603
Views
142
CrossRef citations to date
0
Altmetric
Review

VEGF/VEGFR signalling as a target for inhibiting angiogenesis

, &
Pages 83-107 | Published online: 07 Dec 2006

Bibliography

  • BAILAR JC III, GORNIK HL: Cancer undefeated. N. Engl. J. Med. (1997) 336:1569-1574.
  • BOEHM T, FOLKMAN J, BROWDER T et al.: Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature (1997) 390:404-407.
  • RISAU W: Mechanism of angiogenesis. Nature (1997) 386:671-674.
  • KLAGSBRUN M, MOSES MA: Molecular angiogenesis. Chem. Biol. (1999) 6:R217-R224.
  • RISAU W: Mechanisms of angiogenesis. Nature (1997) 386:671-674.
  • HANAHAN D, FOLKMAN J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell (1996) 86:353-364.
  • FOLKMAN J, KLAGSBURN M: Angiogenic factors. Science (1987) 235:442-447.
  • FERRARA N, DAVIS-SMYTH T: The biology of vascular endothelial growth factor. Endocr. Rev. (1997) 18:4-25.
  • ESKENS F: Angiogenesis inhibitors in clinical development; where are we now and where are we going? Br. J. Cancer (2004) 90:1-7.
  • OLSSON A-K, DIMBERG A, KREUGER J et al.: VEGF receptor signaling-in control of vascular function. Nat. Rev. Mol. Cell Biol. (2006) 7:359-371.
  • KARKKAINEN MJ, PETROVA TV: Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene (2000) 19:5598-5605.
  • DVORAK HF: Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. (2002) 20:4368-4380.
  • NAGY JA, VASILE E, FENG D et al.: Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J. Exp. Med. (2002) 196:1497-1506.
  • MULLER YA, LI B, CHRISTINGER HW et al.: Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. USA (1997) 94:7192-7197.
  • DE FALCO S, GIGANTE B, PERSICO MG: Structure and function of placental growth factor. Trends Cardiovasc. Med. (2002) 12:241-246.
  • LEE S, JILANI SM, NIKOLOVA GV et al.: Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. (2005) 169:681-691.
  • SHIBUYA M, YAMAGUCHI S, YAMANE A et al.: Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene (1990) 5:519-524.
  • TERMAN BI, DOUGHER-VERMAZEN M, CARRION ME et al.: Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. (1992) 187:1579-1586.
  • GALLAND F, KARAMYSHEVAA, PEBUSQUE M-J et al.: The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor. Oncogene (1993) 8:1233-1240.
  • PAJUSOLA K, APRELIKOVA O, ARMSTRONG E et al.: Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxy terminal tails are produced by alternative processing of primary transcripts. Oncogene (1993) 8:2931-2937.
  • DAVIS-SMYTH T, CHEN H, PARK J et al.: The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J. (1996) 15:4919-4927.
  • BARLEON B, TOTZKE F, HERZOG C et al.: Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor FLT-1. J. Biol. Chem. (1997) 272:10382-10388.
  • CUNNINGHAM SA, STEPHAN CC, ARRATE MP et al.: Identification of the extracellular domains of Flt-1 that mediate ligand interactions. Biochem. Biophys. Res. Commun. (1997) 231:596-599.
  • WIESMANN C, FUH G, CHRISTINGER HW et al.: Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell (1997) 91:695-704.
  • CHRISTINGER HW, FUH G, DE VOS AM et al.: The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1. J. Biol. Chem. (2004) 279:10382-10388.
  • FUH G, LI B, CROWLEY C et al.: Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J. Biol. Chem. (1998) 273:11197-11204.
  • BLECHMAN JM, LEV S, BARG J et al.: The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction. Cell (1995) 80:103-113.
  • MIYAZAWA K, BACKSTROM G, LEPPANEN O et al.: Role of immunoglobulin-like domains 2-4 of the platelet-derived growth factor α-receptor in ligand-receptor complex assembly. J. Biol. Chem. (1998) 273:25495-25502.
  • SHIBUYA M: Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int. J. Biochem. Cell Biol. (2001) 33:409-420.
  • SHIBUYA M, ITO N, CLAESSON-WELSH L: Structure and function of VEGF receptor-1 and -2. Curr. Top. Microbiol. Immunol. (1999) 237:59-83.
  • SHIBUYA M: Vascular endothelial growth factor receptor family genes: when did the three genes phylogenetically segregate? Biol. Chem. (2002) 383:1573-1579.
  • EASWARAN V, LEE SH, INGE L et al.: β-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res. (2003) 63:3145-3153.
  • WEI D, LE X, ZHENG L et al.: Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene (2003) 22:319-329.
  • BUCHLER P, REBER HA, BUCHLER M et al.: Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas (2003) 26:56-64.
  • PUGH CW, RATCLIFFE PJ: Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. (2003) 9:677-684.
  • GERBER HP, CONDORELLI F, PARK J et al.: Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem. (1997) 272:23659-23667.
  • ELVERT G, KAPPEL A, HEIDENREICH R et al.: Cooperative interaction of hypoxia-inducible factor-2α (HIF-2α) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J. Biol. Chem. (2003) 278:7520-7530.
  • NILSSON I, ROLNY C, WU Y et al.: Vascular endothelial growth factor receptor-3 in hypoxia-induced vascular development. FASEB J. (2004) 18:1507-1515.
  • SCHLESSINGER J, ULLRICH A: Growth factor signaling by receptor tyrosine kinases. Neuron (1992) 9:383-391.
  • DIXELIUS J, MAKINEN T, WIRZENIUS M et al.: Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J. Biol. Chem. (2003) 278:40973-40979.
