235
Views
53
CrossRef citations to date
0
Altmetric
Review

Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases

, , &
Pages 873-886 | Published online: 21 Jul 2006

Bibliography

  • ROTH BL, SHEFFLER DJ, KROEZE WK: Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. (2004) 3:353-359.
  • MORPHY R, KAY C, RANKOVIC Z: From magic bullets to designed multiple ligands. Drug Discov. Today (2004) 9:641-651.
  • SCHMITT B, BERNHARDT T, MOELLER HJ, HEUSER I, FROLICH L: Combination therapy in Alzheimer’s disease: a review of current evidence. CNS Drugs (2004) 18:827-844.
  • MORPHY R, RANKOVIC Z: Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. (2005) 48:6523-6543.
  • RUTHERFORD GW, SANGANI PR, KENNEDY GE: Three- or four- versus two-drug antiretroviral maintenance regimens for HIV infection. Cochrane Database Syst. Rev. (2003) 4:CD002037.
  • CHUNG KF, ADCOCK IM: Combination therapy of long-acting β2-adrenoceptor agonists and corticosteroids for asthma. Treat. Respir. Med. (2004) 3:279-289.
  • FRISHMAN WH, ZUCKERMAN AL: Amlodipine/atorvastatin: the first cross risk factor polypill for the prevention and treatment of cardiovascular disease. Expert Rev. Cardiovasc. Ther. (2004) 2:675-781.
  • ZERKAK D, DOUGADOS M: Benefit/risk of combination therapies. Clin. Exp. Rheumatol. (2004) 35(Suppl. 5):S71-S76.
  • KEITH CT, BORISY AA, STOCKWELL BR: Multicomponent therapeutics for networked systems. Nat. Rev. Drug. Discov. (2005) 4:71-78.
  • SMID P, COOLEN HK, KEIZER HG et al.: Synthesis, structure–activity relationships, and biological properties of 1-heteroaryl-4-[ω-(1H-indol-3-yl)alkyl] piperazines, novel potential antipsychotics combining potent dopamine D2 receptor antagonism with potent serotonin reuptake inhibition. J. Med. Chem. (2005) 48:6855-6869.
  • GURWITZ JH: Polypharmacy: a new paradigm for quality drug therapy in the elderly? Arch. Intern. Med. (2004) 164:1957-1959.
  • YOUDIM MBH, BUCCAFUSCO JJ: CNS targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s diseases. J. Neural. Transm. (2005) 112:519-537.
  • YOUDIM MBH, BUCCAFUSCO JJ: Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci. (2005) 26:27-35.
  • CHRISTIAANS JAM, TIMMERMAN H: Cardiovascular hybrid drugs: combination of more than one pharmacological property in one single molecule. Eur. J. Pharm. Sci. (1996) 4:1-22.
  • CSERMELY P, AGOSTON V, PONGOR S: The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci. (2005) 26:178-182.
  • YOUDIM MBH, FRIDKIN M, ZHENG H: Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech. Ageing Dev. (2005) 126:317-326.
  • ZHENG H, WEINER LM, BAR-AM O et al.: Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg. Med. Chem. (2005) 13:773-783.
  • AKK G, STEINBACH JH: Galantamine activates muscle-type nicotinic acetylcholine receptors without binding to the acetylcholine-binding site. J. Neurosci. (2005) 25:1992-2001.
  • DENGIZ AN, KERSHAW P: The clinical efficacy and safety of galantamine in the treatment of Alzheimer’s disease. CNS Spectr. (2004) 9:377-392.
  • GREENBLATT HM, KRYGER G, LEWIS T, SILMAN I, SUSSMAN JL: Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3 A resolution. FEBS Lett. (1999) 463:321-326.
  • DAJAS-BAILADOR FA, HEIMALA K, WONNACOTT S: The allosteric potentiation of nicotinic acetylcholine receptors by galantamine is transduced into cellular responses in neurons: Ca2+ signals and neurotransmitter release. Mol. Pharmacol. (2003) 64:1217-1226.
  • FRANCIS PT, PALMER AM, SNAPE M, WILCOCK GK: The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry (1999) 66:137-147.
  • NARAHASHI T, MORIGUCHI S, ZHAO X, MARSZALEC W, YEH JZ: Mechanisms of action of cognitive enhancers on neuroreceptors. Biol. Pharm. Bull. (2004) 27:1701-1706.
