153
Views
26
CrossRef citations to date
0
Altmetric
Review

Voltage-gated cation channel modulators for the treatment of stroke

&
Pages 579-592 | Published online: 31 May 2005

Bibliography

  • Recommendations for clinical trial evaluation of acute stroke therapies. Stroke (2001) 32:1598–1606.
  • ••Good review of future needed changes inclinical trial design by the Stroke Therapy Academic Industry Roundtable.
  • FISHER M: Ongoing trials and future directions for acute ischemic stroke treatment. Adv. NeuroL (2003) 92:401–408.
  • •Good review of where the clinical field is and what may be forthcoming in terms of future therapeutic candidates.
  • LEES KR: Therapeutic interventions in acute stroke. Br. J. Clin. Pharmacol. (1992) 34:486–493.
  • ALBERTS MJ: tPA in acute ischemic stroke: United States experience and issues for the future. Neurology (1998) 51:S53–S55.
  • LAPCHAK PA: Development of thrombolytic therapy for stroke: a perspective. Expert. Opin. Investig. Drugs (2002) 11:1623–1632.
  • SACCO RL: Risk factors and outcomes for ischemic stroke. Neurology (1995) 45:S10–S14.
  • ARUNDIN E, MTYMIANSKI M: Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium (2003) 34:325–337.
  • ••Good review of the roles of calcium inexcitotoxicity.
  • DOBLE A: The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther. (1999) 81:163–221.
  • SATTLER R, TYMANSKI M: Molecularmechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. MoL NeurobioL (2001) 24:107–129.
  • READ SJ, HIRANO T, DAVIS SM, DONNAN GA: Limiting neurological damage after stroke: a review of pharmacological treatment options. Drugs Aging (1999) 14:11–39.
  • SCHURR A: Neuroprotection against ischemic/hypoxic brain damage: blockers of ionotropic glutamate receptor and voltage sensitive calcium channels. Curr. Drug Targets (2004) 5:603–618.
  • TATLISUMAK T, CARANO RA, TAKANO K et al.: Broad-spectrum cation channel inhibition by LOE 908 MS reduces infarct volume in vivo and postmortem in focal cerebral ischemia in the rat. Acta Neurochir. Suppl. (2000) 76:329–330.
  • CATTERALL WA, GOLDIN AL, WAXMAN SG: International Union of Pharmacology. )(XXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol. Rev. (2003) 55:575–578.
  • ••The bible in terms of VGSCcharacterisation and structure.
  • MARBAN E, YAMAGISHI T, TOMASELLI GF: Structure and function of voltage-gated sodium channels. J. PhysioL (1998) 508\(Part 3):647–657.
  • CATTERALL WA, STRIESSNIG J, SNUTCH TP, PEREZ-REYES E: International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol. Rev. (2003) 55:579–581.
  • ••The standard reference for VGCCstructure and function.
  • GUTMAN GA, CHANDY KG, ADELMAN JP et al.: International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol. Rev. (2003) 55:583–586.
  • ••The bible in terms of VGKCcharacterisation and structure.
  • GRIBKOFF VK, STARRETT JE Jr, DWORETZKY SI: Maxi-K potassium channels: form, function, and modulation of a class of endogenous regulators of intracellular calcium. Neuroscientist. (2001) 7:166–177.
  • CURRY SH: Why have so many drugs withstellar results in laboratory stroke models failed in clinical trials? A theory based on allometric relationships. Ann. IVY Acad. Sci. (2003) 993:69–74.
  • FISHER M: The ischemic penumbra: identification, evolution and treatment concepts. Cerebrovasc. Dis. (2004) 17\(Suppl. 1):1–6.
  • •Good review of the ischaemic penumbra.
  • WEINSTEIN PR, HONG S, SHARP FR: Molecular identification of the ischemic penumbra. Stroke (2004) 35:2666–2670.
  • CHOI DW: Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Lett. (1985) 58:293–297.
  • CHOI DW, MAULUCCI-GEDDE M, KRIEGSTEIN AR: Glutamate neurotoxicity in cortical cell culture. Neurosci. (1987) 7:357–368.
  • COLLINS RC, DOBKIN BH, CHOI DW: Selective vulnerability of the brain: new insights into the pathophysiology of stroke. Ann. Intern. Med. (1989) 110:992–1000.
  • ZIVIN JA, GROTTA JC: Animal stroke models. They are relevant to human disease. Stroke (1990) 21:981–983.
  • ZIVIN JA, DEGIROLAMI U: Spinal cord infarction: a highly reproducible stroke model Stroke (1980) 11:200–202.
