220
Views
21
CrossRef citations to date
0
Altmetric
Review

Cholesterol absorption inhibitors as a therapeutic option for hypercholesterolaemia

&
Pages 1337-1351 | Published online: 16 Oct 2006

Bibliography

  • SEHAYEK E: Genetic regulation of cholesterol absorption and plasma plant sterol levels: commonalities and differences. J. Lipid Res. (2003) 44:2030-2038.
  • LAMMERT F, WANG DQ: New insights into the genetic regulation of intestinal cholesterol absorption. Gastroenterology (2005) 129:718-734.
  • HUI DY, HOWLES PN: Molecular mechanisms of cholesterol absorption and transport in the intestine. Semin. Cell Dev. Biol. (2005) 16:183-192.
  • TURLEY SD, DIETSCHY JM: Sterol absorption by the small intestine. Curr. Opin. Lipidol. (2003) 14:233-240.
  • VON BERGMANN K, SUDHOP T, LUTJOHANN D: Cholesterol and plant sterol absorption: recent insights. Am. J. Cardiol. (2005) 96:10D-14D.
  • GRUNDY SM, CLEEMAN JI, BAIREY MERZ N et al. FOR THE COORDINATING COMMITTEE OF THE NATIONAL CHOLESTEROL EDUCATION PROGRAM: Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. Circulation (2004) 110:227-239.
  • KESANIEMI YA, MIETTINEN TA: Cholesterol absorption efficiency regulates plasma cholesterol level in the Finnish population. Eur. J. Clin. Invest. (1987) 17:391-395.
  • SUDHOP T, VON BERGMANN K: Cholesterol absorption inhibitors for the treatment of hypercholesterolemia. Drugs (2002) 62:2333-2347.
  • LAW M: Plant sterol and stanol margarines and health. Br. Med. J. (2000) 320:861-864.
  • PLAT J, MENSINK RP: Plant stanol and sterol esters in the control of blood cholesterol levels: mechanism and safety aspects. J. Med. Chem. (2005) 96:15D-22D.
  • GINSBERG HN, KARMALLY W, SIDDIQUI M et al.: Increases in dietary cholesterol are associated with modest increases in both LDL and HDL cholesterol in healthy young women. Arterioscler. Thromb. Vasc. Biol. (1995) 15:169-178.
  • CLADER JW: The discovery of ezetimibe: a view from outside the receptor. J. Med. Chem. (2004) 47:1-9.
  • BURNETT DA: β-lactam cholesterol absorption inhibitors. Curr. Med. Chem. (2004) 11:1873-1887.
  • WEIHRAUCH JL, GARDNER JM: Sterol content of foods of plant origin. J. Am. Diet. Assoc. (1978) 73:39-47.
  • BOSNER MS, OSTLUND RE Jr, OSOFISAN O, GROSKLOS J, FRITSCHE C, LANGE LG: Assessment of percent cholesterol absorption in humans with stable isotopes. J. Lipid Res. (1993) 34:1047-1053.
  • WILSON MD, RUDEL LL: Review of cholesterol absorption with emphasis on dietary and biliary cholesterol. J. Lipid Res. (1994) 35:943-955.
  • DAWSON PA, RUDEL LL: Intestinal cholesterol absorption. Curr. Opin. Lipidol. (1999) 10:315-320.
  • TURLEY SD, DIETSCHY JM: The intestinal absorption of biliary and dietary cholesterol as a drug target for lowering the plasma cholesterol level. Prev. Cardiol. (2003) 6:29-33.
  • HERNANDEZ M, MONTENEGRO J, STEINER M et al.: Intestinal absorption of cholesterol is mediated by a saturable, inhibitable transporter. Biochim. Biophys. Acta (2000) 1486:242.
  • DETMERS PA, PATEL S, HERNANDEZ M et al.: A target for cholesterol absorption inhibitors in the enterocyte brush border membrane. Biochim. Biophys. Acta (2000) 1486:243-252.
  • ALTMANN SW, DAVIS HR Jr, YAO X et al.: The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim. Biophys. Acta (2002) 1580:77-93.
  • CAI L, ECKHARDT ER, SHI W et al.: Scavenger receptor class B type I reduces cholesterol absorption in cultured CaCo-2 cells. J. Lipid Res. (2004) 45:253-262.
  • BIETRIX F, YAN D, NAUZE M et al.: Accelerated lipid absorption in mice overexpressing intestinal SR-BI. J. Biol. Chem. (2006) 281:7214-7219.