  • ZENG H, ZHAO D, YANG S et al.: Heterotrimeric Gαq/Gα11 proteins function upstream of vascular endothelial growth factor (VEGF) receptor-2 (KDR) phosphorylation in vascular permeability factor/VEGF signaling. J. Biol. Chem. (2003) 278:20738-20745.
  • GALLICCHIO M, MITOLA S, VALDEMBRI D et al.: Inhibition of vascular endothelial growth factor receptor 2-mediated endothelial cell activation by Axl tyrosine kinase receptor. Blood (2005) 105:1970-1976.
  • GUO DQ, WU LW, DUNBAR JD et al.: Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor induced endothelial cell proliferation. J. Biol. Chem. (2000) 275:11216-11221.
  • SINGH AJ, MEYER RD, BAND H et al.: The carboxyl terminus of VEGFR-2 is required for PKC mediated down-regulation. Mol. Biol. Cell (2005) 16:2106-2118.
  • HIRATSUKA S, MINOWA O, KUNO J et al.: Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci. USA (1998) 95:9349-9354.
  • BARLEON B, SOZZANI S, ZHOU D et al.: Migration of human monocytes in response to vascular endothelilal growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood (1996) 87:3336-3343.
  • CLAUSS M, WEICHT H, BREIER G et al.: The vascular endothelial growth factor receptor Flt-1 mediates biological activities. J. Biol. Chem. (1996) 271:17629-17634.
  • SAWANO A, IWAI S, SAKURAI Y et al.: Vascular endothelial growth factor receptor-1 (Flt-1) is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood (2001) 97:785-791.
  • VEIKKOLA T, JUSSILA L, MAKINEN T et al.: Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. (2001) 20:1223-1231.
  • BROWN LF, BERSE B, JACKMAN RW et al.: Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res. (1993) 53:4727-4735.
  • LINDMARK G, GERDIN B, SUNDBERG C et al.: Prognostic significance of the microvascular count in colorectal cancer. J. Clin. Oncol. (1996) 14:461-466.
  • PERONA R: Cell signalling: growth factors and tyrosine kinase receptors. Clin. Transl. Oncol. (2006) 8:77-82.
  • JIN T, NAKATANI H, TAGUCHI T et al.: STI571 (Glivec) suppresses the expression of vascular endothelial growth factor in the gastrointestinal stromal tumor cell line, GIST-T1. World J. Gastroenterol. (2006) 12:703-708.
  • SOMA T, KAGANOI J, KAWABE A et al.: Chenodeoxycholic acid stimulates the progression of human esophageal cancer cells: a possible mechanism of angiogenesis in patients with esophageal cancer. Int. J. Cancer (2006) 119:771-782.
  • ITAKURA J, ISHIWATA T, SHEN B et al.: Concomitant over-expression of vascular endothelial growth factor and its receptors in pancreatic cancer. Int. J. Cancer (2000) 85:27-34.
  • CHUNG GG, YOON HH, ZERKOWSKI MP et al.: Vascular endothelial growth factor, FLT-1, and FLK-1 analysis in a pancreatic cancer tissue microarray. Cancer (2006) 106:1677-1684.
  • BROWN LF, BERSE B, JACKMAN RW et al.: Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Human Path. (1995) 26:86-91.
  • WEIDNER N, SEMPLE P, WELCH W et al.: Tumor angiogenesis and metastasis. Correlation in invasive breast carcinoma. N. Engl. J. Med. (1991) 32:1-6.
  • PRICE DJ, MIRALEM T, JIANG S et al.: Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ. (2001) 12:129-135.
  • BACHELDER RE, CRAGO A, CHUNG J et al.: Vascular endothelial growth factor is an autocrine survival factor for neuropiline expressing breast carcinoma cells. Cancer Res. (2001) 61:5736-5740.
  • TOI M, BANDO H, WEICH HA.: Vascular endothelial growth factor and its relationships with endogenous inhibitors in a breast cancer microenvironment manipulated by hormonal therapy: a hypothetical consideration. Biomed. Pharmacother. (2005) 59:344-347.
  • TANIGAWA N, AMAYA H, MATSUMURA M et al.: Extent of tumor vascularization correlates with prognosis and hematogenous metastasis in gastric carcinoma. Cancer Res. (1996) 56:2671-2676.
  • YU LF, CHENG Y, QIAO MM et al.: Activation of STAT3 signaling in human stomach adenocarcinoma drug-resistant cell line and its relationship with expression of vascular endothelial growth factor. World J. Gastroenterol. (2005) 11:875-879.
  • GUIDI A, ABU-JAWDEH G, BERSE B et al.: Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J. Natl. Cancer Inst. (1995) 87:1237-1245.
  • SILLMAN F, BOYCE J, FRUCHTER R: The significance of atypical vessels and neovascularization in cervical neoplasias. Am. J. Obstet. Gynecol. (1981) 139:154-157.
  • GOMBOS Z, XU X, CHU CS et al.: Peritumoral lymphatic vessel density and vascular endothelial growth factor C expression in early-stage squamous cell carcinoma of the uterine cervix. Clin. Cancer Res. (2005) 11:8364-8371.
  • BROWN LF, BERSE B, JACKMAN RW et al.: Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am. J. Pathol. (1993) 143:1255-1262.
  • BOCHNER BH, COTE RJ, WEIDNER N et al.: Angiogenesis in bladder cancer: relationship between microvessel density and tumor prognosis. J. Natl. Cancer Inst. (1995) 87:1603-1612.
  • XIA G, KUMAR SR, HAWES D et al.: Expression and significance of vascular endothelial growth factor receptor 2 in bladder cancer. J. Urol. (2006) 175:1245-1252.
  • BIGLER SA, DEERING RE, BRAWER MK: Comparison of microscopic vascularity in benign and malignant prostatic tissue. Human Pathol. (1993) 24:220-226.
