2(5):471–476.
  • MANNING BD, CANTLEY LC: United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochem. Soc. Trans. (2003) 31(3):573–578.
  • INOKI K, LI Y, XU T, GUAN KL: Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. (2003) 17(15):1829–1834.
  • INOKI K, LI Y, ZHU T, WU J, GUAN KL: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell. Biol. (2002) 4(9):648–657.
  • GAO X, ZHANG Y, ARRAZOLA P et al: Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat. Cell. Biol. (2002) 4(9):699–704.
  • BRUGAROLAS J, KAELIN WG Jr: Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell (2004) 6(1):7–10.
  • CORRADETTI MN, INOKI K, BARDEESY N, DEPINHO RA, GUAN KL: Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. (2004) 18(13):1533–1538.
  • MANNING BD, CANTLEY LC: Rheb fills a GAP between TSC and TOR. Trends Biochem. Sci. (2003) 28(11):573–576.
  • HENGSTSCHLAGER M, ROSNER M, FOUNTOULAKIS M, LUBEC G: Tuberous sclerosis genes regulate cellular 14-3-3 protein levels. Biochem. Biophys. Res. Comm. (2003) 312(3):676–683.
  • LI Y, INOKI K, VACRATSIS P, GUAN KL: The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14-3-3.1 Biol. Chem. (2003) 278(16):13663–13671.
  • LIU MY, CATS, ESPEJO A, BEDFORD MT, WALKER CL: 14-3-3 interacts with the tumor suppressor tuberin at Akt phosphorylation site (s). Cancer Res. (2002) 62(22):6475–6480.
  • HARA K, MARUKI Y, LONG X et al.: Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell (2002) 110(2):177–189.
  • KIM DH, SARBASSOV DD, ALT SM et al: mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell (2002) 110(2):163–175.
  • LOEWITH R, JACINTO E, WULLSCHLEGER S etal.: Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell (2002) 10(3):457–468.
  • ABRAHAM RT: Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr. Opin. Immunol (1998) 10(3):330–336.
  • BROWN EJ, SCHREIBER SL: A signaling pathway to translational control. Cell (1996) 86(4):517–520.
  • BJORNSTI MA, HOUGHTON PJ: The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer (2004) 4(5):335–348.
  • DENNIS PB, FUMAGALLI S, THOMAS G: Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation. Curr. Opin. Genet. Dev. (1999) 9(1):49–54.
  • HOLLAND EC, SONENBERG N, PANDOLFI PP, THOMAS G: Signaling control of mRNA translation in cancer pathogenesis. Oncogene (2004) 23(18):3138–3144.
  • YOKOGAMI K, WAKISAKA S, AVRUCH J, REEVES SA: Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr. Biol. (2000) 10(1):47–50.
  • DE GROOT RP, BALLOU LM, SASSONE-CORSI P: Positive regulation of the cAMP-responsive activator CREM by the p70 S6 kinase: an alternative route to mitogen-induced gene expression. Cell (1994) 79(1):81–91.
  • BLOMMAART EF, LUIKEN JJ, BLOMMAART PJ, VAN WOERKOM GM, MEIJER AJ: Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. (1995) 270(5)2320–2326.
  • SHIGEMITSU K, TSUJISHITA Y, HARA K et al: Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J. Biol. Chem. (1999) 274(2):1058–1065.
  • EDINGER AL, THOMPSON CB: Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol. Biol. Cell. (2002) 13(7):2276–2288.
  • HARADA H, ANDERSEN JS, MANN M, TERADA N, KORSMEYER SJ: p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc. Natl. Acad. Sci. USA (2001) 98(17):9666–9670.
  • PENG T, GOLUB TR, SABATINI DM: The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol. Biol. (2002) 22(15):5575–5584.
  • GAO N, ZHANG Z, JIANG BH, SHI X: Role of P13-K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem. Biophys. Res. Comm. (2003) 310(4):1124–1132.
  • MAYERHOFER M, VALENT P, SPERRWR, GRIFFIN JD, SILLABER C: BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-la, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood (2002) 100(10):3767–3775.
  • HUMAR R, KIEFER FN, BERNS H, RESINK TJ, BATTEGAY EJ: Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB (2002) 16(8):771–780.
  • HUDSON CC, LIU M, CHIANG GG et al.: Regulation of hypoxia-inducible factor la expression and function by the mammalian target of rapamycin. Mol. Biol. (2002) 22(20):7004–7014.