  • PULSINELLI WA, BRIERLEY JB, PLUM F: Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol. (1982) 11:491–498.
  • SCHURR A, PAYNE RS, HEINE MF, RIGOR BM: Hypoxia, excitotoxicity, and neuroprotection in the hippocampal slice preparation. J. Neurosci. Methods (1995) 59:129–138.
  • GAGLIARDI RJ: Neuroprotection, excitotoxicity and NMDA antagonists. Arq. Neuropsiquiatr. (2000) 58:583–588.
  • ALBERDI E, SANCHEZ-GOMEZ MV MARINO A, MATUTE C: Ca(2+) influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. NeurobioL Dis. (2002) 9:234–243.
  • GREENBERG DA: Calcium channels inneurological disease. Ann. NeuroL (1997) 42:275-282.587
  • YAMASHIMA T: Ca2*-dependent proteases in ischemic neuronal death: a conserved 'calpain-cathepsin cascade' from nematodes to primates. Cell Calcium (2004) 36:285–293.
  • NEUMAR RW: Molecular mechanisms of ischemic neuronal injury. Ann. Emerg Med. (2000) 36:483–506.
  • FISHER M, GINSBERG M: Current concepts of the ischemic penumbra: introduction Stroke (2004) 35:2657–2658.
  • KUMURA E, GRAF R, DOHMEN C, ROSNER G, HEISS WD: Breakdown of calcium homeostasis in relation to tissue depolarization: comparison between gray and white matter ischemia. j Cereb. Blood Flow Metab. (1999) 19:788–793.
  • GRAF R, KATAOKA K, WAKAYAMA A et al.: Functional impairment due to white matter ischemia after middle cerebral artery occlusion in cats. Stroke (1990) 21:923–928.
  • ARIKKATH J, CAMPBELL KP: Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. NeurobioL (2003) 13:298–307.
  • BLACK JL III: The voltage-gated calciumchannel gamma subunits: a review of the literature. J. Bioenerg Biomembr. (2003) 35:649–660.
  • WHEELER DB, RANDALL A, SATHER WA, TSIEN RW: Neuronal calcium channels encoded by the alA subunit and their contribution to excitatory synaptic transmission in the CNS. Prog Brain Res. (1995) 105:65–78.
  • SNUTCH TP, SUTTON KG, ZAMPONI GW: Voltage-dependent calcium channels-beyond dihydropyridine antagonists. Curr. Opin. PharmacoL (2001) 1:11–16.
  • ALLEN NJ, KARADOTTIR R, ATTWELL D: A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells. J. Neurosei. (2005) 25:848–859.
  • PEREZ-REYES E: Three for T: molecularanalysis of the low voltage-activated calcium channel family. Cell MoL Life Sci. (1999) 56:660–669.
  • PATE P, MOCHCA-MORALES J, WU Y et al.: Determinants for calmodulin binding on voltage-dependent Ca2* channels. J. Biol. Chem. (2000) 275:39786–39792.
  • ZEILHOFER HU, BLANK NM, NEUHUBER WL, SWANDULLA D: Calcium-dependent inactivation of neuronal calcium channel currents is independent of calcineurin. Neuroscience (2000) 95:235–241.
  • TRIGGLE DJ: Drug targets in the voltage-gated calcium channel family: why some are and some are not. Assay Drug Dev. TechnoL (2003) 1:719-733. Good review of the potential for VGCCs as therapeutic targets.
  • YUEN P, SCHELKUN RM, SZOKE B,TARCZY-HORNOCH K: Synthesis and structure-activity relationship of substituted 1,2,3,4-tetrahydroisoquinolines as N-type calcium channel blockers. Bioorg. Med. Chem. Lett. (1998) 8:2415–2418.
  • TEODORI E, BALDI E, DEI S et al.: Design, synthesis, and preliminary pharmacological evaluation of 4-aminopiperidine derivatives as N-type calcium channel blockers active on pain and neuropathic pain. J. Med. Chem. (2004) 47:6070–6081.
  • HU LY, RYDER TR, RAFFERTY MF et al.: Synthesis of a series of 4-benzyloxyaniline analogues as neuronal N-type calcium channel blockers with improved anticonvulsant and analgesic properties. J. Med. Chem. (1999) 42:4239–4249.
  • HU LY, RYDER TR, RAFFERTY MF et al.: Neuronal N-type calcium channel blockers: a series of 4-piperidinylaniline analogs with analgesic activity. Drug Des. Discov. (2000) 17:85–93.
  • VALENTINO K, NEWCOMB R, GADBOIS T et al.: A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc. NatL Acad. Sei. USA (1993) 90:7894–7897.