  • SOULITZIS N, KARYOTIS I, DELAKAS D et al.: Expression analysis of peptide growth factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic hyperplasia. Int. J. Oncol. (2006) 29:305-314.
  • OLSON TA, MOHANRAJ D, CARSON LF et al.: Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res. (1994) 54:276-280.
  • GASPARINI G, BONOLDI E, VIALE G et al.: Prognostic and predictive value of tumour angiogenesis in ovarian carcinomas. Int. J. Cancer (1996) 69:205-211.
  • BOOCOCK CA, CHARNOCK-JONES DS, SHARKEY AM et al.: Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J. Natl. Cancer Inst. (1995) 87:506-516.
  • GUIDI AJ, ABU-JAWDEH G, TOGNAZZI K et al.: Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in endometrial carcinoma. Cancer (1996) 78:454-460.
  • FUJIMOTO J, SAKAGUCHI H, HIROSE R et al.: Progestins suppress estrogen-induced expression of vascular endothelial growth factor (VEGF) subtypes in uterine endometrial cancer cells. Cancer Lett. (1999) 141:63-71.
  • LITZ J, KRYSTAL GW: Imatinib inhibits c-Kit-induced hypoxia-inducible factor-1α activity and vascular endothelial growth factor expression in small cell lung cancer cells. Mol. Cancer Ther. (2006) 5:1415-1422.
  • MACCHIARINI P, FONTANINI G, HARDIN MJ et al.: Relation of neovascularisation to metastasis of nonsmall cell lung cancer. Lancet (1992) 340:145-146.
  • HILBE W, DIRNHOFER S, OBERWASSERLECHNER F et al.: CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J. Clin. Pathol. (2004) 57(9):965-969.
  • LANGER CJ, NATALE RB: The emerging role of vascular endothelial growth factor receptor tyrosine kinase inhibitors. Semin. Oncol. (2005) 32:23-29.
  • PLATE KH, BREIER G, WEICH HA et al.: Vascular endothelial growth factor is a potential tumor angiogenesis factor in human glioma in vivo. Nature (1992) 359:845-848.
  • LI VW, FOLKERTH RD, WATANABE H et al.: Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumors. Lancet (1994) 344:82-86.
  • DONOVAN EA, KUMMAR S et al.: Targeting VEGF in cancer therapy. Curr. Probl. Cancer (2006) 30:7-32.
  • GILLE J: Antiangiogenic cancer therapies get their act together: current developments and future prospects of growth factor- and growth factor receptor-targeted approaches. Exp. Dermatol. (2006) 15:175-186.
  • BROWN LF, TOGNAZZI K, DVORAK H et al.: Strong expression of KDR, a vascular permeability factor/vascular endothelial growth factor receptor in AIDS-associated Kaposi’s sarcoma and cutaneous angiosarcoma. Am. J. Pathol. (1995) 148:1065-1074.
  • GASPARINI G, WEIDNER N, MALUTA S et al.: Intratumoral microvessel density and p53 protein: correlation with metastasis in head-and-neck squamous-cell carcinomas. Int. J. Cancer (1993) 55:739-744.
  • BERKMAN RA, MERRILL MJ, REINHOLD WC et al.: Expression of vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J. Clin. Invest. (1993) 91:153-159.
  • WIZIGMANN-VOOS S, BREIER G, RISAU W et al.: Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease associated and sporadic hemangioblastomas. Cancer Res. (1995) 55:1358-1364.
  • BELLAMY WT, RICHTER L, FRUTIGER Y et al.: Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res. (1999) 59:728-733.
  • STRIZZI L, CATALANO A, VIANALE G et al.: Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J. Pathol. (2001) 193:468-475.
  • ISLAM A, BANERJEE S, KAMBHAMPATI S et al.: Angiogenic switch in Barrett’s adenocarcinoma: the role of vascular endothelial growth factor. Front Biosci. (2006) 1:2336-2348.
  • NAGASHIMA M, YOSHINO S, ISHIWATA T et al.: Role of vascular endothelial growth factor in angiogenesis of rheumatoid arthritis. J. Rheumatol. (1995) 22:1624-1630.
  • LUTTUN A, TJWA M, MOONS L et al.: Revascularisation of ischemic tissues by PIGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. (2002) 8:831-840.
  • NG EW, SHIMA DT, CALIAS P et al.: Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. (2006) 5:123-132.
  • FOLKMAN J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. (1995) 1:27-31.
  • DETMAR M, BROWN LF, CLAFFEY KP et al.: Overexpression of vascular permeability factor/vascular endothelial growth factor and it receptors in psoriasis. J. Exp. Med. (1994) 180:1141-1146.
  • WHITE PJ, ATLEY LM, WRAIGHT CJ: Antisense oligonucleotide treatments for psoriasis. Expert Opin. Biol. Ther. (2004) 4(1):75-81.
  • THOMAS S, VANUYSTEL J, GRUNDEN G et al.: Vascular endothelial growth factor receptors in human mesangium in vitro and in glomerular disease. J. Am. Soc. Nephrol. (2000) 11:1236-1243.
  • McDONALD DM: Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am. J. Resp. Crit. Care Med. (2001) 164:39-45.
  • CELLETTI F, WAUGH J, AMABILE P et al.: Vascular endothelial growth factor enhances atherosclerotic plague progression. Nat. Med. (2001) 7:425-429.
  • ABRAMSON LP, PAHL E, HUANG L et al.: Serum vascular endothelial growth factor as a surveillance marker for cellular rejection in pediatric cardiac transplantation. Transplantation (2002) 73:153-156.
  • KIVELA R, SILVENNOINEN M, TOUVRA AM et al.: Effects of experimental Type 1 diabetes and exercise training on angiogenic gene expression and capillarization in skeletal muscle. FASEB J. (2006) 20:1570-1572.