  • RUGGERO D, PANDOLFI PP: Does the ribosome translate cancer? Nat. Rev Cancer (2003) 3(3):179–192.
  • LI S, SONENBERG N, GINGRAS AC et al.: Translational control of cell fate: availability of phosphorylation sites on translational repressor 4E-BP1 governs its proapoptotic potency. Mol. Cell. Biol. (2002) 22(8):2853–2861.
  • RAJASEKHAR VK, VIALE A, SO CCI ND et al.: Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol. Cell (2003) 12(4):889–901.
  • AVDULOV S, LI S, MICHALEK V et al: Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell (2004) 5(6):553–563.
  • BJORNSTI MA, HOUGHTON PJ: Lost in translation: dysregulation of cap-dependent translation and cancer. Cancer Cell (2004) 5(6):519–523.
  • DOUROS J, SUFFNESS M: New antitumor substances of natural origin. Cancer Treat. Rev (1981) 8(1):63–87.
  • OSHIRO N, YOSHINO K, HIDAYAT S et al: Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells (2004) 9(4):359–366.
  • YONEZAWA K, TOKUNAGA C, OSHIRO N, YOSHINO K: Raptor, a binding partner of target of rapamycin. Biochem. Biophys. Res. Comm. (2004) 313(2):437–441.
  • GIBBONS JJ, DISCAFANI C, PETERSON R et al: The effect of CCI-779, a novel macrolide anti-tumor agent, on the growth of human tumor cells in vitro and in nude mouse xenografts in vivo. Proc. Amer. Assoc. Cancer Res. (1999) 40:(Abstract 2000).
  • GEOERGER B, KERR K, TANG CB et al.: Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumorimedulloblastoma models as single agent and in combination chemotherapy. Cancer Res. (2001) 61(4):1527–1532.
  • ESHLEMAN JS, CARLSON BL, MLADEK AC et al: Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res. (2002) 62(24):7291–7297.
  • GRUNWALD V, DEGRAFFENRIED L, RUSSEL D et al.: Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res. (2002) 62(21):6141–6145.
  • SHI Y, GERA J, HU L et al: Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res. (2002) 62(17):5027–5034.
  • SHI Y, FRANKEL A, RADVANYI LG et al.: Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res. (1995) 55(9):1982–1988.
  • DECKER T, HIPP S, RINGSHAUSEN I et al.: Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood (2003) 101(1):278–285.
  • ALBERS MW, WILLIAMS RT, BROWN EJ et al: FKBP-rapamycin inhibits a cyclin-dependent kinase activity and a cyclin Dl-Cdk association in early G1 of an osteosarcoma cell line. J. Biol. Chem. (1993) 268(30):22825–22829.
  • LUO Y, MARX SO, KIYOKAWA H et al.: Rapamycin resistance tied to defective regulation of p27k'Pl. Mol. Cell. Biol. (1996) 16(12):6744–6751.
  • ZEZULA J, SEXL V, HUTTER C et al: The cyclin-dependent kinase inhibitor p21c'P1 mediates the growth inhibitory effect of phorbol esters in human venous endothelial cells. I Biol. Chem. (1997) 272(47):29967–29974.
  • HUANG S, LIU LN, HOSOI H et al: p53/p21(CIP1) cooperate in enforcing rapamycin-induced G1 arrest and determine the cellular response to 325 Expert Op/n. lnvestig. Drugs (2005) 14(3) rapamycin. Cancer Res. (2001) 61(8):3373–3381.
  • HUANG S, SHU L, EASTON J et al.: Inhibition of mammalian target of rapamycin activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity. J. Biol. Chem. (2004) 279(35):36490–36496.
  • HUANG S, SHU L, DILLING MB et al: Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21 (Cipl) . Mol. Cell (2003) 11(6):1491–1501.
  • GUBA M, VON BREITENBUCH P, STEINBAUER M et al.: Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat. Med. (2002) 8(2):128–135.
  • ZHONG H, HANRAHAN C, VAN DER POEL H, SIMONS JW: Hypoxia-inducible factor la and lb proteins share common signalling pathways in human prostate cancer cells. Biochem. Biophys. Res. Comm. (2001) 284(2):352–356.
  • ZHONG H, CHILES K, FELDSER D et al.: Modulation of hypoxia-inducible factor la expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. (2000) 60(6):1541–1545.