  • MILJANICH GP: Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. (2004) 11:3029-3040. Good review of the data supporting the use of ziconotide, the Ca v 2.2 blocking blocking peptide in pain.
  • CATTERALL WA: Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Adv. NeuroL (1999) 79:441–456.
  • LAI J, PORRECA F, HUNTER JC, GOLD MS: Voltage-gated sodium channels and hyperalgesia. Ann. Rev. PharmacoL ToxicoL (2004) 44:371–397.
  • TAYLOR CP, NARASIMHAN LS: Sodium channels and therapy of central nervous system diseases. Adv. PharmacoL (1997) 39:47–98.
  • WAXMAN SG, CUMMINS TR, DIB-HAJJ S, FJELL J, BLACK JA: Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain. Muscle Nerve (1999) 22:1177–1187.
  • GOLDIN SM, SUBBARAO K, SHARMA R et al.: Neuroprotective use-dependent blockers of Na* and Ca2* channels controlling presynaptic release of glutamate. Ann. NV Acad. Sci. (1995) 765:210–229.
  • RAGSDALE D, SAVOLI M: Sodium channels as molecular targets for antiepileptic drugs. Brain Res. Brain Res. Rev. (1998) 26:16–28.
  • COSFORD ND, MEINKE PT, STAUDERMAN KA, HESS SD: Recent advances in the modulation of voltage-gated ion channels for the treatment of epilepsy. Curr. Drug Targets CNS NeuroL Disord. (2002) 1:81–104.
  • KACZOROWSKI GJ, GARCIA ML: Pharmacology of voltage-gated and calcium-activated potassium channels. Curr. Opin. Chem. Biol. (1999) 3:448-458. Good but slightly dated review of IC' channel pharmacology (Kv and Kc)
  • WEI L, YU SP, GOTTRON F et al.: Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke (2003) 34:1281–1286.
  • GRIBKOFF,VK, STARRETT JE Jr., DWORETZKY SI et al.: Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat. Med. (2001) 7:471–477.
  • CHENEY JA, WEISSER JD, BAREYRE FM et al.: The maxi-K channel opener BMS-204352 attenuates regional cerebral edema and neurologic motor impairment after experimental brain injury. Cereb. Blood Flow Metab. (2001) 21:396–403.
  • HEWAWASAM P, DING M, CHEN N et al.: Synthesis of water-soluble prodrugs of BMS-191011: a maxi-K channel opener targeted for post-stroke neuroprotection. Bioorg. Med. Chem. Lett. (2003) 13:1695–1698.
  • GRIBKOFF VK, STARRETT JE Jr, DWORETZKY SI: Maxi-K potassium channels: form, function, and modulation of a class of endogenous regulators of intracellular calcium. Neuroscientist. (2001) 7:166–177.
  • GRIBKOFF VK: The therapeutic potentialof neuronal KCNQ channel modulators. Expert Opin. Ther. Targets (2003) 7:737–748.
  • SMALL DL, MONETTE R, BUCHAN AM, MORLEY P: Identification of calcium channels involved in neuronal injury in rat hippocampal slices subjected to oxygen and glucose deprivation. Brain Res. (1997) 753:209–218.
  • KRIEGLSTEIN J, LIPPERT K, POCH G:Apparent independent action of nimodipine and glutamate antagonists to protect cultured neurons against glutamate-induced damage. Neuropharmacology (1996) 35:1737–1742.
  • KITTAKA M, GIANNOTTA SL, ZELMAN Vet al.: Attenuation of brain injury and reduction of neuron-specific enolase by nicardipine in systemic circulation following focal ischemia and reperfusion in a rat model. J. Neurosurg (1997) 87:731–737.
  • HORN J, DE HAAN RJ, VERMEULEN M, LUITEN PG, LIMBURG M: Nimodipine in animal model experiments of focal cerebral ischemia: a systematic review. Stroke (2001) 32:2433–2438.
  • LAZAREWICZ jw, PLUTA R, PUKA M,SALINSKA E: Diverse mechanisms of neuronal protection by nimodipine in experimental rabbit brain ischemia. Stroke (1990) 21:IV108-1V110.
  • LUITEN PG, DOUMA BR, VAN DER ZEE EA, NYAKAS C: Neuroprotection against NMDA induced cell death in rat nucleus basalis by Ca2* antagonist nimodipine, influence of aging and developmental drug treatment. Neurodegeneration (1995) 4:307–314.
  • TALLY PW, SUNDT TM Jr, ANDERSON RE: Improvement of cortical perfusion, intracellular pH, and electrocorticography by nimodipine during transient focal cerebral ischemia. Neurosurgery (1989) 24:80–87.