  • KARPANEN T, HECKMAN CA, KESKITALO S et al.: Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J. (2006) 20:1462-1472.
  • HANAHAN D, FOLKMAN J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell (1996) 86:353-364.
  • HANAHAN D, WEINBERG RA: The hallmarks of cancer. Cell (2000) 100:57-70.
  • BOUCK N, STELLMACH V, HSU SC: How tumors become angiogenic. Adv. Cancer Res. (1996) 69:135-174.
  • KERBEL RS: A cancer therapy resistant to resistance. Nature (1997) 390:335-336.
  • GASTL G, HERMANN T, STEURER M et al.: Angiogenesis as a target for tumor treatment. Oncology (1997) 54:177-184.
  • SAARISTO A, KARPANEN T, ALITALO K: Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene (2000) 19:6122-6129.
  • CARDONES AR, BANEZ LL: VEGF inhibitors in cancer therapy. Curr. Pharm. Des. (2006) 12:387-394.
  • HICKLIN DJ, WITTE L, ZHU Z et al.: Monoclonal antibody strategies to block angiogenesis. Drug Discov. Today (2001) 6:517-528.
  • KIM KJ, LI B, WINER J et al.: Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumour growth in vivo. Nature (1993) 362:841-844.
  • FERRARA N, HILLAN KJ, GERBER HP et al.: Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. (2004) 3:391-400.
  • KRZYSTOFIK MG, AFSHARI MA, ADAMIS AP et al.: Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch. Ophthalmol. (2002) 120:338-346.
  • ROSENFELD PJ, SCHWARTZ SD, BLUMENKRANZ MS et al.: Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology (2005) 112:1048-1053.
  • JAYSON GC, MULATERO C, RANSON M et al.: Anti-VEGF antibody HuMV833: An EORTC biological treatment development group Phase I toxicity, pharmacokinetic and pharmacodynamic study. Proc. Am. Soc. Clin. Oncol. (2001) 20:14 (Abstract).
  • MULATERO C, JAYSON G, WAGSTAFF J et al.: Phase I safety, pharmacokinetic and pharmacodynamic study of recombinant human anti-VEGF antibody HuMV833 in patients with advanced cancer. Eur. J. Cancer (2002) 38:253 (Abstract).
  • JAYSON GC, MULATERO C, RANSON M et al.: Phase I investigation of recombinant anti-human vascular endothelial growth factor antibody in patients with advanced cancer. Eur. J. Cancer (2005) 41:555-563.
  • ZHU Z, WITTE L: Inhibition of tumor growth and metastasis by targeting tumor-associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor. Investig. New Drugs (1999) 17:195-212.
  • PREWETT M, HUBER J, LI Y et al.: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. (1999) 59:5209-5218.
  • BRUNS CJ, LIU W, DAVIS DW et al.: Vascular endothelial growth factor is an in vivo survival factor for tumor endothelium in a murine model of colorectal carcinoma liver metastases. Cancer (Phila.) (2000) 89:488-499.
  • LU D, KUSSIE P, PYTOWSKI B et al.: Identification of the residues in the extracellular region of KDR important for interaction with endothelial growth factor and neutralizing anti-KDR antibodies. J. Biol. Chem. (2000) 19:14321-14330.
  • ZHU Z, ROCKWELL P, LU D et al.: Inhibition of vascular endothelial growth factor-induced receptor activation with anti-kinase insert domain containing receptor single-chain antibodies from a phage display library. Cancer Res. (1998) 58:3209-3214.
  • POSEY JA, NG TC, YANG B: A Phase I study of anti-kinase insert domain-containing receptor antibody, IMC-1C11, in patients with liver metastases from colorectal carcinoma. Clin. Cancer Res. (2003) 9:1323-1332.
  • ZHU Z, HATTORI K, ZHANG H et al.: Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia (2003) 17:604-611.
  • CAMIDGE DR: A Phase I dose-escalation study of weekly IMC-1121B, a fully human anti-vascular endothelial growth factor receptor 2 (VEGFR2) IgG1 monoclonal antibody (Mab), in patients (pts) with advanced cancer. 42nd Annual Meeting of the American Society of Clinical Oncology, Atlanta, USA (2006):3032 (Abstract).
  • KADAMBI A, CARREIRA CM, YUN CO et al.: Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A. Cancer Res. (2001) 61:2404-2408.
  • ELLINGTON AD, SZOSTAK JW: In vitro selection of RNA molecules that bind specific ligands. Nature (1990) 346:818-822.
  • BUERGER C, GRONER B: Bifunctional recombinant proteins in cancer therapy: cell penetrating peptide aptamers as inhibitors of growth factor signaling. J. Cancer Res. Clin. Oncol. (2003) 129:669-675.
  • GRAGOUDAS ES, ADAMIS AP, CUNNINGHAM ET Jr: Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. (2004) 351:2805-2816.
  • JAYASENA SD: Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. (1999) 45:1628-1650.
  • RIMMELE M: Nucleic acid aptamers as tools and drugs: recent developments. Chembiochem. (2003) 4:963-971.
  • NIMJEE SM, RUSCONI CP, SULLENGER BA: Aptamers: an emerging class of therapeutics. Ann. Rev. Med. (2005) 56:555-583.
  • USMAN N, BEIGELMAN L, McSWIGGEN JA: Hammerhead ribozyme engineering. Curr. Opin. Struct. Biol. (1996) 6:527-533.
  • USMAN N, BLATT LM: Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J. Clin. Invest. (2000) 106:1197-1202.
  • PAVCO PA, BOUHANA KS, GALLEGOS AM et al.: Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin. Cancer Res. (2000) 6:2094-2103.
