55
Views
13
CrossRef citations to date
0
Altmetric
Review

Catalytic antioxidants to treat amyotropic lateral sclerosis

Pages 1383-1393 | Published online: 16 Oct 2006

Bibliography

  • PATEL M, DAY BJ: Metalloporphyrin class of therapeutic catalytic antioxidants. Trends Pharmacol. Sci. (1999) 20:359-364.
  • CROW JP: Peroxynitrite scavenging by metalloporphyrins and thiolates. Free Radic. Biol. Med. (2000) 28:1487-1494.
  • BROMBERG MB: Pathogenesis of amyotrophic lateral sclerosis: a critical review. Curr. Opin. Neurol. (1999) 12:581-588.
  • SHAW CE, AL CHALABI A, LEIGH N: Progress in the pathogenesis of amyotrophic lateral sclerosis. Curr. Neurol. Neurosci. Rep. (2001) 1:69-76.
  • ROSEN DR: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature (1993) 364:362.
  • GURNEY ME, PU H, CHIU AY et al.: Motor neuron degeneration in mice that express a human Cu–Zn superoxide dismutase mutation. Science (1994) 264:1772-1775.
  • GURNEY ME: The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J. Neurol. Sci. (1997) 152(Suppl. 1):S67-S73.
  • CROW JP, CALINGASAN NY, CHEN J, HILL JL, BEAL MF: Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann. Neurol. (2005) 58:258-265.
  • ESTEVEZ AG, CROW JP, SAMPSON JB et al.: Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science (1999) 286:2498-2500.
  • RAKHIT R, CUNNINGHAM P, FURTOS-MATEI A et al.: Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J. Biol. Chem. (2002) 277:47551-47556.
  • FIELD LS, FURUKAWA Y, O’HALLORAN TV, CULOTTA VC: Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J. Biol. Chem. (2003) 278:28052-28059.
  • ARNESANO F, BANCI L, BERTINI I, MARTINELLI M, FURUKAWA Y, O’HALLORAN TV: The unusually stable quaternary structure of human Cu–Zn-superoxide dismutase 1 is controlled by both metal occupancy and disulfide status. J. Biol. Chem. (2004) 279:47998-48003.
  • LYNCH SM, BOSWELL SA, COLON W: Kinetic stability of Cu/Zn superoxide dismutase is dependent on its metal ligands: implications for ALS. Biochemistry (2004) 43:16525-16531.
  • CROW JP, SAMPSON JB, ZHUANG Y, THOMPSON JA, BECKMAN JS: Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J. Neurochem. (1997) 69:1936-1944.
  • LYONS TJ, LIU H, GOTO JJ et al.: Mutations in copper-zinc superoxide dismutase that cause amyotrophic lateral sclerosis alter the zinc binding site and the redox behavior of the protein. Proc. Natl. Acad. Sci. USA (1996) 93:12240-12244.
  • BECKMAN JS, ESTEVEZ AG, CROW JP, BARBEITO L: Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci. (2001) 24:S15-S20.
  • CROW JP: Administration of Mn porphyrin and Mn texaphyrin at symptom onset extends survival of ALS mice. In: Medicinal inorganic chemistry. Sessler JL, Doctrow SR, McMurry TJ, Lippard SJ (Eds), American Chemical Society, Washington, DC, USA (2005) 903:295-318.
  • SATHASIVAM S, GRIERSON AJ, SHAW PJ: Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibition. Neuropathol. Appl. Neurobiol. (2005) 31:467-485.
  • COZZOLINO M, FERRI A, FERRARO E, ROTILIO G, CECCONI F, CARRI MT: Apaf1 mediates apoptosis and mitochondrial damage induced by mutant human SOD1s typical of familial amyotrophic lateral sclerosis. Neurobiol. Dis. (2006) 21:69-79.
  • ABE K, PAN LH, WATANABE M, KATO T, ITOYAMA Y: Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci. Lett. (1995) 199:152-154.
  • CHOU SM, WANG HS, KOMAI K: Colocalization of NOS and SOD1 in neurofilament accumulation within motor neurons of amyotrophic lateral sclerosis: an immunohistochemical study. J. Chem. Neuroanat. (1996) 10:249-258.