  • MORIGUCHI S, MARSZALEC W, ZHAO X, YEH JZ, NARAHASHI T: Potentiation of N-methyl-D-aspartate-induced currents by the nootropic drug nefiracetam in rat cortical neurons. J. Pharmacol. Exp. Ther. (2003) 307:160-167.
  • WILKINSON D, MURRAY J: Galantamine: a randomized, double-blind, dose comparison in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry (2001) 16:852-857.
  • SNAPE MF, MISRA A, MURRAY TK, DE SOUZA RJ, WILLIAMS JL, CROSS AJ, GREEN AR: A comparative study in rats of the in vitro and in vivo pharmacology of the acetylcholinesterase inhibitors tacrine, donepezil and NXX-066. Neuropharmacol. (1999) 38:181-193.
  • WANG XD, CHEN XQ, YANG HH, HU GY: Comparison of the effects of cholinesterase inhibitors on [3H]MK-801 binding in rat cerebral cortex. Neurosci. Lett. (1999) 272:21-24.
  • OYAIZU M, NARAHASHI T: Modulation of the neuronal nicotinic acetylcholine receptor-channel by the nootropic drug nefiracetam. Brain Res. (1999) 822:72-79.
  • NISHIZAKI T, MATSUOKA T, NOMURA T et al.: Presynaptic nicotinic acetylcholine receptors as a functional target of nefiracetam in inducing a long-lasting facilitation of hippocampal neurotransmission. Alzheimer Dis. Assoc. Disord. (2000) 14(Suppl. 1):S82-S94.
  • NISHIZAKI T, MATSUOKA T, NOMURA T et al.: Nefiracetam modulates acetylcholine receptor currents via two different signal transduction pathways. Mol. Pharmacol. (1998) 53:1-5.
  • KEMP JA, McKERNAN RM: NMDA receptor pathways as drug targets. Nat. Neurosci. (2002) 5:1039-1042 (Supplement).
  • ZHAO X, YEH JZ, NARAHASHI T: Post-stroke dementia. Nootropic drug modulation of neuronal nicotinic acetylcholine receptors. Ann. NY Acad. Sci. (2001) 939:179-186.
  • TODA N, TAGO K, MARUMOTO S et al.: A conformational restriction approach to the development of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer’s disease. Bioorg. Med. Chem. (2003) 11:4389-4415.
  • McKENNA MT, PROCOTOR GR, YOUNG LC, HARVEY AL: Novel tacrine analogues for potential use against Alzheimer’s disease: potent and selective acetylcholinesterase inhibitors and 5-HT uptake inhibitors. J. Med. Chem. (1997) 40:3516-3523.
  • ABE Y, AOYAGI A, HARA T et al.: Pharmacological characterization of RS-1259, an orally active dual inhibitor of acetylcholinesterase and serotonin transporter, in rodents: possible treatment of Alzheimer’s disease. J. Pharmacol. Sci. (2003) 93:95-105.
  • SAGI Y, WEINSTOCK M, YOUDIM MBH: Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor. J. Neurochem. (2003) 86:290-297.
  • TERRY AV, GATTU M, BUCCAFUSCO JJ, SOWELL JW, KOSH JW: Ranitidine JWS-USC-75IX, enhances memory-related tasks performance in rats. Drug Develop. Res. (1999) 42:97-106.
  • MARCO JL, DE LOS RIOS C, GARCIA AG et al.: Synthesis, biological evaluation and molecular modelling of diversely functionalized heterocyclic derivatives as inhibitors of acetylcholinesterase/butyrylcholinesterase and modulators of Ca2+ channels and nicotinic receptors. Bioorg. Med. Chem. (2004) 12:2199-2218.
  • OROZCO C, DE LOS RIOS C, ARIAS E et al.: ITH4012 (ethyl- 5-amino-6,7,8,9-tetrahydro-2-methyl- 4-phenylbenzol[1,8]naph- thyridine-3-carboxylate), a novel acetylcholinesterase inhibitor with ‘calcium promotor’ and neuroprotective properties. J. Pharmacol. Exp. Ther. (2004) 310:987-994.
  • COLLINS F, LILE JD: The role of dihydropyridine-sensitive voltage-gated calcium channels in potassium-mediated neuronal survival. Brain Res. (1989) 502:99-108.
  • ZECCA L, YOUDIM MB, RIEDERER P, CONNOR JR, CRICHTON RR: Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. (2004) 5:863-873.
  • PANTOPOULOS K: Iron metabolism and the IRE/IRP regulatory system: an update. Ann. NY Acad. Sci. (2004) 1012:1-13.