  • PARRY TJ, CUSHMAN C, GALLEGOS AM et al.: Bioactivity of anti-angiogenic ribozymes targeting flt-1 and KDR mRNA. Nucleic Acids Res. (1999) 27:2569-2577.
  • SANDBERG JA, PARKER VP, BLANCHARD KS et al.: Pharmacokinetics and tolerability of an antiangiogenic ribozyme (Angiozyme) in healthy volunteers. J. Clin. Pharmacol. (2000) 40:1462-1469.
  • DAVID EW, PAUL AM, SUSAN FR et al.: A Phase I clinical trial of a ribozyme-based angiogenesis inhibitor targeting vascular endothelial growth factor receptor-1 for patients with refractory solid tumors. Mol. Cancer Ther. (2005) 4:948-955.
  • KASHANI-SABET M: Non-viral delivery of ribozymes for cancer gene therapy. Expert Opin. Biol. Ther. (2004) 4:1749-1755.
  • CARDONES AR, BANEZ LL: VEGF inhibitors in cancer therapy. Curr. Pharm. Des. (2006) 12:387-394.
  • KENDALL RL, THOMAS KA: Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl. Acad. Sci. USA (1993) 90:10705-10709.
  • KUO CJ, FARNEBO F, YU EY et al.: Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc. Natl. Acad. Sci. USA (2001) 98:4605-4610.
  • GERBER HP, VU TH, RYAN AM et al.: VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. (1999) 5:623-628.
  • FERRARA N, CHEN H, DAVIS-SMYTH T et al.: Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. (1998) 4:336-340.
  • GERBER HP, VU TH, RYAN AM et al.: VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. (1999) 5:623-628.
  • HOLASH J, DAVIS S, PAPADOPOULOS N et al.: VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA (2002) 99:11393-11398.
  • LAU SC, ROSA DD, JAYSON G: Technology evaluation: VEGF Trap (cancer), Regeneron/Sanofi-Aventis. Curr. Opin. Mol. Ther. (2005) 7:493-501.
  • SAISHIN Y, SAISHIN Y, TAKAHASHI K et al.: VEGF-TRAP (R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J. Cell. Physiol. (2003) 195:241-248.
  • DUPONT J: Phase I study of VEGF Trap in patients with solid tumors and lymphoma. Proc. Am. Soc. Clin. Oncol. (2003) 22:776 (Abstract).
  • HARDING TC, LALANI AS, ROBERTS BN et al.: AAV serotype 8-mediated gene delivery of a soluble VEGF receptor to the CNS for the treatment of glioblastoma. Mol. Ther. (2006) 13:956-966.
  • BATES DO, HARPER SJ: Therapeutic potential of inhibitory VEGF splice variants. Future Oncol. (2005) 1:467-473.
  • MANNING G, WHYTE DB, MARTINEZ R et al.: The protein kinase complement of the human genome. Science (2002) 298:1912-1934.
  • COHEN P: The development and therapeutic potential of protein kinase inhibitors. Curr. Opin. Chem. Biol. (1999) 3:459-465.
  • RELF M, LEJEUNE S, SCOTT PA et al.: Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β1, platelet derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. (1997) 57:963-969.
  • TAYLOR AP, OSORIO L, CRAIG R et al.: Tumor-specific regulation of angiogenic growth factors and their receptors during recovery from cytotoxic therapy. Clin. Cancer Res. (2002) 8:1213-1222.
  • ADAMS J, HUANG P, PATRICK D: A strategy for the design of multiplex inhibitors for kinase-mediated signalling in angiogenesis. Curr. Opin. Chem. Biol. (2002) 6:486-492.
  • CHERRINGTON JM, STRAWN LM, SHAWVER LK: New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv. Cancer Res. (2000) 79:1-38.
  • HENNEQUIN LF, STOKES ESE, THOMAS AP et al.: Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. J. Med. Chem. (2002) 45:1300-1312.
  • CIARDIELLO F, CAPUTO R, DAMIANO V et al.: Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin. Cancer Res. (2003) 9:1546-1556.
  • ARAO T, FUKUMOTO H, TAKEDA M et al.: Small in-frame deletion in the epidermal growth factor receptor as a target for ZD6474. Cancer Res. (2004) 64:9101-9104.
  • CARLOMAGNO F, VITAGLIANO D, GUIDA T et al.: ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. (2002) 62:7284-7290.
  • WEDGE SR, OGILVIE DJ, DUKES M et al.: ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. (2002) 62:4645-4655.
  • DREVS J, KONERDING MA, WOLLOSCHECK T et al.: The VEGF receptor tyrosine kinase inhibitor, ZD6474, inhibits angiogenesis and affects microvascular architecture within an orthotopically implanted renal cell carcinoma. Angiogenesis (2004) 7:347-354.
  • BEAUDRY P, FORCE J, NAUMOV GN et al.: Differential effects of vascular endothelial growth factor receptor-2 inhibitor ZD6474 on circulating endothelial progenitors and mature circulating endothelial cells: implications for use as a surrogate marker of antiangiogenic activity. Clin. Cancer Res. (2005) 11:3514-3522.
  • McCARTY MF, WEY J, STOELTZING O et al.: ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor with additional activity against epidermal growth factor receptor tyrosine kinase, inhibits orthotopic growth and angiogenesis of gastric cancer. Mol. Cancer Ther. (2004) 3:1041-1049.
  • SANDSTROM M, JOHANSSON M, ANDERSSON U et al.: The tyrosine kinase inhibitor ZD6474 inhibits tumour growth in an intracerebral rat glioma model. Br. J. Cancer (2004) 91:1174-1180.
  • LEENDERS WPJ, KUESTERS B, VERRIJP K et al.: Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin. Cancer Res. (2004) 10:6222-6230.