  • ZAPATER, P, MORENO J, HORGA JF:Neuroprotection by the novel calcium antagonist PCA50938, nimodipine and flunarizine, in gerbil global brain ischemia. Brain Res. (1997) 772:57–62.
  • OHTA S, SMITH ML, SIESJO BK: The effect of a dihydropyridine calcium antagonist (isradipine) on selective neuronal necrosis. J. Neurol. Sci. (1991) 103:109–115.
  • CAMPBELL CA, MacKAY KB, PATEL S et al.: Effects of isradipine, an L-type calcium channel blocker on permanent and transient focal cerebral ischemia in spontaneously hypertensive rats. Exp. NeuroL (1997) 148:45–50.
  • CHANDRA S, WHITE RF, EVERDING D et al.: Use of diffusion-weighted MRI and neurological deficit scores to demonstrate beneficial effects of isradipine in a rat model of focal ischemia. Pharmacology (1999) 58:292–299.
  • BAILEY SJ, WOOD NI, SAMSON NA et al.: Failure of isradipine to reduce infarct size in mouse, gerbil, and rat models of cerebral ischemia. Stroke (1995) 26:2177–2183.
  • BURNS LH, JIN Z, BOWERSOX SS: The neuroprotective effects of intrathecal administration of the selective N-type calcium channel blocker ziconotide in a rat model of spinal ischemia. J. Vasc. Surg. (1999) 30:334–343.
  • PEREZ-PINZON MA, YENARI MA, SUN GH, KUNIS DM, STEINBERG GK: SNX-111, a novel, presynaptic N-type calcium channel antagonist, is neuroprotective against focal cerebral ischemia in rabbits. J. NeuroL Sci. (1997) 153:25–31.
  • YENARI MA, PALMER JT, SUN GH et al.: Time-course and treatment response with SNX-111, an N-type calcium channel blocker, in a rodent model of focal cerebral ischemia using diffusion-weighted MRI. Brain Res. (1996) 739:36–45.
  • MARAIS E, KLUGBAUER N, HOFMANN F: Calcium channel a(2)8 subunits-structure and gabapentin binding. Mol. Pharmacol (2001) 59:1243–1248.
  • STAHL SM: Mechanism of action of a28ligands: voltage sensitive calcium channel (VSCC) modulators. J. Clin. Psychiatry (2004) 65:1033–1034.
  • MARTIN DJ, McCLELLAND D, HERD MB et al.: Gabapentin-mediated inhibition of voltage-activated Ca2* channel currents in cultured sensory neurones is dependent on culture conditions and channel subunit expression. Neuropharmacology (2002) 42:353–366.
  • LAGREZE WA, MULLER-VELTEN R, FEUERSTEIN TJ: The neuroprotective properties of gabapentin-lactam. Gratfes Arch. Clin. Exp. Ophthalmol. (2001) 239:845–849.
  • WILLIAMS AJ, TORTELLA FC, LU XM,MORETON JE, HARTINGS JA: Antiepileptic drug treatment of nonconvulsive seizures induced by experimental focal brain ischemia. Pharmacol Exp. Ther. (2004) 311:220–227.
  • AZCONA A, LATASTE X: Isradipine inpatients with acute ischaemic cerebral infarction. An overview of the ASCLEPIOS Programme. Drugs (1990)40\(Suppl. 2):52–57.
  • UEMATSU D, GREENBERG JH, HICKEY WF, REIVICH M: Nimodipine attenuates both increase in cytosolic free calcium and histologic damage following focal cerebral ischemia and reperfusion in cats. Stroke (1989) 20:1531–1537.
  • HORN J, DE HAAN RJ, VERMEULEN M, LIMBURG M: Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebo-controlled trial. Stroke (2001) 32:461–465.
  • LEGAULT C, FURBERG CD, WAGENKNECHT LE et al.: Nimodipine neuroprotection in cardiac valve replacement: report of an early terminated trial. Stroke (1996) 27:593–598.
  • Randomised, double-blind, placebo-controlled trial of nimodipine in acute stroke. Trust Study Group. Lancet (1990) 336:1205–1209.
  • AHMED N, NASMAN P, WAHLGREN NG: Effect of intravenous nimodipine on blood pressure and outcome after acute stroke. Stroke (2000) 31:1250–1255.
  • FOGELHOLM R, ERILA T, PALOMAKI H, MURROS K, KASTE M: Effect of nimodipine on final infarct volume after acute ischemic stroke. Cerebrovasc. Dis. (2000) 10:189–193.