  • EISENSTEIN RS: Iron regulatory proteins and the molecular control of mammalian iron metabolism. Ann. Rev. Nutr. (2000) 20:627-662.
  • CRICHTON RR, WILMET S, LEGSSYER R, WARD RJ: Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J. Inorg. Biochem. (2002) 91:9-18.
  • ROGERS J, KIRBY LC, HEMPELMAN SR et al.: Clinical trial of indomethacin in Alzheimer’s disease. Neurology (1993) 43:1609-1611.
  • ROGERS JT, LAHIRI DK: Metal and inflammatory targets for Alzheimer’s disease. Curr. Drug Targets (2004) 5:535-551.
  • ROGERS JT, RANDALL JD, CAHILL CM et al.: An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J. Biol. Chem. (2002) 277:45518-45528.
  • KALIVENDI SV, CUNNINGHAM S, KOTAMRAJU S, JOSEPH JC, HILLARD CJ, KALYANARAMAN B: Α-synuclein up-regulation and aggregation during MPP+-induced apoptosis in neuroblastoma cells: intermediacy of transferrin receptor iron and hydrogen peroxide. J. Biol. Chem. (2004) 279:15240-15247.
  • HILDITCH-MAGUIRE P, TRETTEL F, PASSANI LA, AUERBACH A, PERSICHETTI F, MacDONALD ME: Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum. Mol. Genet. (2000) 9:2789-2797.
  • MANDEL S, MAOR G, YOUDIM MBH: Iron and α-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J. Mol. Neurosci. (2004) 24:401-416.
  • YOUDIM MBH, STEPHENSON G, BEN SHACHAR D: Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators; a lesson from 6-hydroxydopamine and iron chelators desferal and VK-28. Ann. NY Acad. Sci. (2004) 1012:306-325.
  • TEMLETT JA, LANDSBERG JP, WATT F, GRIME GW: Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J. Neurochem. (1994) 62:134-146.
  • OESTREICHER E, SENGSTOCK GJ, RIEDERER P, OLANOW CW, DUNN AJ, ARENDASH GW: Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res. (1994) 660:8-18.
  • GRUNBLATT E, MANDEL S, BERKUZKI T, YOUDIM MBH: Apomorphine protects against MPTP-induced neurotoxicity in mice. Mov. Disord. (1999) 14:612-618.
  • JAKOWEC MW, PETZINGER GM: 1-methyl-4-phenyl-1,2,3,6-tetrahydro- pyridine-lesioned model of Parkinson’s disease, with emphasis on mice and nonhuman primates. Comp. Med. (2004) 54:497-513.
  • CUNNINGHAM MJ, NATHAN DG: New developments in iron chelators. Curr. Opin. Hematol. (2005) 12:129-134.
  • BEN-SHACHAR D, ESHEL G, RIEDERER P, YOUDIM MBH: Role of iron and iron chelation in dopaminergic-induced neurodegeneration: implication for Parkinson’s disease. Annal. Neurol. (1992) 32:S105-S110 (Supplement).
  • BEN-SHACHAR D, KAHANA N, KAMPEL V, WARSHAWSKY A, YOUDIM MBH: Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lesion in rats. Neuropharmacol. (2004) 46:254-263.
  • KAUR DF, YANTIRI F, RAJAGOPALAN S et al.: Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron (2003) 37:899-909.
  • ZHENG H, GAL S, WEINER LM et al.: Novel multifunctional neuroprotective iron chelator-monoamine oxidase drugs for neurodegenerative diseases; I. in vitro studies on iron chelation, antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J. Neurochem. (2005) 95:68-78.
  • GAL S, ZHENG H, FRIDKIN M, YOUDIM MBH: Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases, II; in vivo selective brain monoamine oxidase inhibition and prevention of MPTP induced striatal dopamine depletion. J. Neurochem. (2005) 95:79-88.
  • AVRAMOVICH-TIROSH Y, AMIT T, ZHENG H, FRIDKIN M, YOUDIM MBH: Neurorescue and reduction of amyloid-β peptide by novel multi-functional brain permeable iron-chelators. J. Neurosci. (2006) (Submitted).
  • STERLING J, HERZIG Y, GOREN T et al.: Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer’s disease. J. Med. Chem. (2002) 45:5260-5279.
  • RIEDERER P, DANIELCZYK W, GRUNBLATT E: Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicol. (2004) 25:271-277.
  • SRAMEK JJ, CUTLER NR: Recent developments in the drug treatment of Alzheimer’s disease. Drugs Aging (1999) 14:359-373.