  • ALTMANN SW, DAVIS HR Jr, ZHU L et al.: Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science (2004) 303:1201-1204.
  • GARCIA-CALVO M, LISNOCK J, BULL HG et al.: The target of ezetimibe is Niemann-Pick C1-like 1 (NPC1L1). Proc. Natl. Acad. Sci. USA (2005) 102:8132-8137.
  • BERGE KE, TIAN H, GRAF GA et al.: Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science (2000) 290:1709-1711.
  • OKIYONEDA T, KONO T, NIIBORI A et al.: Calreticulin facilitates the cell surface expression of ABCG5/G8. Biochem. Biophys. Res. Commun. (2006) 347:67-75.
  • LEE M, LU K, HAZARD S et al.: Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat. Genet. (2001) 27:79-83.
  • PLAT J, BRAGT MC, MENSINK RP: Common sequence variations in ABCG8 are related to plant sterol metabolism in healthy volunteers. J. Lipid Res. (2005) 46:68-75.
  • WETTERAU JR, AGGERBECK LP, BOUMA M-E et al.: Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science (1992) 258:999-1001.
  • SHARP D, BLINDERMAN L, COMBS KA et al.: Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature (1993) 365:65-69.
  • EDWARDS PA, KAST HR, ANISFIELD AM: BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis. J. Lipid Res. (2002) 43:2-12.
  • DIETSCHY JM, TURLEY SD, SPADY DK: Role of the liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J. Lipid Res. (1993) 34:1637-1659.
  • SEHAYEK E, ONO JG, SHEFER S et al.: Biliary cholesterol excretion: a novel mechanism that regulates dietary cholesterol absorption. Proc. Natl. Acad. Sci. USA (1998) 95:10194-10199.
  • YU L, GUPTA S, XU F et al.: Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J. Biol. Chem. (2005) 280:8742-8747.
  • LANGHEIM S, YU L, VON BERGMANN K et al.: ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile. J. Lipid Res. (2005) 46:1732-1738.
  • YU L, LI-HAWKINS J, HAMMER RE et al.: Overexpression of ABCG and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J. Clin. Invest. (2002) 110:671-680.
  • KNOPP RH, RETZLAFF BM, WALDEN CE et al.: A double-blind, randomized, controlled trial of the effects of two eggs per day in moderately hypercholesterolemic and combined hyperlipidemic subjects taught the NCEP step 1 diet. J. Am. Coll. Nutr. (1997) 16:551-561.
  • NESTEL PJ: Dietary cholesterol and plasma lipoproteins. Ann. NY Acad. Sci. (1993) 15:1-10.
  • KRUIT JK, PLÖSCH T, HAVINGA R et al.: Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology (2005) 128:147-156.
  • KOSTERS A, KUNNE C, LOOIJE N, PATEL SB, OUDE ELFERINK RP, GROEN AK: The mechanism of Abcg5/Abcg8 in biliary cholesterol absorption in mice. J. Lipid Res. (2006) 47:1959-1966.
  • LUTJOHANN D, BJORKHEM I, BEIL UF, VON BERGMANN K: Sterol absorption and sterol balance in phytosterolemia evaluated by deuterium-labeled sterols: effect of sitostanol treatment. J. Lipid Res. (1995) 36:1763-1773.
  • OSTLUND RE Jr, BOSNER MS, STENSON WF: Cholesterol absorption efficiency declines at moderate dietary doses in normal human subjects. J. Lipid Res. (1999) 40:1453-1458.
  • BOSNER MS, LANGE LG, STENSON WF, OSTLUND RE Jr: Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry. J. Lipid Res. (1999) 40:302-308.
  • SEHAYEK E, NATH C, HEINEMANN T et al.: U-shaped relationship between change in dietary cholesterol absorption and plasma lipoprotein responsiveness and evidence for extreme interindividual variation in dietary cholesterol absorption. J. Lipid Res. (1998) 39:2415-2422.
  • McNAMARA DJ: Dietary cholesterol and atherosclerosis. Biochim. Biophys. Acta (2000) 1529:310-320.
  • CONNOR WE, CONNOR SL: Dietary cholesterol and coronary heart disease. Curr. Atheroscler. Rep. (2002) 4:425-432.
  • KROMHOUT D, MENOTTI A, BLOEMBERG B et al.: Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven Countries Study. Prev. Med. (1995) 24:308-315.
  • HEGSTED DM, AUSMAN LM: Diet, alcohol and coronary heart disease. J. Nutr. (1988) 118:1184-1189.