  • TAGUCHI F, KOH Y, KOIZUMI F et al.: Anticancer effects of ZD6474, a VEGF receptor tyrosine kinase inhibitor, in gefitinib (‘Iressa’)-sensitive and resistant xenograft models. Cancer Sci. (2004) 95:984-989.
  • BASSER R, HURWITZ H, BARGE A et al.: Phase I pharmacokinetic and biological study of the angiogenesis inhibitor, ZD6474, in patients with solid tumors. Proc. Am. Soc. Clin. Oncol. (2001) 20:396 (Abstract).
  • MINAMI H, EBI H, TAHARA M et al.: A Phase I study of an oral VEGF receptor tyrosine kinase inhibitor ZD6474, in Japanese patients with solid tumors. Proc. Am. Soc. Clin. Oncol. (2003) 22:778 (Abstract).
  • MILLER KD, TRIGO JM, WHEELER C et al.: A multicenter Phase II trial of ZD6474, a vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosine kinase inhibitor, in patients with previously treated metastatic breast cancer. Clin. Cancer Res. (2005) 11:3369-3376.
  • HOLDEN SN, ECKHARDT SG, BASSER R et al.: Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann. Oncol. (2005) 16:1391-1397.
  • WEDGE SR, KENDREW J, HENNEQUIN LF et al.: AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. (2005) 65:4389-4400.
  • VAN CRUIJSEN H, VOEST EE, VAN HERPEN CML et al.: Phase I evaluation of AZD2171, a highly potent, selective VEGFR signaling inhibitor, in combination with gefitinib, in patients with advanced tumors. J. Clin. Oncol. (2006) 24:3017 (Abstract).
  • BHIDE RS, CAI ZW, ZHANG YZ et al.: Discovery and preclinical studies of BMS-540215 during Phase I trial have shown that this compound is an in vivo active potent VEGFR-2 inhibitor. J. Med. Chem. (2006) 49:2143-2146.
  • YOKOI K, THAKER PH, YAZICI S et al.: Dual inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model. Cancer Res. (2005) 65:3716-3725.
  • MANLEY PW, FURET P, BOLD G et al.: Anthranilic acid amides: a novel class of antiangiogenic VEGF receptor kinase inhibitors. J. Med. Chem. (2002) 45:5687-5693.
  • ZAKARIJA A, SOFF G: Update on angiogenesis inhibitors. Curr. Opin. Oncol. (2005) 17:578-583.
  • JAIN RK, DUDA DG, CLARK JW et al.: Lessons from Phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Pract. Oncol. (2006) 3:24-40.
  • HECHT JR: A randomized, double-blind, placebo-controlled, Phase III study in patients with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/5-fluoro- uracil/leucovorin and PTK787/ZK 222584. 41st Annual Meeting of the American Society of Clinical Oncology, Orlando, USA (2005):LBA3 (Abstract).
  • HESS-STUMPP H, HABEREY M, THIERAUCH KH: PTK 787/ZK 222584, a tyrosine kinase inhibitor of all known VEGF receptors, represses tumor growth with high efficacy. Chembiochem (2005) 6:550-557.
  • ELTING J, JONES R, CARTER C et al.: BAY 579352: An inhibitor of VEGFR2 and PDGFR receptor tyrosine kinases that demonstrates anti-angiogenic activity in vitro and in vivo. Eur. J. Cancer (Suppl.) (2004) 2:139 (Abstract).
  • CHANG Y, CORTES C, BRINK C et al.: BAY 579352: An inhibitor of VEGFR2 and PDGFR receptor tyrosine kinases that demonstrates broad anti-tumor activity as a single agent in preclinical models. Eur. J. Cancer (Suppl.) (2004) 2:148 (Abstract).
  • KAUFMAN S, STARNES C, COXON A et al.: AMG 706 induces the rapid destruction of tumor microvessels in nude mice. Proc. Am. Assoc. Cancer Res. (2006) 47:3792 (Abstract).
  • GARTON AJ, CREW AP, FRANKLIN M et al.: OSI-930: a novel selective inhibitor of Kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse xenograft models. Cancer Res. (2006) 66:1015-1024.
  • ATKINS M, JONES CA, KIRKPATRICK P: Sunitinib maleate. Nat. Rev. Drug Discov. (2006) 5:279-280.
  • CABEBE E, WAKELEE H: Sunitinib: a newly approved small-molecule inhibitor of angiogenesis. Drugs Today (Barc) (2006) 42:387-398.
  • SUSMAN E: New drug increases survival in stomach cancer. Lancet Oncol. (2006) 7:286.
  • DESAI J, MAKI R, HEINRICH MC et al.: Activity and tolerability of the multi-targeted tyrosine kinase inhibitor SU011248 in patients (pts) with metastatic gastrointestinal stromal tumor (GIST) refractory to imatinib mesylate. Gastrointest. Cancers Symp. (2004):7 (Abstract).
  • FAIVRE S, DELBADO C, VERA K et al.: Pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol. (2006) 24:25-35.
  • MOTZER RJ, HUTSON TE, TOMCZAK P et al.: Phase III randomized trial of sunitinib malate (SU11248) versus interferon-α (IFN-α) as first-line systemic therapy for patients with metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. (Suppl.) (2006) 24:LBA3.
  • LIANG C, SUN L, TRAN N: Discovery and design of angiogenesis inhibitors that inhibit tyrosine kinase activities associated with VEGF, FGF, and PDGF receptors. Proc. Am. Assoc. Cancer Res. (1999) 40:452 (Abstract).
  • MURAKAMI H, YAMAMOTO N, SHIMOYAMA T et al.: Phase I, pharmacokinetic, and biological studies of TSU-68, the oral vascular endothelial growth factor receptor tyrosine kinase inhibitor, administered after meals in patients with advanced solid tumors. Proc. Am. Soc. Clin. Oncol. (2003) 22:870 (Abstract).