  • BEAL MF, FERRANTE RJ, BROWNE SE, MATTHEWS RT, KOWALL NW, BROWN RH Jr: Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. (1997) 42:644-654.
  • CASONI F, BASSO M, MASSIGNAN T et al.: Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J. Biol. Chem. (2005) 280:16295-16304.
  • HENSLEY K, WILLIAMSON KS, FLOYD RA: Measurement of 3-nitrotyrosine and 5-nitro-γ-tocopherol by high-performance liquid chromatography with electrochemical detection. Free Radic. Biol. Med. (2000) 28:520-528.
  • WILLIAMSON KS, GABBITA SP, MOU S et al.: The nitration product 5-nitro-γ-tocopherol is increased in the Alzheimer brain. Nitric Oxide (2002) 6:221-227.
  • WU AS, KIAEI M, AGUIRRE N et al.: Iron porphyrin treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis. J. Neurochem. (2003) 85:142-150.
  • PETRI S, KIAEI M, KIPIANI K et al.: Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. (2005) 22(1):40-49.
  • ORRELL RW: AEOL-10150 (Aeolus). Curr. Opin. Investig. Drugs (2006) 7:70-80.
  • BATINIC-HABERLE I, BENOV L, SPASOJEVIC I, FRIDOVICH I: The ortho effect makes manganese (III) meso-tetrakis(N-methylpyridinium-2-yl) porphyrin a powerful and potentially useful superoxide dismutase mimic. J. Biol. Chem. (1998) 273:24521-24528.
  • BATINIC-HABERLE I, SPASOJEVIC I, STEVENS RD et al.: New PEG-ylated Mn(III) porphyrins approaching catalytic activity of SOD enzyme. Dalton Trans. (2006):617-624.
  • Rapid decomposition of peroxynitrite by manganese porphyrin–antioxidant redox couples. Bioorg. Med. Chem. Lett. (1997) 7:2913-2918.
  • Manganese porphyrins as redox-coupled peroxynitrite reductases. J. Am. Chem. Soc. (1998) 120:6053-6061.
  • HUNT JA, LEE J, GROVES JT: Amphiphilic peroxynitrite decomposition catalysts in liposomal assemblies. Chem. Biol. (1997) 4:845-858.
  • CROW JP: Manganese and iron porphyrins catalyze peroxynitrite decomposition and simultaneously increase nitration and oxidant yield: implications for their use as peroxynitrite scavengers in vivo. Arch. Biochem. Biophys. (1999) 371:41-52.
  • SHIMANOVICH R, GROVES JT: Mechanisms of peroxynitrite decomposition catalyzed by FeTMPS, a bioactive sulfonated iron porphyrin. Arch. Biochem. Biophys. (2001) 387:307-317.
  • Mechanisms of iron porphyrin reactions with peroxynitrite. J. Am. Chem. Soc. (1998) 120:7493-7501.
  • Peroxynitrite decomposition catalysts. J. Am. Chem. Soc. (1996) 118:8735-8736.
  • BECKMAN JS, BECKMAN TW, CHEN J, MARSHALL PA, FREEMAN BA: Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA (1990) 87:1620-1624.
  • KOPPENOL WH, MORENO JJ, PRYOR WA, ISCHIROPOULOS H, BECKMAN JS: Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. (1992) 5:834-842.
  • CROW JP, SPRUELL C, CHEN J et al.: On the pH-dependent yield of hydroxyl radical products from peroxynitrite. Free Radic. Biol. Med. (1994) 16:331-338.
  • KISSNER R, NAUSER T, BUGNON P, LYE PG, KOPPENOL WH: Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem. Res. Toxicol. (1997) 10:1285-1292.
  • BECKMAN JS, CROW JP: Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem. Soc. Trans. (1993) 21:330-334.
  • BECKMAN JS, KOPPENOL WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. (1996) 271:C1424-C1437.
  • DAY BJ, FRIDOVICH I, CRAPO JD: Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch. Biochem. Biophys. (1997) 347:256-262.
  • MISKO TP, HIGHKIN MK, VEENHUIZEN AW et al.: Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J. Biol. Chem. (1998) 273:15646-15653.
  • SALVEMINI D, WANG ZQ, STERN MK, CURRIE MG, MISKO TP: Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc. Natl. Acad. Sci. USA (1998) 95:2659-2663.