  • HU FB, STAMPFER MJ, MANSON JE et al.: Dietary fat intake and the risk of coronary heart disease in women. N. Engl. J. Med. (1997) 337:1491-1499.
  • ASCHIERIO A, RIMM EB, GIOVANNUCCI EL, SPIEGELMAN D, STAMPFER M, WILLETT WC: Dietary fat and risk of coronary heart disease in men: cohort follow up study in the United States. Br. Med. J. (1996) 313:84-90.
  • CLARKE R, FROST C, COLLINS R, APPLEBY P, PETO R: Dietary lipids and blood cholesterol: quantitative meta-analysis of metabolic ward studies. Br. Med. J. (1997) 314:112-117.
  • HOWELL WH, McNAMARA DJ, TOSCA MA, SMITH BT, GAINES JA: Plasma lipid and lipoprotein responses to dietary fat and cholesterol: a meta-analysis. Am. J. Clin. Nutr. (1997) 67:488-492.
  • GINSBERG HN, KARMALLY W, SIDDIQUI M et al.: A dose–response study of the effects of dietary cholesterol on fasting and postprandial lipid and lipoprotein metabolism in healthy young men. Arterioscler. Thromb. (1994) 14:576-586.
  • ZILVERSMIT DB: Atherogenesis: a postprandial phenomenon. Circulation (1979) 60:473-485.
  • CLIFTON PM, NESTEL PJ: Effect of dietary cholesterol on postprandial lipoproteins in three phenotypic groups. Am. J. Clin. Nutr. (1996) 64:361-367.
  • CHANG TY, CHANG CCY, CHENG D: Acyl-coenzyme A:cholesterol acyltransferase. Ann. Rev. Biochem. (1997) 66:613-638.
  • CHANG TY, CHANG CCY, CADIGAN KM: The structure of acyl-coenzyme A:cholesterol acyltransferase and its potential relevance to atherosclerosis. Trends Cardiovasc. Med. (1994) 4:223-230.
  • RUDEL LL, SHELNESS GS: Cholesterol esters and atherosclerosis – a game of ACAT and mouse. Nat. Med. (2000) 6:1313-1314.
  • BURNETT JR, WILCOX LJ, HUFF MW: Acyl coenzyme A:cholesterol acyltransferase inhibition and hepatic apolipoprotein B secretion. Clin. Chim. Acta (1999) 286:231-242.
  • CASES S, NOVAK S, ZHENG YW et al.: ACAT-2, a second mammalian acyl CoA:cholesterol acyltransferase: its cloning, expression, and characterization. J. Biol. Chem. (1998) 273:26755-26771.
  • ANDERSON RA, JOYCE C, DAVIS M et al.: Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J. Biol. Chem. (1998) 273:26747-26754.
  • OELKERS P, BEHARI A, CROMLEY D, BILLHEIMER JT, STURLEY SL: Characterization of two human genes encoding acyl coenzyme A-cholesterol acyltransferase related enzymes. J. Biol. Chem. (1998) 273:26765-26778.
  • PARINI P, DAVIS M, LADA AT et al.: ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver. Circulation (2004) 110:2017-2023.
  • RUDEL LL, LEE RG, COCKMAN TL: Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis. Curr. Opin. Lipidol. (2001) 12:121-127.
  • CHANG TY, CHANG CCY, LIN S, YU C, LI BL, MIYAZAKI A: Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and -2. Curr. Opin. Lipidol. (2001) 12:289-296.
  • WILLNER EL, TOW B, BUHMAN KK et al.: Deficiency of acyl CoA:cholesterol acyltransferase 2 prevents atherosclerosis in apolipoprotein E-deficient mice. Proc. Natl. Acad. Sci. USA (2003) 100:1262-1267.
  • ACCAD M, SMITH SJ, NEWLAND DL et al.: Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase. J. Clin. Invest. (2000) 105:711-719.
  • REPA JJ, BUHMAN KK, FARESE RV Jr, DIETSCHY JM, TURLEY SD: ACAT2 deficiency limits cholesterol absorption in the cholesterol-fed mouse: impact on hepatic cholesterol homeostasis. Hepatology (2004) 40:1088-1097.
  • RUDEL LL, LEE RG, PARINI P: ACAT2 is a target for treatment of coronary heart disease associated with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. (2005) 25:1112-1118.
  • LEE HT, ROARK WH, PICARD JA et al.: Inhibitors of acyl-CoA:cholesterol O-acyltransferase (ACAT) as hypocholesterolemic agents: synthesis and structure–activity relationships of novel series of sulfonamides, acylphosphonamides and acylphosphoramidates. Biooorg. Med. Chem. Lett. (1998) 3:289-294.