  • YOUDIM MBH, BAR AM O, YOGEV-FALACH M et al.: Rasagiline: neurodegeneration, neuroprotection, and mitochondrial permeability transition. J. Neurosci. Res. (2005) 79:172-179.
  • MAIA L, DE MENDONCA A: Does caffeine intake protect from Alzheimer’s disease? Eur. J. Neurol. (2002) 9:377-382.
  • DALL’IGNA OP, SOUZA DO, LARA DR: Caffeine as a neuroprotective adenosine receptor antagonist. Ann. Pharmacother. (2004) 38:717-718.
  • PREDIGER RD, BATISTA LC, TAKAHASHI RN: Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Involvement of adenosine A1 and A2A receptors. Neurobiol. Aging (2005) 26:957-964.
  • DALL’IGNA OP, PORCIUNCULA LO, SOUZA DO, CUNHA RA, LARA DR: Neuroprotection by caffeine and adenosine A2A receptor blockade of β-amyloid neurotoxicity. Br. J. Pharmacol. (2003) 138:1207-1209.
  • PETZER JP, STEYN S, CASTAGNOLI KP, CHEN JF SCHWARZSCHILD MA, VAN DER SCHYF CJ, CASTAGNOLI N: Inhibition of monoamine oxidase B by selective adenosine A2A receptor antagonists. Bioorg. Med. Chem. (2003) 11:1299-1310.
  • CHEN JF, STEYN S, STAAL R et al.: 8-(3-Chlorostyryl)caffeine may attenuate MPTP neurotoxicity through dual actions of monoamine oxidase inhibition and A2A receptor antagonism. J. Biol. Chem. (2002) 277:36040-36044.
  • CASTAGNOLI N Jr, PETZER JP, STEYN S et al.: Monoamine oxidase B inhibition and neuroprotection: studies on selective adenosine A2A receptor antagonists. Neurology (2003) 61(11 Suppl. 6):S62-S68.
  • HORN J, DE HAAN RJ, VERMEULEN M, LUITEN PG, LIMBURG M: Nimodipine in animal model experiments of focal cerebral ischemia: a systematic review. Stroke (2001) 32:2433-2438.
  • OVBIAGELE B, KIDWELL CS, STARKMAN S, SAVER JL: Potential role of neuroprotective agents in the treatment of patients with acute ischemic stroke. Curr. Treat. Options Cardiovasc. Med. (2003) 5:441-449.
  • LIPTON P: Ischemic cell death in brain neurons. Physiol. Rev. (1999) 79:1431-1568.
  • FLODEN AM, LI S, COMBS CK: β-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor α and NMDA receptors. J. Neurosci. (2005) 25:2566-2575.
  • ZOU JY, CREWS FT: TNFα potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NFκB inhibition. Brain Res. (2005) 1034:11-24.
  • VAN KOOTEN F, KOUDSTAAL PJ: Epidemiology of post-stroke dementia. Haemostasis (1998) 28:124-133.
  • KALARIA RN, BALLARD C: Stroke and cognition. Curr. Atheroscler. Rep. (2001) 3:334-339.
  • ARUNDINE M, TYMIANSKI M: Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell. Mol. Life Sci. (2004) 61:657-68.
  • GREEN RA, ODERGREN T, ASHWOOD T: Animal models of stroke: do they have value for discovering neuroprotective agents? Trends Pharmacol. Sci. (2003) 24:402-408.
  • GORUGLU A, KINS T, COBANOGLU S, UNAL F, IZGI NI, YANIK B, KUCUK M: Reduction of edema and infarction by memantine and MK-801 after focal cerebral ischaemia and reperfusion in rat. Acta Neurochir. (Wien.) (2000) 142:1287-1292.
  • GERRIETS T, STOLZ E, WALBERER M, KAPS M, BACHMANN G, FISHER M: Neuroprotective effects of MK-801 in different rat stroke models for permanent middle cerebral artery occlusion: adverse effects of hypothalamic damage and strategies for its avoidance. Stroke (2003) 34:2234-2239.
  • RAMI A, KRIEGLSTEIN J: Neuronal protective effects of calcium antagonists in cerebral ischemia. Life Sci. (1994) 55:2105-2113.
  • SASAKI T, EGUCHI S, KIRIYAMA T: A facial synthesis of mono-oxa and aza-cage compounds via transanullar cyclizations. Tet. Lett. (1971):2651-2654.
  • SASAKI T, KIRIYAMA ET, HIROAKI O: Studies on hetero-cage compounds – VI transannular cyclizations in pentacyclo[6.2.1.02,7.04,10.05,9]undecan- 3,6-dione system. Tetrahedron (1974) 30:2707-2712.