  • UEDA Y, SHIMOYAMA T, MURAKAMI H et al.: Phase I study of TSU-68, VEGF receptor tyrosine kinase inhibitor, by twice daily oral administration between meals in patients with advanced solid tumors. Proc. Am. Soc. Clin. Oncol. (2002) 21:443 (Abstract).
  • PATYNA S, LAIRD AD, MENDEL DB et al.: SU14813: a novel multiple receptor tyrosine kinase inhibitor with potent antiangiogenic and antitumor activity. Mol. Cancer Ther. (2006) 5:1774-1784.
  • TRUDEL S, LI ZH, WEI E et al.: CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood (2005) 105:2941-2948.
  • LOPES DE MENEZES DE, PENG J, GARRETT EN et al.: CHIR-258: a potent inhibitor of FLT3 kinase in experimental tumor xenograft models of human acute myelogenous leukemia. Clin. Cancer Res. (2005) 11:5281-5291.
  • SARKER D, EVANS J, HARDIE M et al.: A Phase I, pharmacokinetic (PK) and pharmacodynamic (PD) study of CHIR-258, a novel oral multiple receptor tyrosine kinase (RTK) inhibitor. J. Clin. Oncol. (2006) 24:3043.
  • HILBERG F, TONTSCH-GRUNT U, COLBATZKY F et al.: BIBF1120 a novel, small molecule triple angiokinase inhibitor: Profiling as a clinical candidate for cancer therapy. Eur. J. Cancer (Suppl.) (2004) 2:158 (Abstract).
  • LEE CP, ATTARD G, POUPARD L et al.: A Phase I study of BIBF 1120, an orally active triple angiokinase inhibitor (VEGFR, PDGFR, FGFR) given continuously to patients with advanced solid tumours, incorporating dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). J. Clin. Oncol. (Suppl.) (2006) 24:3015 (Abstract).
  • STRUMBERG D: Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc.) (2005) 41:773-784.
  • ADNANE L, TRAIL PA, TAYLOR I et al.: Sorafenib (BAY 43-9006, Nexavar®), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol. (2005) 407:597-612.
  • FRANTZ S: Drug approval triggers debate on future direction for cancer treatments. Nat. Rev. Drug Discov. (2006) 5:91.
  • EISEN T, BUKOWSKI RM, STAEHLER M et al.: Randomized Phase III trial of sorafenib in advanced renal cell carcinoma (RCC): Impact of crossover on survival. J. Clin. Oncol. (2006) 24:4524.
  • TAGUCHI E, NAKAMURA K, MIURA T et al.: The efficacy of KRN951, a novel VEGF receptor tyrosine kinase inhibitor, in intraperitoneal disseminated tumor models. Proc. Am. Assoc. Cancer Res. (2005) 46:5836 (Abstract).
  • MATSUI J: E7080, a novel VEGF receptor tyrosine kinase inhibitor-I. Characterization as an angiogenesis inhibitor. Proc. Am. Assoc. Cancer Res. (2003) 44:51 (Abstract).
  • YAMAMOTO Y, WATANABE T, TSURUOKA A et al.: E7080, an oral multitargeted tyrosine kinase inhibitor, has direct anti-tumor efficacy via inhibition of KIT signaling in gastrointestinal stromal tumor (GIST). Proc. Am. Assoc. Cancer Res. (2006) 47:4038 (Abstract).
  • YAMAMOTO Y, WATANABE T, MIYAZAKI K et al.: E7080, an oral multitargeted tyrosine kinase inhibitor, has direct anti-tumor efficacy via inhibition of KIT signaling in small cell lung cancer. Proc. Am. Assoc. Cancer Res. (2004) 45:4636 (Abstract).
  • NAKAMURA K: E7080, a novel VEGF receptor tyrosine kinase inhibitor-II. Effects on growth of human tumor xenografts and life span of mice in colon 38 orthotopic transplantation model. Proc. Am. Assoc. Cancer Res. (2003) 44:52 (Abstract).
  • GUO J, MARCOTTE PA, McCALL JO et al.: Inhibition of phosphorylation of the colony-stimulating factor-1 receptor (c-Fms) tyrosine kinase in transfected cells by ABT-869 and other tyrosine kinase inhibitors. Mol. Cancer Ther. (2006) 5:1007-1013.
  • VENETSANAKOS E, STUART D, TAN N et al.: CHIR-265, a novel inhibitor that targets B-Raf and VEGFR, shows efficacy in a broad range of preclinical models. Proc. Am. Assoc. Cancer Res. (2006) 47:4854 (Abstract).
  • HUTSON TE, BUKOWSKI RM: A Phase II study of GW786034 using a randomized discontinuation design in patients with locally recurrent or metastatic clear-cell renal cell carcinoma. Clin. Genitourin. Cancer (2006) 4:296-298.
  • BEEBE JS, JANI JP, KNAUTH E et al.: Pharmacological characterization of CP-547,632, a novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for cancer therapy. Cancer Res. (2003) 63:7301-7309.
  • MULLER AJ, SCHERLE PA: Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat. Rev. Cancer (2006) 6:613-625.
  • RUGO HS, HERBST RS, LIU G et al.: Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J. Clin. Oncol. (2005) 23:5474-5419.
  • KIM S: A Phase II study of axitinib (AG-013736), a potent inhibitor of VEGFRs, in patients with advanced thyroid cancer. J. Clin. Oncol. (Suppl.) (2006) 24:5529 (Abstract).