  • LEE HT, SLISKOVIC DR, PICARD JA et al.: Inhibitors of acyl-CoA:cholesterol O-acyl transferase (ACAT) as hypocholesterolemic agents. CI-1011: an acyl sulfamate with unique cholesterol-lowering in animals fed noncholesterol-supplemented diets. J. Med. Chem. (1996) 39:5031-5034.
  • BURNETT JR, HUFF MW: Avasimibe (Pfizer). Curr. Opin. Investig. Drugs (2002) 3:1328-1333.
  • BURNETT JR, WILCOX LJ, TELFORD DE et al.: Inhibition of ACAT by avasimibe decreases both VLDL and LDL apolipoprotein B production in miniature pigs. J. Lipid Res. (1999) 40:1317-1327.
  • BURNETT JR, TELFORD DE, BARRETT PHR, HUFF MW: The ACAT inhibitor avasimibe increases the fractional clearance rate of postprandial triglyceride-rich lipoproteins in miniature pigs. Biochim. Biophys. Acta (2005) 1738:10-18.
  • INSULL W Jr, KOREN M, DAVIGNON J et al.: Efficacy and short-term safety of a new ACAT inhibitor, avasimibe, on lipids, lipoproteins, in patients with combined hyperlipidemia. Atherosclerosis (2001) 157:137-144.
  • RAAL FJ, MARAIS AD, KLEPACK E, LOVALVO J, McLAIN R, HEINONEN T: Avasimibe, an ACAT inhibitor, enhances the lipid lowering effect of atorvastatin in subjects with homozygous familial hypercholesterolemia. Atherosclerosis (2003) 171:273-279.
  • TARDIF J, GRÉGOIRE J, L’ALLIER PL et al.; FOR THE AVASIMIBE AND PROGRESSION OF LESIONS ON ULTRASOUND (A-PLUS) INVESTIGATORS: Effects of acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation (2004) 110:3372-3377.
  • NISSEN SE, TUZCU EM, BREWER HB Jr et al.; FOR THE ACAT INTRAVASCULAR ATHEROSCLEROSIS TREATMENT EVALUATION (ACTIVATE) INVESTIGATORS: Effect of ACAT inhibition on the progression of coronary atherosclerosis. N. Engl. J. Med. (2006) 354:1253-1263.
  • MEUWESE MC, FRANSSEN R, STROES ESG, KASTELEIN JJP: And then there were acyl coenzyme A:cholesterol acyl transferase inhibitors. Curr. Opin. Lipidol. (2006) 17:426-430.
  • FARESE RV Jr: The nine lives of ACAT inhibitors. Arterioscler. Thromb. Vasc. Biol. (2006) 26:1684-1686.
  • BELL TA III, BROWN JM, GRAHAM MJ, LEMONDIS KM, CROOKE RM, RUDEL LL: Liver-specific inhibition of acyl-coenzyme A: cholesterol acyltransferase 2 with antisense oligonucleotides limits atherosclerosis development in apolipoprotein B100-only low-density lipoprotein receptor-/- mice. Arterioscler. Thromb. Vasc. Biol. (2006) 26:1814-1820.
  • SHNEIDER BL: Intestinal bile acid transport: biology, physiology, and pathophysiology. J. Pediatr. Gastroenterol. Nutr. (2001) 32:407-417.
  • WONG MH, OELKERS P, CRADDOCK AL, DAWSON PA: Expression cloning and characterization of the ileal sodium-dependent bile acid transporter. J. Biol. Chem. (1994) 269:1340-1347.
  • SHNEIDER BL, DAWSON PA, CHRISTIE DM, HARDIKAR W, WONG MH, SUCHY FJ: Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J. Clin. Invest. (1995) 95:745-754.
  • LOVE MW, DAWSON PA: New insights into bile acid transport. Curr. Opin. Lipidol. (1998) 9:225-229.
  • SCHAEFER EF, EISENBERG S, LEVY RI: Lipoprotein apoprotein metabolism. J. Lipid Res. (1978) 19:667-687.
  • REPA JJ, MANGELSDORF DJ: The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Ann. Rev. Cell Dev. Biol. (2000) 16:459-481.
  • LU TT, MAKISHIMA M, REPA JJ, SCHOONJANS K et al.: Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell (2000) 6:507-515.