  • CROSS AH, SAN M, STERN MK, KEELING RM, SALVEMINI D, MISKO TP: A catalyst of peroxynitrite decomposition inhibits murine experimental autoimmune encephalomyelitis. J. Neuroimmunol. (2000) 107:21-28.
  • CUZZOCREA S, MISKO TP, COSTANTINO G et al.: Beneficial effects of peroxynitrite decomposition catalyst in a rat model of splanchnic artery occlusion and reperfusion. FASEB J. (2000) 14:1061-1072.
  • OBROSOVA IG, MABLEY JG, ZSENGELLER Z et al.: Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst. FASEB J. (2005) 19:401-403.
  • TAKAKURA K, BECKMAN JS, MacMILLAN-CROW LA, CROW JP: Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite. Arch. Biochem. Biophys. (1999) 369:197-207.
  • MONDORO TH, SHAFER BC, VOSTAL JG: Peroxynitrite-induced tyrosine nitration and phosphorylation in human platelets. Free Radic. Biol. Med. (1997) 22:1055-1063.
  • LI X, DE SARNO P, SONG L, BECKMAN JS, JOPE RS: Peroxynitrite modulates tyrosine phosphorylation and phosphoinositide signalling in human neuroblastoma SH-SY5Y cells: attenuated effects in human 1321N1 astrocytoma cells. Biochem. J. (1998) 331(Part 2):599-606.
  • MacMILLAN-CROW LA, GREENDORFER JS, VICKERS SM, THOMPSON JA: Tyrosine nitration of c-SRC tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch. Biochem. Biophys. (2000) 377:350-356.
  • MALLOZZI C, DI STASI AM, MINETTI M: Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn. FEBS Lett. (2001) 503:189-195.
  • ESTEVEZ AG, RADI R, BARBEITO L, SHIN JT, THOMPSON JA, BECKMAN JS: Peroxynitrite-induced cytotoxicity in PC12 cells: evidence for an apoptotic mechanism differentially modulated by neurotrophic factors. J. Neurochem. (1995) 65:1543-1550.
  • ESTEVEZ AG, SPEAR N, MANUEL SM, BARBEITO L, RADI R, BECKMAN JS: Role of endogenous nitric oxide and peroxynitrite formation in the survival and death of motor neurons in culture. Prog. Brain Res. (1998) 118:269-280.
  • BAO F, LIU D: Peroxynitrite generated in the rat spinal cord induces apoptotic cell death and activates caspase-3. Neuroscience (2003) 116:59-70.
  • FLOYD RA: Antioxidants, oxidative stress, and degenerative neurological disorders. Proc. Soc. Exp. Biol. Med. (1999) 222:236-245.
  • WHITE BC, SULLIVAN JM, DE GRACIA DJ et al.: Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J. Neurol. Sci. (2000) 179:1-33.
  • POLI G, LEONARDUZZI G, BIASI F, CHIARPOTTO E: Oxidative stress and cell signalling. Curr. Med. Chem. (2004) 11:1163-1182.
  • FRANCESCHI C, OLIVIERI F, MARCHEGIANI F et al.: Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mech. Ageing Dev. (2005) 126:351-361.
  • COBBS CS, WHISENHUNT TR, WESEMANN DR, HARKINS LE, VAN MEIR EG, SAMANTA M: Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res. (2003) 63:8670-8673.
  • KEEP M, ELMER E, FONG KS, CSISZAR K: Intrathecal cyclosporin prolongs survival of late-stage ALS mice. Brain Res. (2001) 894:327-331.
  • ACSADI G, ANGUELOV RA, YANG H et al.: Increased survival and function of SOD1 mice after glial cell-derived neurotrophic factor gene therapy. Hum. Gene Ther. (2002) 13:1047-1059.
  • ROTHSTEIN JD: Of mice and men: reconciling preclinical ALS mouse studies and human clinical trials. Ann. Neurol. (2003) 53:423-426.
  • SHENG H, SPASOJEVIC I, WARNER DS, BATINIC-HABERLE I: Mouse spinal cord compression injury is ameliorated by intrathecal cationic manganese(III) porphyrin catalytic antioxidant therapy. Neurosci. Lett. (2004) 366:220-225.