  • HUANG S, HOUGHTON PJ: Mechanisms of resistance to rapamycins. Drug Resist. Updat. (2001) 4(6):378–391.
  • HUANG S, BJORNSTI MA, HOUGHTON PJ: Rapamycins: mechanism of action and cellular resistance. Cancer Biol. Ther. (2003) 2(3):222–232.
  • NOH WC, MONDESIRE WH, PENG J et al.: Determinants of rapamycin sensitivity in breast cancer cells. Clin. Cancer Res. (2004) 10(3):1013–1023.
  • NESHAT MS, MELLINGHOFF IK, TRAN C et al: Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA (2001) 98(18):10314–10319.
  • PODSYPANINA K, LEE RT, POLITIS C et al.: An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc. Natl. Acad. ScL USA (2001) 98(18):10320–10325.
  • SHAH 0J, HUNTER T: Critical role of T-loop and H-motif phosphorylation in the regulation of S6 kinase 1 by the tuberous sclerosis complex. J. Biol. Chem. (2004) 279(20):20816–20823.
  • INOKI K, CORRADETTI MN, GUAN KL: Dysregulation of the TSC-mTOR pathway in human disease. Nat. Genet. (2005) 37(1):19–24.
  • ZHANG H, CICCHETTI G, ONDA H et al: Loss of Tscl/Tsc2 activates mTOR and disrupts P13-K-Akt signaling through downregulation of PDGFR. j Clin. Invest. (2003) 112(8):1223–1233.
  • WENDEL HG, LOWE SW: Reversing drug resistance in vivo. Cell Cycle (2004) 3(7):847–849.
  • LI S, TAKASU T, PERLMAN DM et al: Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J. Biol. Chem. (2003) 278(5):3015–3022.
  • WENDEL HG, DE STANCHINA E, FRIDMAN JS et al.: Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature (2004) 428(6980):332–337.
  • ENG CP, SEHGAL SN, VEZINA C: Activity of rapamycin (AY-22,989) against transplanted tumors. AntibioL (1984) 37(10):1231–1237.
  • MUTHUKKUMAR S, RAMESH TM, BONDADA S: Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma cells. Transplantation (1995) 60(3):264–270.
  • SEUFFERLEIN T, ROZENGURT E: Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res. (1996) 56(143895–3897.
  • HOSOI H, DILLING MB, LIU LN et al: Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol. Pharmacol. (1998) 54(5):815–824.
  • HOSOI H, DILLING MB, SHIKATA T et al.: Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res. (1999) 59(4):886–894.
  • GREWE M, GANSAUGE F, SCHMID RM, ADLER G, SEUFFERLEIN T: Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. (1999) 59(15):3581–3587.
  • MAJEWSKI M, KORECKA M, KOSSEV P et al.: The immunosuppressive macrolide RAD inhibits growth of human Epstein-Barr virus-transformed B lymphocytes in vitro and in vivo: a potential approach to prevention and treatment of posttransplant lymphoproliferative disorders. Proc. Nati Acad. Sci. USA (2000) 97(8):4285–4290.
  • DUDKIN L, DILLING MB, CHESHIRE PJ et al: Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin. Cancer Res. (2001) 7(6):1758–1764.
  • AGUIRRE D, BOYA P, BELLET D et al: Bc1-2 and CCND1/CDK4 expression levels predict the cellular effects of mTOR inhibitors in human ovarian carcinoma. Apoptosis (2004) 9(6):797–805.
  • DEGRAFFENRIED LA, FRIEDRICHS WE, RUSSELL DH et al.: Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin. Cancer Res. (2004) 10(23):8059–8067.
  • DANCEY J: Rapamycin-sensitive signal-transduction pathways. In: Protein translation control of cell proliferation. Lippincott Williams & Wilkins, Alexandria, Virginia, USA (2000):68–75.
  • NEUHAUS P, KLUPP J, LANGREHR JM: mTOR inhibitors: an overview. Liver Transpl. (2001) 7(6):473–484.
  • RAYMOND E, ALEXANDRE J, FAIVRE S et al: Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with caricer.j Clin. Oncol. (2004) 22(12):2336–2347.
