88
Views
13
CrossRef citations to date
0
Altmetric
Review

Novel gene-directed enzyme prodrug therapies against prostate cancer

&
Pages 947-961 | Published online: 21 Jul 2006

Bibliography

  • RYAN CJ, SMALL EJ: Prostate cancer update: 2005. Curr. Opin. Oncol. (2005) 18:284-288.
  • RYAN CJ, SMALL EJ: Progress in detection and treatment of prostate cancer. Curr. Opin. Oncol. (2005) 17:257-260.
  • JEMAL A, THOMAS A, MURRAY T, THUN M: Cancer statistics, 2002. CA Cancer J. Clin. (2002) 52(11):23-46.
  • DENIS L, MURPHY GP: Overview of Phase III trials on combined androgen treatment in patients with metastatic prostate cancer. Cancer (1993) 72:3888-3895.
  • WALCZAK HR, CARDUCCI MA: Pharmacological treatments for prostate cancer. Expert Opin. Investig. Drugs (2002) 11(12):1737-1748.
  • KANTOFF PW, HALABI S, CONAWAY M et al.: Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer. Results of the Cancer and Leukemia Group B9182 study. J. Clin. Oncol. (1999) 17(8):2506-2513.
  • TANNOCK IF, OSOBA D, STOCKLER MR et al.: Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J. Clin. Oncol. (1996) 14:1756-1764.
  • BEER TM, PIERCE WC, LOWE BA, HENNER WD: Phase II study of weekly docetaxel in symptomatic androgen-independent prostate cancer. Ann. Oncol. (2001) 12(9):1273-1279.
  • TANNOCK IF, DE WIT R, BERRY WR et al.: Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. (2004) 351:1502-1512.
  • KALIBEROV SA, BUCHSBAUM DJ: Gene delivery and gene therapy of prostate cancer. Expert Opin. Drug Deliv. (2006) 31(1):37-51.
  • FERRER FA, RODRIGUEZ F: Prostate cancer gene therapy. Hematol. Oncol. Clin. North Am. (2001) 15:497-508.
  • FOLEY R, LAWLER M, HOLLYWOOD D: Gene-based therapy in prostate cancer. Lancet Oncol. (2004) 5:469-479.
  • YAMANAKA K, GLEAVE ME, HARA I, MURAMAKI M, MIYAKE H: Synergistic antitumor effect of combined use of adenoviral-mediated p53 gene transfer and antisense oligodeoxynucleotide targeting clusterin gene in an androgen-independent human prostate cancer model. Mol. Cancer Ther. (2005) 4(2):187-195.
  • ABARZUA F, SAKAGUCHI M, TAKAISHI M et al.: Adenovirus-mediated overexpression of REIC/Dkk-3 selectively induces apoptosis in human prostate cancer cells through activation of c-Jun-NH2-kinase. Cancer Res. (2005) 65:9617-9622.
  • COZZI PJ, BURKE PB, BHARGAV A et al.: Oncolytic viral gene therapy for prostate cancer using two attenuated, replication-competent, genetically engineered herpes simplex viruses. Prostate (2002) 53(2):95-100.
  • SIMPSON E: Immunotherapy and gene therapy. IDrugs (2004) 7(2):105-108.
  • BARON V, ADAMSON ED, CALOGERO A, RAGONA G, MERCOLA D: The transcription factor egr1 is a direct regulator of multiple tumor suppressors including TGFβ 1, PTEN, p53 and fibronectin. Cancer Gene Ther. (2006) 13(2):115-124.
  • LUPOLD SE, RODRIGUEZ R: Adenoviral gene therapy, radiation, and prostate cancer. Rev. Urol. (2005) 7(4):193-202.
  • NOWROOZI MR, PISTERS LL: The current status of gene therapy for prostate cancer. Cancer Control (1998) 5(6):522-531.
  • BAGSHAWE KD, SPRINGER CJ, SEARLE F et al.: A cytotoxic gene can be generated selectively at cancer sites. Br. J. Cancer (1988) 58:700-703.
  • HUBER BA, RICHARDS CA, KREITSKY TA: Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma : an innovative approach for cancer therapy. Proc. Natl. Acad. Sci. USA (1991) 88:8039-8043.
  • YU D, JIA WW, GLEAVE ME, NELSON CC, RENNIE PS: Prostate-tumor targeting of gene expression by lentiviral vectors containing elements of the probasin promoter. Prostate (2004) 59(4):370-382.