  • WEST KL, ZERN TL, BUTTEIGER DN, KELLER BT, FERNANDEZ ML: SC-435, an ileal apical sodium co-dependent bile acid transporter (ASBT) inhibitor lowers plasma cholesterol and reduces atherosclerosis in guinea pigs. Atherosclerosis (2003) 171:201-210.
  • BHAT BG, RAPP SR, BEAUDRY JA et al.: Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE-/- mice by SC-435. J. Lipid Res. (2003) 44:1614-1621.
  • LI H, XU G, SHANG Q et al.: Inhibition of ileal bile acid transport lowers plasma cholesterol levels by inactivating hepatic farnesoid X receptor and stimulating cholesterol 7 α-hydroxylase. Metabolism (2004) 53:927-932.
  • HUFF MW, TELFORD DE, EDWARDS JY et al.: Inhibition of the apical sodium-dependent bile acid transporter reduces LDL cholesterol and apoB by enhanced plasma clearance of LDL apoB. Arterioscler. Thromb. Vasc. Biol. (2002) 22:1884-1891.
  • TELFORD DE, EDWARDS JY, LIPSON SM et al.: Inhibition of both the apical sodium-dependent bile acid transporter and HMG-CoA reductase markedly enhances the clearance of LDL apoB. J. Lipid Res. (2003) 44:943-952.
  • INSULL W Jr: Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med. J. (2006) 99:257-273.
  • HUFF MW, TELFORD DE, WOODCROFT K, STRONG WLP: Mevinolin and cholestyramine inhibit the direct synthesis of low density lipoprotein apolipoprotein B in miniature pigs. J. Lipid Res. (1985) 26:1175-1186.
  • HUFF MW, TELFORD DE: Regulation of low density lipoprotein apoprotein B metabolism by lovastatin and cholestyramine in miniature pigs: effects on LDL composition and synthesis of LDL subfractions. Metabolism (1989) 38:256-264.
  • BILHEIMER DW, GRUNDY SM, BROWN MS, GOLDSTEIN JL: Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc. Natl. Acad. Sci. USA (1983) 80:4124-4128.
  • GAW A, PACKARD CJ, LINDSAY GM et al.: Effects of colestipol alone and in combination with simvastatin on apolipoprotein B metabolism. Arterioscler. Thromb. Vasc. Biol. (1996) 16:236-249.
  • VEGA GL, EAST C, GRUNDY SM: Effects of combined therapy with lovastatin and colestipol in heterozygous familial hypercholesterolemia: effects on kinetics of apolipoprotein B. Arteriosclerosis (1989) 9:135-144.
  • DAVIDSON MH, DICKLIN MR, MAKAI KC, KLEINPELL RM: Colesevelam hydrochloride: a non-absorbed, polymeric cholesterol-lowering agent. Expert Opin. Investig. Drugs (2000) 9:2663-2671.
  • STEINMETZ KL, SCHONDER KS: Colesevelam: potential uses or the newest bile resin. Cardiovasc. Drug Rev. (2005) 23:15-30.
  • ROSENBAUM DP, PETERSON JS, DUCHARME S, MARKHAM P, GOLDBERG DI: Absorption, distribution and excretion of GT31-104, a novel bile acid sequestrant, in rats and dogs after acute and subchronic administration. J. Pharm. Sci. (1997) 86:591-595.
  • DONOVAN JM, STYPINSKI D, STILES MR, OLSON TA, BURKE SK: Drug interactions with colesevelam hydrochloride, a novel, potent lipid-lowering agent. Cardiovasc. Drugs Ther. (2000) 14:681-690.
  • DAVIDSON MH, DILLON MA, GORDON B et al.: Colesevelam hydrochloride (cholestagel): a new, potent bile acid sequestrant associated with a low incidence of gastrointestinal side effects. Arch. Intern. Med. (1999) 159:1893-1900.
  • KNAPP HH, SCHROTT H, MA P et al.: Efficacy and safety of combination simvastatin and colesevelam in patients with primary hypercholesterolemia. Am. J. Med. (2001) 110:352-360.
  • HUNNINGHAKE D, INSULL W Jr, TOTH P, DAVIDSON D, DONOVAN JM, BURKE SK: Coadministration of colesevelam hydrochloride with atorvastatin lowers LDL cholesterol additively. Atherosclerosis (2001) 158:407-416.
  • DONOVAN JM, VON BERGMANN K, SETCHELL KD et al.: Effects of colesevelam HCl on sterol and bile acid excretion in patients with type IIa hypercholesterolemia. Dig. Dis. Sci. (2005) 50:1232-1238.