  • MITA MM, ROWINSKY EK, GOLDSTON ML et al: Phase I, pharmacokinetic (PK), and pharmacodynamic (PD) study of AP-23573, an mTOR Inhibitor, administered iv. daily x 5 every other week in patients (pts) with refractory or advanced malignancies. Proc. Am. Soc. Clin. Omni (2004) 23:Abstract 3076.
  • MITA MM, ROWINSKY EK, MITA AC et al: Phase I, pharmacokinetic (PK), and pharmacodynamic (PD) study of AP-23573, an mTOR Inhibitor, administered iv. daily x 5 every other week in patients (pts) with refractory or advanced malignancies. E J.C. 16th EORTC-NC1-326Expert Op/n. Investig. Drugs (2005) 14(3) AACR Symposium on Molecular Targets and Cancer Therapeutics (2004) 2(8):(Abstract 409).
  • CLACKSON T, METCALF CA, RIVERA VM et al: Broad anti-tumor activity of AP-23573, an mTOR inhibitor in clinical development. Proc. Am. Soc. Clin. Oncol (2003) 22 (Abstract 882).
  • LENNON A, FINAN K, FITZGERALD MX, McCORMICK PA: Interstitial pneumonitis associated with sirolimus (rapamycin) therapy after liver transplantation. Transplantation (2001) 72(6):1166–1167.
  • ATKINS MB, HIDALGO M, STADLER W et al.: A randomized double-blind phase 2 study of intravenous CCI-779 administered weekly to patients with advanced renal cell carcinoma. Proc. Am. Soc. Clin. Oncol (2002) 21:(Abstract 36).
  • HIDALGO M, ERIC ROWINSKY E, ERLICHMAN C et al.: A phase land pharmacological study of CCI-779, a rapamycin ester cell cycle inhibitor. Ann. Oncol (2000) 11\(Suppl. 4):133 (Abstract 6060).
  • HIDALGO M, ROWINSKY E, ERLICHMAN C et al.: Phase I and pharmacological study of CCI-779, a cell cycle inhibitor. Proceedings of the 11th NCI EORTC AACR Symposium on New Drugs in Cancer Therapy Clin. Cancer Res. (2000) 6:(Abstract 413).
  • CHANG SM, KUHN J, WEN P et a/.: Phase 1/pharmacokinetic study of CCI-779 in patients with recurrent malignant glioma on enzyme-inducing antiepileptic drugs. Invest. New Drugs (2004) 22(4):427–435.
  • FOROUZESH B, BUCKNER J, ADJEI A et al.: Phase I, bioavailability, and pharmacokinetic study of oral dosage of CCI-779 administered to patients with advanced solid malignancies. E. .I.C. (2002) 38\(Suppl. 7):(Abstract 168).
  • ATKINS MB, HIDALGO M, STADLER WM et al.: Randomized Phase II Study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. Clin. Oncol (2004) 22(5):909–918.
  • CHAN S, JOHNSTON S, SCHEULEN ME et al: First report: a phase 2 study of the safety and activity of CCI-779 for patients with locally advanced or metastatic breast cancer failing prior chemotherapy. Proc. Am. Soc. Clin. Oncol (2002) 21:Abstract 175.
  • CHAN S, SCHEULEN ME, JOHNSTON S et al: Phase II study of two dose levels of CCI-779 in locally advanced or metastatic breast cancer (MBC) failing prior anthracycline and/or taxane regimens. Proc Am. Soc. Clin. Oncol (2003) 22:(Abstract 774).
  • CHAN S: Targeting the mammalian targetof rapamycin (mTOR): a new approach to treating cancer. BE J. Cancer (2004) 91(8):1420–1424.
  • WITZIG TE, GEYER SM, SALIM M et al.: A Phase II trial of the rapamycin analog CCI-779 in previously treated mantle cell non-Hodgkin's lymphoma: interim analysis of 18 patients. Proc. Am. Soc. Hematol (2003) 102:(Abstract 2374).
  • PERALBA JM, DEGRAFFENRIED L, FRIEDRICHS W et al: Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin. Cancer Res. (2003) 9(8):2887–2892.
  • MUISE-HELMERICKS RC, GRIMES HL, BELLACOSA A et al: Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. j Biol. Chem. (1998) 273(45):29864–29872.
  • TAKUWA N, FUKUI Y, TAKUWA Y: Cyclin D1 expression mediated by phosphatidylinositol 3-kinase through mTOR-p70(56K) -independent signaling in growth factor-stimulated NIH 3T3 fibroblasts. Mol. Cell Biol. (1999) 19(2):1346–1358.