  • YU D, SCOTT C, JIA WW et al.: Targeting and killing of prostate cancer cells using lentiviral constructs containing a sequence recognized by translation factor eIF4E and a prostate-specific promoter. Cancer Gene Ther. (2006) 13(1):32-43.
  • PUHLMANN M, GNANT M, BROWN CK, ALEXANDER HR, BARTLETT DL: Thymidine kinase-deleted vaccinia virus expressing purine nucleoside phosphorylase as a vector for tumor-directed gene therapy. Hum. Gene Ther. (1999) 10:649-657.
  • BHARARA S, SORSCHER EJ, GILLESPIE GY et al.: Antibiotic-mediated chemoprotection enhances adaptation of E. coli PN for herpes simplex virus-based glioma therapy. Hum. Gene Ther. (2005) 16(3):339-347.
  • WANG XY, MARTINIELLO-WILKS R, SHAW JM et al.: Preclinical evaluation of a prostate-targeted gene-directed enzyme prodrug therapy delivered by ovine atadenovirus. Gene Ther. (2004) 6(12):1343-1357.
  • VOEKS D, MARTINIELLO-WILKS R, MADDEN V et al.: Gene therapy for prostate cancer delivered by ovine adenovirus and mediated by purine nucleoside phosphorylase and fludarabine in mouse models. Gene Ther. (2002) 9:759-768.
  • HELLER LC, UGEN K, HELLER R: Electroporation for targeted gene transfer. Expert Opin. Drug Deliv. (2005) 2(2):255-268.
  • KOSTARELOS K, EMFIETZOGLOU D, PAPAKOSTAS A, YANG WH, BALLANGRUD AM, SGOURAS G: Engineering lipid vesicles of enhanced intratumoral transport capabilities: correlating liposome characteristics with penetration into human prostate tumor spheroids. J. Liposome Res. (2005) 15(1-2):15-27.
  • BISANZ K, YU J, EDLUND M et al.: Targeting ECM–integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imging model. Mol. Ther. (2005) 1(4):634-643.
  • CAMERON FH, MOGHADDAM MJ, BENDER VJ, WHITTAKER RG, MOTT M, LOCKETT TJ: A transfection compound series based on a versatile Tris linkage. Biochim. Biophys. Acta. (1999) 1417(1):37-50.
  • HATTORI Y, MAITANI Y: Folate-linked lipid-based nanoparticle for targeted gene delivery. Curr. Drug Deliv. (2005) 2(3):243-252.
  • ANDERSON DG, PENG W, AKINC A et al.: A polymer library approach to suicide gene therapy for cancer. Proc. Natl. Acad. Sci. USA (2004) 101(45):16028-16033.
  • GLOVER DJ, LIPPS HJ, JANS DA: Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. (2005) 6(4):299-310.
  • KANEDA Y, TABATA Y: Non-viral vectors for cancer therapy. Cancer Sci. (2006) 97(5):348-354.
  • PFEIFER A, VERMA IM: Gene therapy: promises and problems. Ann. Rev. Genomics Hum. Genet. (2001) 2:177-211.
  • MAITLAND NJ, STANBRIDGE LJ, DUSSUPT V: Targeting gene therapy for prostate cancer. Curr. Pharm. Des. (2004) 10(5):531-555.
  • MABJEESH NJ, ZHONG H, SIMONS JW: Gene therapy of prostate cancer: current and future directions. Endocr. Relat. Cancer (2002) 9:115-119.
  • BERGES RR, VUKANOVIC J, EPSTEIN J et al.: Implication of cell kinetic changes during the progression of human prostatic cancer. Clin. Cancer Res. (1995) 1(5):473-480.
  • HERMAN JR, ADLER HL, AGUILA-CORDOVA E et al.: In situ gene therapy for adenocarcinoma of the prostate: a Phase I clinical trial. Hum. Gene Ther. (1999) 10:1239-1249.
  • FREYTAG SO, KHIL M, STRICKER H et al.: Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. (2002) 62(17):4968-4976.
  • FREYTAG SO, STRICKER H, PEGG J et al.: Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate-to high-risk prostate cancer. Cancer Res. (2003) 63(21):7497-7506.
  • CULVER KW, RAM Z, WALLBRIDGE S, ISHII H, OLDFIELD EH, BLAESE RM: In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. (1992) 256(5063):1550-1552.