  • KONOREV EA, KOTAMRAJU S, ZHAO H, KALIVENDI S, JOSEPH J, KALYANARAMAN B: Paradoxical effects of metalloporphyrins on doxorubicin-induced apoptosis: scavenging of reactive oxygen species versus induction of heme oxygenase-1. Free Radic. Biol. Med. (2002) 33:988.
  • KALIVENDI SV, KOTAMRAJU S, CUNNINGHAM S, SHANG T, HILLARD CJ, KALYANARAMAN B: 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem. J. (2003) 371:151-164.
  • BISHOP A, CASHMAN NR: Induced adaptive resistance to oxidative stress in the CNS: a discussion on possible mechanisms and their therapeutic potential. Curr. Drug Metab. (2003) 4:171-184.
  • COUILLARD-DESPRES S, ZHU Q, WONG PC, PRICE DL, CLEVELAND DW, JULIEN JP: Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. Proc. Natl. Acad. Sci. USA (1998) 95:9626-9630.
  • WILLIAMSON TL, BRUIJN LI, ZHU Q et al.: Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc. Natl. Acad. Sci. USA (1998) 95:9631-9636.
  • VREMAN HJ, CIPKALA DA, STEVENSON DK: Characterization of porphyrin heme oxygenase inhibitors. Can. J. Physiol. Pharmacol. (1996) 74:278-285.
  • ZHANG X, FUJII H, MATERA KM et al.: Stereoselectivity of each of the three steps of the heme oxygenase reaction: hemin to meso-hydroxyhemin, meso-hydroxyhemin to verdoheme, and verdoheme to biliverdin. Biochemistry (2003) 42:7418-7426.
  • TAUSKELA JS, BRUNETTE E, O’REILLY N et al.: An alternative Ca2+-dependent mechanism of neuroprotection by the metalloporphyrin class of superoxide dismutase mimetics. FASEB J. (2005) 19:1734-1736.
  • SHAN Y, PEPE J, LU TH, ELBIRT KK, LAMBRECHT RW, BONKOVSKY HL: Induction of the heme oxygenase-1 gene by metalloporphyrins. Arch. Biochem. Biophys. (2000) 380:219-227.
  • YOUNG SW, QING F, HARRIMAN A et al.: Gadolinium (III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI. Proc. Natl. Acad. Sci. USA (1996) 93:6610-6615.
  • SESSLER JL, MILLER RA: Texaphyrins: new drugs with diverse clinical applications in radiation and photodynamic therapy. Biochem. Pharmacol. (2000) 59:733-739.
  • SHIMANOVICH R, HANNAH S, LYNCH V et al.: Mn (II)-texaphyrin as a catalyst for the decomposition of peroxynitrite. J. Am. Chem. Soc. (2001) 123:3613-3614.
  • EVENS AM: Motexafin gadolinium: a redox-active tumor selective agent for the treatment of cancer. Curr. Opin. Oncol. (2004) 16:576-580.
  • MAGDA D, LECANE P, MILLER RA et al.: Motexafin gadolinium disrupts zinc metabolism in human cancer cell lines. Cancer Res. (2005) 65:3837-3845.
  • TRAYNOR BJ, BRUIJN L, CONWIT R et al.: Neuroprotective agents for clinical trials in ALS: a systematic assessment. Neurology (2006) 67(1):20-27.
  • BROWN R Jr: ALS: causes and therapeutic perspectives, Montreal, Canada (September 2005) (Presentation).
  • CROW JP: Correlation of therapeutic Effect of MGd in G93A ALS mice with alteration of Zn metabolism and presence of Zn-deficient SOD1 in vivo. International ALS/MND Meeting, Milan, Italy (2005) (Abstract/presentation).
  • MEYERS CA, SMITH JA, BEZJAK A et al.: Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized Phase III trial. J. Clin. Oncol. (2004) 22(1):157-165.

Websites

  • http://www.als.net/research/studies/animal StudyList.asp ALS Therapy Development Foundation website.
  • http://www.als.net/research/studies/animal StudyList.asp ALS Therapy Development Foundation website.
  • http://www.als.net/research/studies/animal StudyList.asp ALS Therapy Development Foundation website.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.