  • HEISS WD, HOLTHOFF V PAWLIK G, NEVELING M: Effect of nimodipine on regional cerebral glucose metabolism in patients with acute ischemic stroke as measured by positron emission tomography. Cereb. Blood Flow Metab (1990) 10:127–132.
  • HULSER PJ, KORNHUBER AW, KORNHUBER HH: Treatment of acute stroke with calcium antagonists. Eur. NeuroL (1990) 30\(Suppl. 2):35–38.
  • INFELD B, DAVIS SM, DONNAN GA et al.: Nimodipine and perfusion changes after stroke. Stroke (1999) 30:1417–1423.
  • KASTE M, FOGELHOLM R, ERILA T et al.: A randomized, double-blind, placebo-controlled trial of nimodipine in acute ischemic hemispheric stroke. Stroke (1994) 25:1348–1353.
  • PACT A, OTTAVIANO P, TRENTA A et al.: Nimodipine in acute ischemic stroke: a double-blind controlled study. Acta NeuroL Scand. (1989) 80:282–286.
  • NAG D, GARG RK, VARMA M: A randomized double-blind controlled study of nimodipine in acute cerebral ischemic stroke. Indian J. Physiol Pharmacol (1998) 42:555–558.
  • Neuroprotection as initial therapy in acute stroke. Third report of an Ad Hoc Consensus Group meeting. The European Ad Hoc Consensus Group. Cerebrovasc. Dis. (1998) 8:59–72.
  • ROMERO M, SANCHEZ I, PUJOL MD: New advances in the field of calcium channel antagonists: cardiovascular effects and structure-activity relationships. Curr. Med. Chem. Cardiovasc. Hematol Agents (2003) 1:113–141.
  • MENZLER S, BIKKER JA, SUMAN-CHAUHAN N, HORWELL DC: Design and biological evaluation of non-peptide analogues of co-conotoxin MVIIA. Bioorg. Med. Chem. Lett. (2000) 10:345–347.
  • SEKO T, KATO M, KOHNO H et al.: Structure-activity study and analgesic efficacy of amino acid derivatives as N-type calcium channel blockers. Bioorg. Med. Chem. Lett. (2001) 11:2067–2070.
  • SONG Y, BOWERSOX SS, CONNOR DT et al.: (S)-4-Methyl-2-(methylamino)pentanoic acid [4, 4-bis(4-fluorophenyl)butyl]amide hydrochloride, a novel calcium channel antagonist, is efficacious in several animal models of pain. J. Med. Chem. (2000) 43:3474–3477.
  • BARONE FC, LYSKO PG, PRICE WJ et al.: SB 201823-A antagonizes calcium currents in central neurons and reduces the effects of focal ischemia in rats and mice. Stroke (1995) 26: 1683-1689.
  • CAMPBELL CA, BARONE FC, BENHAM CD et al.: Characterisation of SB-221420-A - a neuronal Ca(2+) and Na(+) channel antagonist in experimental models of stroke. Eur. j Pharmacol (2000) 401:419–428.
  • KASHIWAGI F, KATAYAMA Y, IGARASHI H et al.: Effect of a new calcium antagonist (SM-6586) on experimental cerebral ischemia. Acta Neurochir. Suppl. (Wien.) (1994) 60:289–292.
  • XIE Y, DENGLER K, ZACHARIAS E, WILFFERT B, TEGTMEIER F: Effects of the sodium channel blocker tetrodotoxin (TTX) on cellular ion homeostasis in rat brain subjected to complete ischemia. Brain Res. (1994) 652:216–224.
  • FARBER NB, JIANG XP, HEINKEL C, NEMMERS B: Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity. MoL Psychiatry (2002) 7:726–733.
  • ASHTON D, WILLEMS R, WYNANTS J et al.: Altered Na(+)-channel function as an in vitro model of the ischemic penumbra: action of lubeluzole and other neuroprotective drugs Brain Res. (1997) 745:210–221.
  • CALABRESI P, PICCONI B, SAULLE E et al: Is pharmacological neuroprotection dependent on reduced glutamate release? Stroke (2000) 31:766–772.
  • O'NEILL MJ, BATH CP, DELL CP et al.: Effects of Ca2* and Na* channel inhibitors in vitro and in global cerebral ischaemia in vivo. Eur. J. Pharmacol (1997) 332:121–131.
  • SHUAIB A, MAHMOOD RH, WISHART T et al.: Neuroprotective effects of lamotrigine in global ischemia in gerbils. A histological, in vivo microdialysis and behavioral study. Brain Res. (1995) 702:199–206.
  • MELDRUM BS: Lamotrigine-a novel approach. Seizure. (1994)3(Suppl. A):41–45.