  • FREEMAN SM, RAMESH R, MARROGI AJ: Immune system in suicide-gene therapy. Lancet (1997) 349(9044):2-3.
  • HALL SJ, MUTCHNIK SE, YANG G et al.: Cooperative therapeutic effects of androgen ablation and adenovirus-mediated herpes simplex virus thymidine kinase gene and ganciclovir therapy in experimental prostate cancer. Cancer Gene Ther. (1999) 6(1):54-63.
  • HALL SJ, CANFIELD SE, YAN Y et al.: A novel bystander effect involving tumor cell-derived Fas and FasL interactions following Ad.HSV-tk and Ad.mIL-12 gene therapies in experimental prostate cancer. Gene Ther. (2002) 9(8):511-517.
  • LOCKETT LJ, MOLLOY PL, RUSSELL PJ, BOTH GW: Relative efficiency of tumor cell killing in vitro by two enzyme-prodrug systems delivered by identical adenovirus vectors. Clin. Cancer Res. (1997) 3(11):2075-2080.
  • WU L, MATHERLY J, SMALLWOOD A et al.: Chimeric PSA enhancers exhibit augmented activity in prostate cancer gene therapy vectors. Gene Ther. (2001) 8:1416-1426.
  • LI HW, LI J, HELM GA, PAN D: Highly specific expression of luciferase gene in lungs of naïve nude mice directed by prostate-specific antigen promoter. Biochem. Biophys. Res. Commun. (2005) 334(4):1287-1291.
  • WATT F, MARTORANA A, BROOKES D et al.: A transcriptional enhancer of the prostate-specific membrane antigen gene. Genomics (2001) 73:243-254.
  • UCHIDA A, O’KEEFE DS, BACICH DJ, MOLLOY PL, HESTON WD: In vivo suicide gene therapy model using a newly discovered prostate-specific membrane antigen promoter/enhancer: a potential alternative approach to androgen deprivation therapy. Urology (2001) 58(2):132-139.
  • LEE SJ, KIM HS, YU R et al.: Novel prostate-specific promoter derived from PSA and PSMA enhancers. Mol. Ther. (2002) 6(3):415-421.
  • GREENBERG N, DE MAYO F, SHEPPARD PC et al.: The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol. Endocrinol. (1994) 8:230-239.
  • KASPER S, RENNIE PS, BRUCHOVSKY N et al.: Cooperative binding of androgen receptors to two DNA sequences is required for androgen induction of the probasin gene. J. Biol. Chem. (1994) 269:31763-31769.
  • BROOKES DE, ZANDLEVEIT D, WATT F, RUSSELL PJ, MOLLOY PL: Relative activity and specificity of promoters from prostate-expressed genes. Prostate (1998) 35:8-26.
  • YEUNG LH, READ JT, SORENSON P, NELSON CC, JIA W, RENNIE PS: Identification and characterization of a prostate-specific androgen-independent progein-binding site in the probasin promoter. Biochem. J. (2003) 371(Part 3):843-855.
  • IKEGAMI S, TADAKUMA T, ONO T et al.: Treatment efficiency of a suicide gene therapy using prostate-specific membrane antigen promoter/enhancer in a castrated mouse model of prostate cancer. Cancer Sci. (2004) 95(4):367-370.
  • GABRIL MY, ONITA T, JI PG et al.: Prostate targeting: PSP94 gene promoter/enhancer region directed prostate tissue-speific expression in a transgenic mouse prostate cancer model. Gene Ther. (2002) 9(23):1589-1599.
  • PRAMUDJI C, SHIMRA S, EBARA S et al.: in situ prostate cancer gene therapy using a novel adenoviral vector regulated by the caveolin-1 promoter. Clin. Cancer Res. (2001) 7(12):4270-4279.
  • EBARA S, SHIMURA S, NASU Y et al.: Gene therapy for prostate cancer: toxicological profile of four HSV-tk transducing adenoviral vectors regulated by different promoters. Prostate Cancer Prost. Dis. (2002) 5(4):316-325.
  • HSIEH CL, GARDNER TA, MIAO L, BALIAN G, CHUNG LW: Cotargeting tumor and stroma in a novel chimeric tumor model involving the growth of both human prostate cancer and bone stromal cells. Cancer Gene Ther. (2004) 11(2):148-155.