  • VAN DER SCHYF CJ, SQUIER GJ, COETZEE WA: Characterization of NGP 1-01, an aromatic polycyclic amine, as a calcium antagonist. Pharmacol. Res. Commun. (1986) 18:407-417.
  • REISBERG B, DOODY R, STOFFLER A, SCHMITT F, FERRIS S, MOBIUS HJ: Memantine Study Group. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. (2003) 348:1333-1341.
  • JAIN KK: Evaluation of memantine for neuroprotection in dementia. Expert. Opin. Investig. Drugs (2000) 9:1397-1406.
  • FARLOW MR: NMDA receptor antagonists. A new therapeutic approach for Alzheimer’s disease. Geriatrics (2004) 59:22-27.
  • VEDANTAM S: FDA OKs drug to treat advanced Alzheimer’s. Washington Post Saturday (18 October 2003).
  • PARSONS CG, DANYSZ W, QUACK G: Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist – a review of preclinical data. Neuropharmacol. (1999) 38:735-767.
  • KIEWERT C, HARTMANN J, STOLL J, THEKKUMKARA TJ, VAN DER SCHYF CJ, KLEIN J: NGP1-01 is a brain-permeable dual blocker of neuronal voltage- and ligand-operated calcium channels. Neurochem. Res. (2006) 31:395-399.
  • GELDENHUYS WJ, MALAN SF, BLOOMQUIST JR, MARCHAND AP, VAN DER SCHYF CJ: Pharmacology and structure-activity relationships of bioactive polycyclic cage compounds: a focus on pentacycloundecane derivatives. Med. Res. Rev. (2005) 25:21-48.
  • KADABA PK: Rational drug design and the discovery of the Δ-2-1,2,3-triazolines, a unique class of anticonvulsant and antiischemic agents. Curr. Med. Chem. (2003) 10:2081-2108.
  • NAN F, BZDEGA T, PSHENICHKIN S, WROBLEWSKI JT, WROBLEWSKA B, NEALE JH, KOZIKOWSKI AP: Dual function glutamate-related ligands: discovery of a novel, potent inhibitor of glutamate carboxypeptidase II possessing mGluR3 agonist activity. J. Med. Chem. (2000) 43:772-77.
  • NICOLETTI F, BRUNO V, COPANI A, CASABONA, G: KNOPFEL T: Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci. (1996) 19:267-271.
  • LEE ES, CHEN H, SOLIMAN KF, CHARLTON CG: Effects of homocysteine on the dopaminergic system and behavior in rodents. Neurotoxicology (2005) 26:361-371.
  • MULLER T, RENGER K, KUHN W: Levodopa-associated increase of homocysteine levels and sural axonal neurodegeneration. Arch. Neurol. (2004) 61:657-660.
  • MULLER T, VOSS B, HELLWIG K, PRZUNTEK H: Treatment benefit correlates with increase of daily drug costs in Parkinson’s disease clinics. NeuroRehabilitation (2003) 18:271-275.
  • QUADRI P, FRAGIACOMO C, PEZZATI R et al.: Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer’s disease, and vascular dementia. Am. J. Clin. Nutr. (2004) 80:114-122.
  • SACHDEV P: Homocysteine, cerebrovascular disease and brain atrophy. J. Neurol. Sci. (2004) 226:25-29
  • SMITH LA, JACKSON MJ, HANSARD MJ, MARATOS E, JENNER P: Effect of pulsatile administration of levodopa on dyskinesia induction in drug-naive MPTP-treated common marmosets: effect of dose, frequency of administration, and brain exposure. Mov. Disord. (2003) 18:487-495.
  • ZAPPIA M, CRESCIBENE L, ARABIA G et al.: Body weight influences pharmacokinetics of levodopa in Parkinson’s disease. Clin. Neuropharmacol. (2002) 25:79-82.
  • MULLER T, WOITALLA D, SAFT C, KUHN W: Levodopa in plasma correlates with body weight of parkinsonian patients. Parkinsonism Relat. Disord. (2000) 6:171-173.
  • PRZUNTEK H, MULLER T, RIEDERER P: Diagnostic staging of Parkinson’s disease: conceptual aspects. J. Neural Transm. (2004) 111:201-216.
  • RIEDERER P, GILLE G, MULLER T et al.: Practical importance of neuroprotection in Parkinson’s disease. J. Neurol. (2002) 249(Suppl. 3):III/53-III/56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.