  • SCHWARTZ G, FEHLINGS MG: Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. Neurosurg. Spine (2001) 94:245–256.
  • STOVER JF, BEYER TF, UNTERBERG AW: Riluzole reduces brain swelling and contusion volume in rats following controlled cortical impact injury. Neurotrauma (2000) 17:1171–1178.
  • LEI B, POPP S, CAPUANO-WATERS C, COTTRELL JE, KASS IS: Lidocaine attenuates apoptosis in the ischemic penumbra and reduces infarct size after transient focal cerebral ischemia in rats. Neuroscience (2004) 125:691–701.
  • ROGAWSKI MA, LOSCHER W: The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat. Med. (2004) 10:685-692. Good review of the rationale for the use of AEDs for other indications.
  • WAXMAN SG, CUMMINS TR, DIB-HAJJ SD, BLACK JA: Voltage-gated sodium channels and the molecular pathogenesis of pain: a review./ Rehab. Res. Dev. (2000) 37:517–528.
  • DEVULDER J, CROMBEZ E, MORTIER E: Central pain: an overview. Acta Neurol Belg (2002) 102:97–103.
  • ANGER T, MADGE DJ, MULLA M, RIDDALL D: Medicinal chemistry of neuronal voltage-gated sodium channel blockers. J. Med. Chem. (2001) 44:115–137.
  • CALLAWAY JK, CASTILLO-MELENDEZ M, GIARDINA SF et al.: Sodium channel blocking activity ofAM-36 and sipatrigine (BW619C89): in vitro and in vivo evidence. Neuropharmaco/ogy (2004) 47:146–155.
  • CALLAWAY JK: Investigation of AM-36: a novel neuroprotective agent. Clin. Exp. PharmacoL Physiol (2001) 28:913–918.
  • DAVE JR, LIN Y, VED HS et cll.: RS-100642-198, a novel sodium channel blocker, provides differential neuroprotection against hypoxia/ hypoglycemia, veratridine or glutamate-mediated neurotoxicity in primary cultures of rat cerebellar neurons. Neurotox. Res. (2001) 3:381–395.
  • SOPALA M, DANYSZ W, QUACK G: Neuroprotective effects of NS-7, voltage-gated Ne/Ca2* channel blocker in a rodent model of transient focal ischaemia. Neurotox. Res. (2002) 4:655–661.
  • CARTER AJ, GRAUERT M, PSCHORN U et al.: Potent blockade of sodium channels and protection of brain tissue from ischemia by Bill 890 CL. Proc. Natl Acad. Sci. USA (2000) 97:4944–4949.
  • CALABRESI P, STEFANI A, MARFIA GA et al.: Electrophysiology of sipatrigine: a lamotrigine derivative exhibiting neuroprotective effects. Exp. Neurol (2000) 162:171–179.
  • DIENER HC, CORTENS M, FORD G et al.: Lubeluzole in acute ischemic stroke treatment: A double-blind study with an8-hour inclusion window comparing a 10-mg daily dose of lubeluzole with placebo. Stroke (2000) 31:2543–2551.
  • GANDOLFO C, SANDERCOCK P, CONTI,M: Lubeluzole for acute ischaemic stroke. Cochrane. Database. Syst. Rev. (2002):CD001924.
  • GROTTA J: Combination therapy stroke trial: recombinant tissue-type plasminogen activator with/without lubeluzole Cerebrovasc. Dis. (2001) 12:258–263.
  • MUIR KW, HOLZAPFEL L, LEES KR: Phase II clinical trial of sipatrigine (619C89) by continuous infusion in acute stroke. Cerebrovasc. Dis. (2000) 10:431–436.
  • MEYTHALER J: BIII-890-CL. Boehringer Ingelheim. Curr. Opin. Investig. Drugs (2002) 3:1733–1735.
  • CHI X, SUTTON ET, THOMAS T, PRICE JM: The protective effect of IQ-channel openers on 0-amyloid induced cerebrovascular endothelial dysfunction. NeuroL Res. (1999) 21:345–351.
  • WEI L, YU SP, GOTTRON F et al.: Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke (2003) 34:1281–1286.
  • HU H, SHAO LR, CHAVOSHY S et al.: Presynaptic Ca2*-activated IQ- channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J. Neurosci. (2001) 21:9585–9597.
  • DWORETZKY SI, BOISSARD CG, LUM-RAGAN JT et al.: Phenotypic alteration of a human BK (hSlo) channel by hSlobeta subunit coexpression: changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation. J. Neurosci. (1996) 16:4543–4550.