  • HSIEH CL, KUBO H, CHUNG LW: Gene therapy for prostate cancer bone metastasis. Gene therapy targeting bone metastasis. Cancer Treat. Res. (2004) 118:231-290.
  • RODRIGUEZ R, SCHUUR ER, LIM HY, HENDERSON GA, SIMONS JW, HENDERSON DR: Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate specific antigen-positive prostate cancer cells. Cancer Res. (1997) 57:2559-2563.
  • DOUGLAS JT, ROGERS BE, ROSENFELD ME, MICHAEL SI, FENG M, CURIEL DT: Targeted gene delivery by tropism-modified adenoviral vectors. Nat. Biotechnol. (1996) 14:1574-1578.
  • REYNOLDS PN, DIMITRIEV I, CURIEL DT: Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Ther. (1999) 6:1336-1339.
  • EVERTS M, CURIEL DT: Transductional targeting of adenoviral cancer gene therapy. Curr. Gene Ther. (2004) 4(3):337-346.
  • BOTH GW: Ovine atadenovirus: a review of its biology, biosafety profile and application as a gene delivery vector. Immunol. Cell Biol. (2004) 82(2):189-195.
  • NICULESCU-DUVAZ I, SPRINGER CJ: Gene-directed enzyme prodrug therapy: a review of enzyme/prodrug combinations. Expert Opin. Invest. Drugs (1997) 6(6):685-703.
  • DENNY WA: Prodrugs for gene-directed enzyme prodrug therapy (gene therapy). J. Biomed. Biotechnol. (2003) 2003(1):48-70.
  • CHEN L, WAXMAN DJ: Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res. (1995) 55:581-589.
  • ZHOU D, LU Y, STEINER MS, DALTON JT: Cytochrome P450 SC9 sensitizes human prostate tumour cell to cyclophosphamide via a bystander effect. Antimicrob. Agents Chemother. (2000) 44(10):2659-2663.
  • PATTERSON AV, ZHANG H, MOGHADDAM A et al.: Increased sensitivity to the prodrug 5′-deoxy-5-fluorodine and modulation of 5-fluoro-s-deoxyuridine sensitivity in MCF-7 cells transfected with thymidine phosphorylase. Br. J. Cancer (1999) 72:669-675.
  • HAPKE DM, STEGMANN APA, MITCHELL BS: Retroviral transfer of deoxycytidine kinase into tumor cell lines enhances nucleoside toxicity. Cancer Res. (1996) 56:2343-2347.
  • SHERWOOD RF, MELTON RG, ALWAN SM, HUGHES P: Purification and properties of carboxypeptidase G2 Pseudomonas spp. strain RS-16. Eur. J. Biochem. (1985) 148:447-453.
  • GRECO O, DACHS GU: Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J. Cell. Physiol. (2001) 187(1):22-36.
  • SPOONER RA, MAYCROFT KA, PATERSON H, FRIEDLOS F, SPRINGER CJ, MARAIS R: Appropriate subcellular localisation of prodrug-activating enzymes has important consequences for suicide gene therapy. Int. J. Cancer (2001) 93(1):123-130.
  • PERRY MJ, TODRYK SM, DALGLEISH AG: The role of herpes simplex virus thymidine kinase in the treatment of solid tumours. Expert Opin. Investig. Drugs (1999) 8(6):777-785.
  • GOLUMBEK PT, HAMZEH FM, JAFFEE EM, LEVITSKY H, LIETMAN PS, PARDOLL DM: Herpes simplex-1 virus thymidine kinase gene is unable to completely eliminate live, non-immunogenic tumour cell vaccines. J. Immunother. (1992) 12:224-230.
  • ELION GB: The chemotherapeutic exploitation of virus-specific enzymes. Adv. Enzymes Reg. (1980) 18:33-66.
  • ALLAUDEEN HS, DESCAMPS J, SEHGAL RK, FOX JJ: Selective inhibition of DNA replication in herpes simplex virus infected cells by I-(2′-deoxy-s-fluoro-B-D-arabino furanosyl)-5-iodocytosine. J. Biol. Chem. (1982) 257:11879-11887.
  • KOKORIS MS, SABO P, ADMAN ET, BLACK ME: Enhancement of tumor ablation by a thymidine kinase mutant. Gene Ther. (1999) 6(8):1415-1426.