  • DAVIS HR Jr, COMPTON DS, HOOS L, TETZLOFF G: Ezetimibe, a potent cholesterol absorption inhibitor, inhibits the development of atherosclerosis in ApoE knockout mive. Arterioscler. Thromb. Vasc. Biol. (2001) 21:2032-2038.
  • KOSOGLOU T, STATKEVICH P, JOHNSON-LEVONAS AO, PAOLINI JF, BERGMAN AJ, ALTON KB: Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin. Pharmacokinet. (2005) 44:467-494.
  • ZAKS S, DODDS DR: Enzymatic glucuronidation of a novel cholesterol absorption inhibitor, Sch 58235. Appl. Biochem. Biotechnol. (1998) 73:205-214.
  • GHOSAL A, HAPANGAMA N, YUAN Y et al.: Identification of human UDP-glucuronosyltransferase enzyme(s) responsible or the glucuronidation of ezetimibe (Zetia). Drug Metab. Dispos. (2004) 32:314-320.
  • PATRICK JE, KOSOGLOU T, STAUBER KL et al.: Disposition of the selective cholesterol absorption inhibitor ezetimibe in healthy male subjects. Drug Metab. Dispos. (2002) 30:430-437.
  • SUDHOP T, LUTJOHANN D, KODAL A et al.: Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation (2002) 106:1943-1948.
  • JEU L, CHENG JW: Pharmacology and therapeutics of ezetimibe (SCH 58235), a cholesterol-absorption inhibitor. Clin. Ther. (2003) 25:2352-2387.
  • YU L, VON BERGMANN K, LUTJOHANN D, HOBBS HH, COHEN JC: Ezetimibe normalizes metabolic defects in mice lacking ABCG5 and ABCG8. J. Lipid Res. (2005) 46:1739-1744.
  • DUJOVNE CA, ETTINGER MP, McNEER JF et al.; EZETIMIBE STUDY GROUP: Efficacy and safety of a potent new selective cholesterol absorption inhibitor, ezetimibe, in patients with primary hypercholesterolemia. Am. J. Cardiol. (2002) 90:1092-1097.
  • KNOPP RH, GITTER H, TRUITT T et al.; EZETIMIBE STUDY GROUP: Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur. Heart J. (2003) 24:729-741.
  • TREMBLAY AJ, LAMARCHE B, COHN JS, HOGUE JC, COUTURE P: Effect of ezetimibe on the in vivo kinetics of apoB-48 and apoB-100 in men with primary hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. (2006) 26:1101-1106.
  • GAGNÉ C, GAUDET D, BRUCKERT E; EZETIMIBE STUDY GROUP: Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation (2002) 105:2469-2475.
  • GAGNÉ C, BAYS HE, WEISS SR et al.; EZETIMIBE STUDY GROUP: Efficacy and safety of ezetimibe added to ongoing statin therapy for treatment of patients with primary hypercholesterolemia. Am. J. Cardiol. (2002) 90:1084-1091.
  • DAVIDSON MH, McGARRY T, BETTIS R et al.: Ezetimibe coadministered with simvastatin in patients with primary hypercholesterolemia. J. Am. Coll. Cardiol. (2002) 40:2125-2134.
  • BALLANTYNE CM, HOURI J, NOTARBARTOLO A et al.; EZETIMIBE STUDY GROUP: Effects of ezetimibe coadministered with atorvastatin in 628 patients with primary hypercholesterolemia: a prospective, randomized, double-blind trial. Circulation (2003) 107:2409-2415.
  • STEIN E, STENDER S, MATA P et al.; EZETIMIBE STUDY GROUP: Achieving lipoprotein goals in patients at high risk with severe hypercholesterolemia: efficacy and safety of ezetimibe co-administered with atorvastatin. Am. Heart J. (2004) 148:447-455.
  • FUX R, MORIKE K, GUNDEL UF, HARTMANN R, GLEITER CH: Ezetimibe and statin-associated myopathy. Ann. Intern. Med. (2004) 140:671-672.
  • SALEN G, VON BERGMANN K, LUTJOHANN D et al.; MULTICENTER SITOSTEROLEMIA STUDY GROUP: Ezetimibe efectively reduces plasma plant sterols in patients with sitosterolemia. Circulation (2004) 109:966-971.
  • DAVIES JP, SCOTT C, OISHI K, LIAPIS A, IONNOU YA: Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J. Biol. Chem. (2005) 280:12710-12720.
  • SANE AT, SINNETT D, DELVIN E et al.: Localization and role of NPC1L1 in cholesterol absorption in human intestine. J. Lipid Res. (2006) 47(10):2112-2120.