  • DUTCHER JP, HUDES G, MOTZER R et al.: Preliminary report of a Phase 1 study of intravenous (iv.) CCI-779 given in combination with interferon-a (IFN) to patients with advanced renal cell carcinoma (RCC). Proc. Am. Soc. GM Oncol (2003) 22:(Abstract 854).
  • PUNT CJ, BONI J, BRUNTSCH U, PETERS M, THIELERT C: Phase I and pharmacokinetic study of CCI-779, a novel cytostatic cell-cycle inhibitor, in combination with 5-fluorouracil and leucovorin in patients with advanced solid tumors. Ann. Oncol (2003) 14(6):931–937.
  • O'DONNELL A, FAIVRE S, JUDSON I et al.: A phase I study of the oral mTOR inhibitor RAD-001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) endpoints in patients with solid tumours. Proc. Am. Soc. Oncol (2003) 22:(Abstract 803).
  • LANE H, TANAKA C, KOVARIK J et al: Preclinical and clinical pharmacokinetic/ pharmacodynamic (PK/PD) modeling to help define an optimal biological dose for the oral mTOR inhibitor, RAD-001, in oncology. Proc. Am. Soc. Clin. Oncol (2003) 22:(Abstract 951).
  • DI COSIMO S, MATAR P, ROJO F et al: The mTOR pathway inhibitor RAD-001 induces activation of AKT which is completely abolished by Gefitinib, an anti-EGFR tyrosine kinase inhibitor, and combined sequence specific treatment results in greater antitumor activity. Proc. Am. Assoc. Cancer Res. (2004)45:(Abstract 5345).
  • BOULAY A, ZUMSTEIN-MECKER S, STEPHAN C et al.: Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD-001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res. (2004) 64(1):252–261.
  • PACEY S, READ, STEVEN N et al: Results of a Phase 1 clinical trial investigating a combination of the oral mTOR-inhibitor Everolimus (E, RAD-001) and Gemcitabine (GEM) in patients (pts) with advanced cancers. Proc. Am. Soc. Chi'. Oncol (2004) 22:(Abstract 3120).
  • GARCIA VD, FILHO JL, NEUMANN J et al.: Rituximab in association with rapamycin for post-transplant lymphoproliferative disease treatment. Transpl. Int. (2003) 16(3):202–206.
  • GARCIA VD, BONAMIGO-FILHO JS, NEUMANN J et al.: Rituximab and rapamycin for posttransplant lymphoproliferative disease treatment: report of three cases. Transplant Proc. (2002) 34(7):2993–2995.
  • METCALF III CA, BOHACEK R, ROZAMUS LW et al.: Structure-based design of AP-23573, a phosphorus-containing analog of rapamycin for anti-tumor therapy. Proc. Am. Assoc. Cancer Res. 45:(Abstract 2476).
  • RIVERA VM, TANG H, METCALF CA III et al.: Anti-proliferative activity of the mTOR inhibitor AP-23573 in combination with cytotoxic and targeted agents. Proc. Am. Assoc. Cancer Res. (2004) 45:(Abstract 3887).
  • DESAI AA, JANISCH L, BERK LR et al: A phase I trial of a novel mTOR inhibitor AP-23573 administered weekly (wkly) in patients (pts) with refractory or advanced a327 malignancies: A pharmacokinetic (PK) and pharmacodynamic (PD) analysis. Proc. Am. Soc. Clin. Oncol (2004) 23:(Abstract 3150).
  • DESAI AA, JANISCH L, BERK LR et al.: A Phase I trial of weekly (wkly) AP-23573, a novel mTOR inhibitor, in patients (pts) with advanced or refractory malignancies: a pharmacokinetic (PK) and pharmadynamic (PD) analysis. Eur. j Cancer. (Suppl.) 16th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics (2004) 2(8):(Abstract 390).
  • RIVERA V, BERK L, MITA M et al: Pharmacodynamic evaluation of the mTOR inhibitor AP-23573 in phase 1 clinical trials. Eur. I Cancer. (Suppl.) 16th EORTC-NCIAACR Symposium on Molecular Targets and Cancer Therapeutics (2004) 2(8):(Abstract 411).

Website

  • http://clinicaltrials.gov Information on clinical trials supplied by the US National Institute of Health.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.