  • CORBAN-WILHELM H, HULL WE, BECKER G, BAUDER-WUST U, GRULIECH D, DEBUS J: Cytosine deaminase and thymidine kinase gene therapy in a Dunning rat prostate tumour model: absence of bystander effects and characterisation of 5-fluorocytosine metabolism with 19F-NMR spectroscopy. Gene Ther. (2002) 9(23):1564-1575.
  • CHEON J, KIM HK, MOON DG, YOON DK, CHO JH, KOH SK: Adenovirus-mediated suicide-gene therapy using the herpes simlex virus thymidine kinase gene in cell and animal models of human prostate cancer: changes in tumour cell proliferative activity. Br. J. Urol. (2000) 85(6):759-766.
  • MARTINIELLO-WILKS R, GARCIA-ARAGON J, DAJA MM et al.: In vivo gene therapy for prostate cancer: preclinical evaluation of two different enzyme-prodrug therapy systems delivered by identical adenoviral vectors. Hum. Gene Ther. (1998) 9(11):1617-1626.
  • KUBO H, GARDNER TA, WADA Y et al.: Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Hum. Gene Ther. (2003) 14(3):227-241.
  • PANTUCK AJ, BERGER F, ZISMAN A et al.: CLI-SR39: a non-invasive molecular imaging model of prostate cancer suicide gene therapy using positron emission tomography. J. Urol. (2002) 168(3):1193-1198.
  • MALIK N, LUTHRA SK, BURKE P et al.: Radiosynthesis of 4-((2-chloroethyl)(2-(11C)ethyl)amino)- phenoxycarbonyl-L-glutamic acid a half mustard prodrug as a potential probe for imaging antibody- and gene-directed enzyme prodrug therapy with positron emission tomography. Appl. Radiat. Isot. (2004) 60:825-834.
  • ANELLO R, COHEN S, ATKINSON G, HALL SJ: Adenovirus mediated cytosine deaminase gene transduction and 5-flouorocytosine therapy sensitizes mouse prostate cancer cells to irradiation. J. Urol. (2000) 164:2173-2177.
  • CRYSTAL R, HIRSCHOWITZ E, LIEBERMAN M et al.: Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with oral administration of the prodrug 5-fluorocytosine. Hum. Gene Ther. (1997) 8:985-1001.
  • TIRABY M, CAZAUX C, BARON B, DROCOURT D, REYNES JP, TIRABY G: Concomitant expression of E coli cytosine deaminase and uracil phosphoribosyltransferase improves the cytotoxicity of 5-fluorocytosine. FEMS Microbiol. Letters (1998) 167:41-49.
  • KOYAMA F, SAWADA H, FUJII H et al.: Adenoviral-mediated transfer of Escherichia coli uracil phosphoribosyltransferase (UPRT) gene to modulate the sensitivity of the human colon cancer cells to 5-fluorouracil. Eur. J. Cancer (2000) 36:2403-2410.
  • CHUNG-FAYE GA, CHEN MJ, GREEN NK et al.: In vivo gene therapy for colon cancer using adenovirus-mediated transfer of the fusion gene cytosine deaminase and uracil phosphoribosyltransferase. Gene Ther. (2001) 8:1547-1554.
  • ADACHI Y, TAMIYA T, ICHIKAWA T et al.: Experimental gene therapy for brain tumors using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene with 5-fluorocytosine. Hum. Gene Ther. (2000) 11:77-89.
  • MIYAGI T, KOSHIDA K, HORI O et al.: Gene therapy for prostate cancer using the cytosine deaminase/uracil phosphoribosyltransferase suicide system. J. Gene Med. (2003) 5:30-37.
  • KANAI F, KAWAKAMI T, HAMADA H et al.: Adenovirus-mediated transduction of Escherichia coli uracil hosphoribosyltransferase gene sensitizes cancer cells to low concentrations of 5-fluorouracil. Cancer Res. (1998) 58:1926-1951.
  • STEGMAN LD, REHEMTULLA A, BEATTIE B et al.: Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA (1999) 96(17):9821-9836.
  • KIEVIT E, BERSHAD E, NG E et al.: Superiority of yeast over bacterial cytosine deaminase therapy in colon cancer xenografts. Cancer Res. (1999) 59(7):1417-1421.
  • ERBS P, REGULIER E, KINTZ J et al.: In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res. (2000) 60:3813-3822.