  • YU L, BHARADWAJ S, BROWN JM et al.: Cholesterol-regulated translocation of NPC1L1 to the cell surface facilitates free cholesterol uptake. J. Biol. Chem. (2006) 281:6616-6624.
  • HEGELE RA, GUY J, BAN MR, WANG J: NPC1L1 haplotype is associated with inter-individual variation in plasma low-density lipoprotein response to ezetimibe. Lipids Health Dis. (2005) 12:16.
  • SIMON JS, KARNOUB MC, DEVLIN DJ et al.: Sequence variation in NPC1L1 and association with improved LDL-cholesterol lowering in response to cholesterol treatment. Genomics (2005) 86:648-656.
  • CLADER JW: Ezetimibe and other azetidinone cholesterol absorption inhibitors. Curr. Top. Med. Chem. (2005) 5:243-256.
  • PLAT J, KERCKHOFFS DA, MENSINK RP: Therapeutic potential of plant sterols and stanols. Curr. Opin. Lipidol. (2000) 11:571-576.
  • OSTLUND RE Jr: Phytosterols and cholesterol metabolism. Curr. Opin. Lipidol. (2004) 15:37-41.
  • MOGHADASIAN MH, McMANUS BM, PRITCHARD PH, FROHLICH JJ: ‘Tall oil’-derived phytosterols reduce atherosclerosis in apoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. (1997) 17:119-126.
  • VOLGER OL, MENSINK RP, PLAT J, HORNSTRA G, HAVEKES LM, PRINCEN HMG: Dietary vegetable oil and wood derived plant stanol esters reduce atherosclerotic lesion size and severity in apoE*3-Leiden transgenic mice. Atherosclerosis (2001) 157:375-381.
  • MOGHADASIAN MH, FROHLICH JJ: Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: clinical and experimental evidence. Am. J. Med. (1999) 107:588-594.
  • NESTEL P, CEHUN M, POMEROY S, ABBEY M, WELDON G: Cholesterol-lowering effects of plant sterol esters and non-esterified stanols in margarine, butter and low-fat foods. Eur. J. Clin. Nutr. (2001) 55:1084-1090.
  • PLAT J, MENSINK RP: Effcets of plant sterols and stanols on lipid metabolism and cardiovascular risk. Nutr. Metab. Cardiovasc. Dis. (2001) 11:31-40.
  • OSTLUND RE Jr: Phytosterols in human nutrition. Ann. Rev. Nutr. (2002) 22:533-549.
  • BURNETT JR: FM-VP4 (Forbes Medi-Tech). Curr. Opin. Investig. Drugs (2003) 4:1120-1125.
  • WASAN KM, PETEHERYCH KD, PRITCHARD PH: Effects of a novel hydrophilic phytostanol analog on plasma lipid concentrations in gerbils. J. Pharm. Sci. (2001) 90:1795-1799.
  • WASAN KM, NAJAFI S, WONG J, KWONG M, PRITCHARD PH: Assessing plasma lipid levels, body weight, and hepatic and renal toxicity following chronic oral administration of a water soluble phytostanol compound, FM-VP4, to gerbils. J. Pharm. Pharmaceut. Sci. (2001) 4:228-234.
  • WASAN KM, PETEHERYCH KD, NAJAFI S, ZAMFIR C, PRITCHARD PH: Assessing the plasma pharmacokinetics, tissue distribution, excretion and effects on cholesterol pharmacokinetics of a novel hydrophilic compound, FM-VP4, following administration to rats. J. Pharm. Pharmaceut. Sci. (2001) 4:207-216.
  • RAMASWAMY M, YAU E, WASAN KM, BOULANGER KD, LI ML, PRITCHARD PH: Influence of phytostanol phosphoryl ascorbate, FM-VP4, on pancreatic lipase activity and cholesterol acumulation within Caco-2 cells. J. Pharm. Pharmaceut. Sci. (2002) 5:29-38.
  • WASAN KM, ZAMFIR C, PRITCHARD PH, PEDERSON RA: Influence of phytostanol phosphoryl ascorbate (FM-VP4) on insulin resistance, hyperglycemia, plasma lipid levels, and gastrointestinal absorption of exogenous cholesterol in Zucker (fa/fa) fatty and lean rats. J. Pharm. Sci. (2003) 92:281-288.
  • WASAN KM, YAU E, BOULANGER KD, RAMSWAMY M, PRITCHARD PH: Effects of disodium ascorbyl phytostanol phosphates (FM-VP4) on cholesterol accumulation within rat intestinal cells. AAPB PharmSci. (2003) 5:E6.