  • RINI B, RIXE O, BUKOWSKI R et al.: AG-013736, a multi-target tyrosine kinase receptor inhibitor, demonstrates anti-tumor activity in a Phase II study of cytokine-refractory, metastatic renal cell cancer (RCC). J. Clin. Oncol. (Suppl.) (2005) 23:4509.
  • GINGRICH DE, REDDY DR, IQBAL MA et al.: A new class of potent vascular endothelial growth factor receptor tyrosine kinase inhibitors: structure–activity relationships for a series of 9-alkoxymethyl- 12-(3-hydroxypropyl)indeno[2,1-a]pyrrolo- [3,4-c]carbazole-5-ones and the identification of CEP-5214 and its dimethylglycine ester prodrug clinical candidate CEP-7055. J. Med. Chem. (2003) 46:5375-5388.
  • JONES-BOLIN S, ZHAO H, HUNTER K et al.: The effects of the oral, pan-VEGF-R kinase inhibitor CEP-7055 and chemotherapy in orthotopic models of glioblastoma and colon carcinoma in mice. Mol. Cancer Ther. (2006) 5:1744-1753.
  • RUGGERI B, SINGH J, GINGRICH D et al.: CEP-7055: a novel, orally active pan inhibitor of vascular endothelial growth factor receptor tyrosine kinases with potent antiangiogenic activity and antitumor efficacy in preclinical models. Cancer Res. (2003) 63:5978-5991.
  • JOLY A: In vitro and in vivo characterization of EXEL-7647, a novel spectrum selective receptor tyrosine kinase inhibitor that modulates angiogenesis and tumor cell proliferation. Eur. J. Cancer (Suppl.) (2004) 2:134 (Abstract).
  • WAKELEE HA: A Phase I dose-escalation and pharmacokinetic (PK) study of a novel spectrum selective kinase inhibitor, XL647, in patients with advanced solid malignancies (ASM). 42nd Annual Meeting of the American Society of Clinical Oncology, Atlanta, USA (2006):3044 (Abstract).
  • AFTAB D: The spectrum-selective kinase inhibitor EXEL0999 inhibits mitogenic and angiogenic kinases, and causes rapid tumor vasculature destruction and regression in mouse xenograft models. Eur. J. Cancer (Suppl.) (2004) 2:141 (Abstract).
  • EDER JP: A Phase I study of a novel spectrum selective kinase inhibitor (SSKI), XL880, administered orally in patients (pts) with advanced solid tumors (STs). 42nd Annual Meeting of the American Society of Clinical Oncology, Atlanta, USA (2006):3041 (Abstract).
  • JOLY AH, GERRITSEN ME: EXEL-2880, a small-molecule, orally available tyrosine kinase inhibitor that targets VEGFR and the HGF receptor, C-MET. Potent anti-angiogenic and anti-tumor effects in vitro and in vivo. Miami Nat. Biotechnol. Winter Symp. (2006):T3 (Abstract).
  • SIEMEISTER G, BRIEM H, BRUMBY T et al.: The dual-specific CDK2/VEGF-RTK inhibitor ZK-CDK potently inhibits proliferation of human tumor cells, induces apoptosis, and inhibits growth of human xenograft tumors. Proc. Am. Assoc. Cancer Res. (2004) 45:829 (Abstract).
  • YANG JC, HAWORTH L, SHERRY RM et al.: A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. (2003) 349:427-434.
  • COBLEIGH MA, LANGMUIR VK, SLEDGE GW et al.: A Phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin. Oncol. (2003) 30:117-124.
  • MAYER RJ: Two steps forward in the treatment of colorectal cancer. N. Engl. J. Med. (2004) 350:2406-2408.
  • HURWITZ H, FEHRENBACHER L, NOVOTNY W et al.: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. (2004) 350:2335-2342.
  • MORELLI MP, CASCONE T, TROIANI T et al.: Sequence-dependent antiproliferative effects of cytotoxic drugs and epidermal growth factor receptor inhibitors. Ann. Oncol. (2005) 16:61-72.
  • TUCCILLO C, ROMANO M, TROIANI T et al.: Antitumor activity of ZD6474, a vascular endothelial growth factor-2 and epidermal growth factor receptor small molecule tyrosine kinase inhibitor, in combination with SC-236, a cyclooxygenase-2 inhibitor. Clin. Cancer Res. (2005) 11:1268-1276.
  • SIEMANN DW, SHI W: Efficacy of combined antiangiogenic and vascular disrupting agents in treatment of solid tumors. Int. J. Radiat. Oncol. Biol. Phys. (2004) 60:1233-1240.
  • WILLIAMS KJ, TELFER BA, BRAVE S et al.: ZD6474, a potent inhibitor of vascular endothelial growth factor signaling, combined with radiotherapy. Schedule-dependent enhancement of antitumor activity. Clin. Cancer Res. (2004) 10:8587-8593.
  • GUSTAFSON DL, MERZ AL, ZIRROLLI JA et al.: Impact of scheduling on combined ZD6474 and radiotherapy in head and neck tumor xenografts. Eur. J. Cancer (Suppl.) (2004) 2:142 (Abstract).
  • SIEMANN D, SHI W: The VEGFR-2 tyrosine kinase inhibitor, ZD6474, enhances the antitumor effect of radiation. Eur. J. Cancer (Suppl.) (2004) 2:154 (Abstract).
  • NIEDER C, WIEDENMANN N, ANDRATSCHKE N, MOLLS M: Current status of angiogenesis inhibitors combined with radiation therapy. Cancer Treat. Rev. (2006) 32:348-364.
  • TEICHER BA: A systems approach to cancer therapy. (Antioncogenics + standard cytotoxics → mechanism(s) of interaction). Cancer Metastasis Rev. (1996) 15:247-272.
  • JAIN RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science (2005) 307:58-62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.