  • BRENNER R, JEGLA TJ, WICKENDEN A, LIU Y, ALDRICH RW: Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J. BioL Chem. (2000) 275:6453–6461.
  • CHANG CP, DWORETZKY SI, WANG J, GOLDSTEIN ME: Differential expression of the alpha and beta subunits of the large-conductance calcium-activated potassium channel: implication for channel diversity Brain Res. MoL Brain Res. (1997) 45:33–40.
  • BEHRENS R, NOLTING A, REIMANN F et al.: hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family FEBS Lett. (2000) 474:99-106.
  • HA TS, HEO MS, PARK CS: Functional effects of auxiliary beta4-subunit on rat large-conductance Ca(2+)-activated K(+) channel. Biophys. J. (2004) 86:2871–2882.
  • FURY M, MARX SO, MARKS AR: Molecular BKology: the study of splicing and dicing. Sci. STKE (2002) 2002:E12.
  • TIAN L, DUNCAN RR, HAMMOND MS et al.: Alternative splicing switches potassium channel sensitivity to protein phosphorylation. J. Biol. Chem. (2001) 276:7717–7720.
  • CIBULSKY SM, FEI H, LEVITAN IB: Syntaxin-1A binds to and modulates the Slo calcium-activated potassium channel via an interaction that excludes syntaxin binding to calcium channels. J. NeurophysioL (2004).
  • JIN P, WEIGER TM, WU Y, LEVITAN IB: Phosphorylation-dependent functional coupling of hSlo calcium-dependent potassium channel and its 1104 subunit. J. Biol. Chem. (2002) 277:10014–10020.
  • ALIOUA A, TANAKA Y, WALLNER M et al.: The large conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo. J. Biol. Chem. (1998) 273:32950–32956.
  • KEMP PJ, PEERS C, LEWIS A: Oxygen sensing by human recombinant large conductance, calcium-activated potassium channels. Regulation by acute hypoxia. Adv. Exp. Med. Biol. (2003) 536:209–215.
  • RIESCO-FAGUNDO AM, PEREZ-GARCIA MT, GONZALEZ C, LOPEZ-LOPEZ JR: 0(2) modulates large-conductance Ca(2+)-dependent K(+) channels of rat chemoreceptor cells by a membrane-restricted and CO-sensitive mechanism. Circ. Res. (2001) 89:430–436.
  • LIU H, MOCZYDLOWSKI E, HADDAD GG: 0(2) deprivation inhibits Ca(2+)-activated K(+) channels via cytosolic factors in mice neocortical neurons. J. Clin. Invest (1999) 104:577–588.
  • JIANG C, HADDAD GG: Oxygen deprivation inhibits a K+ channel independently of cytosolic factors in rat central neurons. J. PhysioL (1994) 481( Part 1):15–26.
  • HARTNESS ME, BRAZIER SP, PEERS C et al.: Post-transcriptional control of human maxiK potassium channel activity and acute oxygen sensitivity by chronic hypoxia. Biol. Chem. (2003) 278:51422–51432.
  • WILLIAMS SE, WOOTTON P, MASON HS et al.: Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science (2004) 306:2093–2097.
  • SIEMEN D, LOUPATATZIS C, BORECKY J, GULBINS E, LANG F: Ca2*-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem. Biophys. Res. Commun. (1999) 257:549–554.
  • RUNDEN-PRAN E, HAUG FM, STORM JF, OTTERSEN OP: BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures. Neuroscience (2002) 112:277–288.
  • McKAY MC, DWORETZKY SI, MEAN WELL NA et al.: Opening of large-conductance calcium-activated potassium channels by the substituted benzimidazolone N5004. J. NeurophysioL (1994) 71:1873–1882.
  • OLESEN SP, MUNCH E, WATJEN F, DREJER J: NS 004-an activator of Ca(2+)-dependent IQ channels in cerebellar granule cells. Neuroreport (1994) 5:1001–1004.
  • HEWAWASAM P, ERWAY M, THALODY G et al.: The synthesis and structure-activity relationships of 1,3-diaryl 1,2,4-(4H)-triazol-5-ones: a new class of calcium-dependent, large conductance, potassium (maxi-K) channel opener targeted for urge urinary incontinence. Bioorg-. Med. Chem. Lett. (2002) 12:1117–1120.
  • HEWAWASAM P, ERWAY M, MOON SL et al.: Synthesis and structure-activity relationships of 3-aryloxindoles: a new class of calcium-dependent, large conductance potassium (maxi-K) channel openers with neuroprotective properties. J. Med. Chem. (2002) 45:1487–1499.