  • LUKIC T, WASAN KM, ZAMFIR C, MOGHADASIAN MH: Disodium ascorbyl phytostanol phosphate reduces plasma cholesterol concentrations and atherosclerotic lesion formation in apolipoprotein E-deficient mice. Metabolism (2003) 52:425-431.
  • LOOIJE NA, RISOVIC V, STEWART DJ, DEBEYER D, KUTNEY J, WASAN KM: Disodium ascorbyl phytostanyl phosphates (FM-VP4) reduces plasma cholesterol concentration, body weight and abdominal fat gain within a dietary-induced obese mouse model. J. Pharm. Pharmaceut. Sci. (2005) 8:400-408.
  • WETTERAU JR, COMBS KA, SPINNER SN, JOINER BJ: Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J. Biol. Chem. (1990) 265:9800-9807.
  • WANG L, FAST DG, ATTIE AD: The enzymatic and non-enzymatic roles of protein-disulfide isomerase in apolipoprotein B secretion. J. Biol. Chem. (1997) 272:27644-27651.
  • HUSSAIN MM, SHI J, DREIZEN P: Microsomal triglyceride transfer protein and its role in apoB-lipoprotein metabolism. J. Lipid Res. (2003) 44:22-32.
  • HOOPER AJ, VAN BOCKXMEER FM, BURNETT JR: Monogenic hypercholesterolaemic lipid disorders and apolipoprotein B metabolism. Crit. Rev. Clin. Lab. Sci. (2005) 42:515-545.
  • WANG S, McLEOD RS, GORDON DA, YAO Z: The microsomal triglyceride transfer protein facilitates assembly and secretion of apolipoprotein B-containing lipoproteins and decreases cotranslational degradation of apolipoprotein B in transfected COS-7 cells. J. Biol. Chem. (1996) 271:14124-14133.
  • DU EZ, WANG S, KAYDEN HJ, SOKOL R, CURTISS LK, DAVIS RA: Translocation of apolipoprotein B across the endoplasmic reticulum is blocked in aβlipoproteinemia. J. Lipid Res. (1996) 37:1309-1315.
  • SHOULDERS CC, SHELNESS GS: Current biology of MTP: implications for selective inhibition. Curr. Top. Med. Chem. (2005) 5:283-300.
  • TARUGI P, LONARDO A, BALLARINI G et al.: A study of fatty liver disease and plasma lipoproteins in a kindred with familial hypoβlipoproteinemia due to a novel truncated form of apolipoprotein B (APO B-54.5). J. Hepatol. (2000) 33:361-370.
  • WHITFIELD AJ, BARRETT PHR, ROBERTSON K, HAVLAT MF, VAN BOCKXMEER FM, BURNETT JR: Liver dysfunction and steatosis in familial hypoβlipoproteinemia. Clin. Chem. (2005) 51:266-269.
  • WHITFIELD AJ, BARRETT PHR, VAN BOCKXMEER FM, BURNETT JR: Lipid disorders and mutations in the APOB gene. Clin. Chem. (2004) 50:1725-1732.
  • GABELLI C, BILATO C, MARTINI S et al.: Homozygous familial hypobetalipoproteinemia. Increased LDL catabolism in hypoβlipoproteinemia due to a truncated apolipoprotein B species, apo B-87Padova. Arterioscler. Thromb. Vasc. Biol. (1996) 16:1189-1196.
  • UESHIMA K, AKISHA-UMENO H, NAGAYOSHI A, TAKAKURA S, MATSUO M, MUTOH S: Implitapide, a microsomal triglyceride transfer protein inhibitor, reduces progression of atherosclerosis in apolipoprotein E knockout mice fed a western-type diet: involvement of the inhibition of postprandial triglyceride elevation. Biol. Pharm. Bull. (2005) 28:247-252.
  • CHANDLER CE, WILDER DE, PETTINI JL et al.: CP-346086: an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and humans. J. Lipid Res. (2003) 44:1887-1901.
  • AGGARWAL D, WEST KL, ZERN TL, SHRESTHA S, VERGARA-JIMENEZ M, FERNANDEZ ML: JTT-130, a microsomal triglyceride trasnfer protein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs. BMC Cardiovasc. Disorders (2005) 5:30.
  • BURNETT JR: Drug evaluation: the MTP inhibitor JTT-130 as a potential treatment for hyperlipidemia. IDrugs (2006) 9:495-499.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.