  • HONG JS, WAUD WR, LEVASSEUR DN et al.: Excellent in vivo bystander activity of fludarabine phosphate against human glioma xenografts that express the Escherichia coli purine nucleoside phosphorylase gene. Cancer Res. (2004) 64:6610-6615.
  • PARKER WB, ALLEN PW, SHADDIX S et al.: Metabolism and metabolic actions of 6-methylpurine and 2-fluoroadenine in human cells. Biochem. Pharmacol. (1998) 55:1673-1681.
  • SORSCHER EJ, PENG S, BEBOK Z, ALLAN PW, BENNETT LL Jr, PARKER WB: Tumor cell bystander killing in colonic carcinoma utilizing the Eschericiha coli DeoD gene to generate toxic purines. Gene Ther. (1994) 1:233-238.
  • NABHAN C, GARTENHAUS RB, TALLMAN MS: Purine nucleoside analogues and combination therapies in B-cell chronic lymphocyte leukaemia: dawn of a new era. Leukemia Res. (2003) 28(5):429-442.
  • KROHNE TU, SHANKARA S, GEISSLER M et al.: Mechanisms of cell death induced by suicide genes encoding purine nucleoside phosphorylase and thymidine kinase in human hepatocellular carcinoma cells in vitro. Hepatology (2001) 34:511-518.
  • CARROLL AG, VOELLER HJ, SUGARS L, GELMANN EP: p53 oncogene mutations in three human prostate cancer cell lines. Prostate (1993) 23(2):123-134.
  • DOWNING SR, JACKSON P, RUSSELL PJ: Mutations within the tumor suppressor gene p53 are confined to a late event in prostate cancer progression: a review of the evidence. Urol. Oncol. (2001) 6:103-110.
  • MARTINIELLO-WILKS R, TSASTRALIS T, RUSSELL P et al.: Transcription-targeted gene therapy for androgen-independent prostate cancer. Cancer Gene Ther. (2002) 9:443-452.
  • MARTINIELLO-WILKS R, DANE A, VOEKS DJ, JEYAKUMAR G, WANG XY, RUSSELL PJ: Gene-directed enzyme prodrug therapy for prostate cancer in a mouse model that imitates the development of human disease. J. Gene Med. (2004) 6(1):43-54.
  • MARTINIELLO-WILKS R, WANG XY, VOEKS DJ et al.: Purine nucleoside phosphorylase and fludarabine phosphate gene-directed enzyme prodrug therapy suppresses primary tumour growth and pseudo-metastases in a mouse model of prostate cancer. J. Gene Med. (2004) 6(12):1343-1357.
  • BENNETT EM, ANAND R, ALLAN PW et al.: Designer gene therapy using an Escherichia coli purine nucleoside phosphorylase/prodrug system. Chem. Biol. (2003) 10(12):1173-1181.
  • GROVE JI, SEARLE PF, WEEDON S, GREEN NK, McNEISH IA, KERR DJ: Virus-directed enzyme prodrug therapy using CB1954. Anti-Cancer Drug Des. (1999) 14:461-472.
  • DJEHA AH, THOMSON TA, LEUNG H et al.: Combined adenovirus-mediated nitroreductase gene delivery and CB1954 treatment: a well-tolerated therapy for established solid tumors. Mol. Ther. (2001) 3(2):233-240.
  • HELSBY NA, FERRY DM, PATTERSON AV, PULLEN SM, WILSON WR: 2-amino metabolites are key mediators of CB1954 and SN2362 bystander effects in nitroreductase GDEPT. Br. J. Cancer (2004) 90(5):1084-1092.
  • LIPINSKI KS, PELECH S, MOUNTAIN A et al.: Nitroreductase-based therapy of prostate cancer, enhanced by raising expression of heat shock protein 70, acts through increased anti-tumour immunity. Cancer Immunol. Immunother. (2006) 55(3):247-254.
  • DJEHA HA, TODRYK SM, PELECH S et al.: Antitumor immune responses mediated by adenoviral GDEPT using nitroreductase/CB1954 is enhanced by high-level coexpression of heat shock protein 70. Cancer Gene Ther. (2005) 12(6):560-571.
  • GREEN NK, McNEISH IA, DOSHI R: Immune enhancement of nitroreductase-induced cytotoxicity: studies using a bicistronic adenovirus vector. Int. J. Cancer (2003) 104(1):104-112.