  • HEWAWASAM P, FAN W, KNIPE J et a/.: The synthesis and structure-activity relationships of 4-ary1-3-aminoquinolin-2-ones: a new class of calcium-dependent, large conductance, potassium (maxi-K) channel openers targeted for post-strokeneuroprotection. Bioorg. Med. Chem. Lett. (2002) 12:1779–1783.
  • HEWAWASAM P, GRIBKOFF VK, PENDRI Yet al.: The synthesis and characterization of BMS-204352 (MaxiPost) and related 3-fluorooxindoles as openers of maxi-K potassium channels. Bioorg. Med. Chem. Lett. (2002) 12:1023–1026.
  • SIVARAO DV NEWBERRY K, LANGDON SW et al.: Effect of BMS-223131 a novel opener of large conductance Ca2+-activated K+ (maxi-K) channels on normal and stress aggravated colonic motility and visceral nociception. J. Pharmacol Exp. Ther. (2005)
  • ROMINE JL, MARTIN SW, GRIBKOFF VK et al.: 4,5-diphenyltriazol-3-ones: openers of large-conductance Ca(2+)-activated potassium (maxi-K) channels. J. Med. Chem. (2002) 45:2942–2952.
  • GRIBKOFF VK, LUM-RAGAN JT, BOISSARD CG et al.: Effects of channel modulators on cloned large-conductance calcium-activated potassium channels. Mol Pharmacol (1996) 50:206–217.
  • GRIBKOFF VK, STARRETT JE Jr, DWORETZKY SI: The pharmacology and molecular biology of large-conductance calcium-activated (BK) potassium channels. Adv. PharmacoL (1997) 37:319–348.
  • LI Y, JOHNSON G, ROMINE JL et al.: Novel openers of Ca2*-dependent large-conductance potassium channels: symmetrical pharmacophore and electrophysiological evaluation of bisphenols. Bioorg. Med. Chem. Lett. (2003) 13:1437–1439.
  • GIANGIACOMO KM, KAMASSAH A, HARRIS G, McMANUS OB: Mechanism of maxi-K channel activation by dehydrosoyasaponin-I. J. Gen. Physiol (1998) 112:485–501.
  • STROBAEK D, CHRISTOPHERSEN P, HOLM NR et al.: Modulation of the Ca(2+)-dependent K1 channel, hslo, by the substituted diphenylurea NS 1608, paxilline and internal Ca2*. Neuropharmacology (1996) 35:903–914.
  • OLESEN SP, MUNCH E, MOLDT P, DREJER J: Selective activation of Ca(2+)-dependent K1 channels by novel benzimidazolone. Eur. J. Pharmacol (1994) 251:53–59.
  • SCHRODER RL, STROBAEK D, OLESEN SP, CHRISTOPHERSEN P: Voltage-independent KCNQ4 currents induced by (±)BMS-204352. Pflugers Arch. (2003) 446:607–616.
  • JENSEN BS: BMS-204352: a potassium channel opener developed for the treatment of stroke. CNS DrugRev. (2002) 8:353–360.
  • Recommendations for standards regarding preclinical neuroprotective and restorative drug development Stroke (1999) 30:2752-2758. The first of the STAIR group documents examining predinical stroke models and development strategies.
  • FISHER M: Recommendations for advancing development of acute stroke therapies: Stroke Therapy Academic Industry Roundtable 3. Stroke (2003) 34:1539-1546. The latest of the STAIR recommendations for clinical trial design.
  • DAVIS M, MENDELOW AD, PERRY RH, CHAMBERS IR, JAMES OF: The effect of age on cerebral oedema, cerebral infarction and neuroprotective potential in experimental occlusive stroke. Acta Neurochir. Suppl. (Wien.) (1994) 60:282–284.
  • DAVIS M, PERRY RH, MENDELOWAD: The effect of non-competitive N-methyl-D-aspartate receptor antagonism on cerebral oedema and cerebral infarct size in the aging ischaemic brain. Acta Neurochir. Suppl (1997) 70:30–33.
  • SATO K, HAYASHI T, SASAKI C et al.: Temporal and spatial differences of PSA-NCAM expression between young-adult and aged rats in normal and ischemic brains. Brain Res. (2001) 922:135–139.
  • LINDNER MD, GRIBKOFF VK, DONLAN NA, JONES TA: Long-lasting functional disabilities in middle-aged rats with small cerebral infarcts. J. Neurosci. (2003) 23:10913-10922. Paper demonstrating that older rats can be used in studies with cerebral infarct to detect long-term behavioral disabilities.
  • http://www.strokecenter.org
  • ••The website of Washington University Internet Stroke Center, a good source of information on past and current clinical trials in stroke.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.