  • BENOUCHAN M, NASCIMENTO FD, SEBBAH-LOURIKI M et al.: Bystander cell killing spreading from endothelial to tumor cells in a three-dimensional multicellular nodule model after Escherichia coli nitroreductase gene delivery. Biochem. Biophys. Res. Commun. (2003) 311(4):822-828.
  • SEARLE PF, CHEN MJ, HU L et al.: Nitroreductase: a prodrug-activating enzyme for cancer gene therapy. Clin. Exp. Pharmacol. Physiol. (2004) 31(11):811-816.
  • TANG MHY, HELSBY NA, WILSON WR, TINGLE MD: Aerobic 2- and 4-nitroreduction of CB1954 by human liver. Toxicology (2005) 216:129-139.
  • PARKINSON GN, SKELLY JV, NEIDLE S: Crystal structure of FMN-dependent nitroreductase from Escherichia coli B: a prodrug-activating enzyme. J. Med.Chem. (2000) 43(20):3624-3631.
  • ROY P, WAXMAN DJ: Activation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer. Toxicol. In Vitro (2005) (In Press).
  • ZHANG J, TIAN Q, YUNG CHAN S et al.: Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metab. Rev. (2005) 37(4):611-703.
  • KAN O, KINGSMAN S, NAYLOR S: Cytochrome P450-based cancer gene therapy: current status. Expert Opin. Biol. Ther. (2002) 2(8):857-868.
  • PALMER DH, MILNER AE, KERR DJ, YOUNG LS: Mechanism of cell death induced by the novel enzyme-prodrug combination, nitroreductase/CB1954, and identification of synergism with 5-fluorouracil. Br. J. Cancer (2003) 89(5):944-950.
  • McERLANE V, YAKKUNDI A, McCARTHY HO et al.: A cytochrome P450 2B6 mediated gene theray strategy to enhance the effects of radiation or cyclophosphamide when combined with the bioreductive drug AQ4N. J. Gene Med. (2005) 7(7):851-859.
  • PATTERSON AV, WILLIAMS KJ, COWEN RL et al.: Oxygen-sensitive enzyme-prodrug gene therapy for the eradication of radiation-resistant solid tumours. Gene Ther. (2002) 9(14):946-954.
  • COWEN RL, WILLIAMS KJ, CHINJE EC et al.: Hypoxia targeted gene therapy to increase the efficacy of triapazamine as an adjuvant to radiotherapy. Cancer Res. (2004) 64:1396-1402.
  • SHIBATA T, GIACCIA AJ, BROWN JM: Hypoxia-inducible regulation of a prodrug-activating enzyme for tumor-specific gene therapy. Neoplasia (2002) 4(1):40-48.
  • TEH BS, AYALA G, AGUILAR L et al.: Phase I – II trial evaluating combined intensity-modulated radiotherapy and in situ gene therapy with or without hormonal therapy in treatment of prostate cancer-interim report on PSA response and biopsy data. Int. J. Radiat. Oncol. Biol. Phys. (2004) 58(5):1520-1529.
  • BARTON KN, PAIELLI D, ZHANG Y et al.: Second generation replication-competent oncoloytic adenovirus armed with improved suicide genes and ADP gene demonstrates greater efficacy without increased toxicity. Mol. Ther. (2006) 13(2):347-356.
  • KHATRI A, ZHANG B, DOHERTY E et al.: Combination of cytosine deaminase with uracil phosphoribosyl transferase leads to local and distant bystander effects against prostate-cancer in C57BL/6 mice. J. Gene Med. (Under Revision).
  • NASU Y, BANGMA CH, HULL GW et al.: Combination gene therapy with adenoviral vector-mediated HSV-tk + GCV and IL-12 in an orthotopic mouse model for prostate cancer. Prostate Cancer Prost. Dis. (2001) 4(1):44-55.
  • SATOH T, TEH BS, TIMME TL et al.: Enhanced systemic T-cell activation after in situ gene therapy with radiotherapy in prostate cancer patients. Int. J. Radiat. Oncol. Biol. Phys. (2004) 59(2):562-571.
  • FUJITA T, TEH BS, TIMME TL et al.: Sustained long-term immune responses after in situ gene therapy combined with radiotherapy and hormonal therapy in prostate cancer patients. Int. J. Radiat. Oncol. Biol. Phys. (2006) 65(1):84-90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.