467
Views
35
CrossRef citations to date
0
Altmetric
Reviews

Novel β-lactam antibiotics and inhibitor combinations

, MD PhD, , MD & , MD
Pages 285-296 | Published online: 06 Mar 2008

Bibliography

  • Goffin C, Ghuysen JM. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 1998;62:1079-93
  • Lim D, Strynadka NCJ. Structural basis for the beta-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol 2002;9:870-6
  • Neu HC. The crisis in antibiotic resistance. Science 1992;257:1064-73
  • Mukhopadhyay S, Chakrabarti P. Altered permeability and beta-lactam resistance in a mutant of Mycobacterium smegmatis. Antimicrob Agents Chemother 1997;41:1721-4
  • Livermore DM. Beta-lactamase-mediated resistance and opportunities for its control. J Antimicrob Chemother 1998;41:25-41
  • Ambler RP. The structure of b-lactamases. Philos Trans R Soc Lond B Biol Sci 1980;289:321-31
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995;39:1211-33
  • Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995;8:557-84
  • Thomson KS, Smith Moland E. Version 2000: the new beta-lactamases of Gram-negative bacteria at the dawn of the new millennium. Microbes Infect 2000;2:1225-35
  • Nouda H, Harabe ET, Sumita Y, et al. Beta-lactamase stability and inhibitory activity of meropenem combined with a potent antibacterial activity. Chemotherapy 1992;38:218-24
  • Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother 2002;46:1-11
  • Yang K, Guglielmo JB. Diagnosis and treatment of extended-spectrum and AmpC β-lactamase-producing organisms. Ann Pharmacother 2007;41:1427-35
  • Paterson DL, Hujer KM, Hujer AM, et al. Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob Agents Chemother 2003;47:3554-60
  • Kuzin AP, Nukaga M, Nukaga Y, et al. Structure of the SHV-1 β-lactamase. Biochemistry 1999;38:5720-7
  • Danel F, Hall LM, Duke B, Gur D, Livermore DM. OXA-17, a further extended-spectrum variant of OXA-10 β-lactamase, isolated from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999;43:1362-6
  • Cuzon G, Naas T, Demachy MC, Nordmann P. Plasmid-mediated carbapenem-hydrolyzing {beta}-lactamase KPC-2 in Klebsiella pneumoniae from Greece. Antimicrob Agents Chemother 2008;52(2):796-7
  • Jacoby GA, Munoz-Price LS. The new beta-lactamases. N Engl J Med 2005;352:380-91
  • Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007;20:440-58
  • Miller LA, Ratnam K, Payne DJ. Beta-lactamase-inhibitor combinations in the 21st century: current agents and new developments. Curr Opin Pharmacol 2001;1:451-8
  • Yang Y, Janota K, Tabei K, et al. Mechanism of inhibition of the class A β-lactamases PC1 and TEM-1 by tazobactam. Observation of reaction products by electrospray ionization mass spectrometry. J Biol Chem 2000;275:2674-82
  • Massova I, Mobashery S. Molecular bases for interactions between beta-lactam antibiotics and beta-lactamases. Acc Chem Res 1997;30:162-8
  • Massova I, Mobashery S. Structural and mechanistic aspects of evolution of beta-lactamases and penicillin-binding proteins. Curr Pharm Des 1999;5:929-37
  • Venkatesan AM, Agarwal A, Abe T, et al. Novel imidazole substituted 6-methylidene-penems as broad-spectrum β-lactamase inhibitors. Bioorg Med Chem 2004;12:5807-17
  • Weiss WJ, Petersen PJ, Murphy TM, et al. In vitro and in vivo activities of novel 6-methylidene penems as beta-lactamase inhibitors. Antimicrob Agents Chemother 2004;48:4589-96
  • Richter HGF, Angehrn P, Hubschwerlen C, et al. Design, synthesis, and evaluation of 2β-alkenyl penam sulfone acids as inhibitors of blactamases. J Med Chem 1996;39:3712-22
  • Tzouvelekis L, Gazouli M, Prinarakis EE, et al. Comparative evaluation of the inhibitory activities of the novel penicillanic acid sulfone Ro 48-1220 against β-lactamases that belong to groups 1, 2b, and 2be. Antimicrob Agents Chemother 1997;41:475-7
  • Di Giacomo B, Tarzia G, Bedini A, et al. Synthesis of new C-6 alkyliden penicillin derivatives as beta-lactamase inhibitors. Farmaco 2002;57:273-83
  • Buynak JD, Gadhachanda VR, Vogeti L, et al. Synthesis and evaluation of 3-(carboxymethylidene)- and 3-(carboxymethyl) penicillinates as inhibitors of beta-lactamase. J Org Chem 2005;70:4510-3
  • Kaur K, Adediran SA, Lan MJ, Pratt RF. Inhibition of beta-lactamases by monocyclic acyl phosph(on)ates. Biochemistry 2003;18:1529-36
  • Miller LA, Ratnam K, Payne DJ. Beta-lactamase inhibitor combinations in the 21st century: current agents and new developments. Curr Opin Pharmacol 2001;1:451-8
  • Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001;14:933-51
  • Jones RN. Important and emerging beta-lactamase mediated resistances in hospital-based pathogens: the AmpC enzymes. Diagn Microbiol Infect Dis 1998;31:461-6
  • Mushtaq S, Warner M, Miossec C, et al. NXL104/cephalosporin combinations vs. Enterobacteriaceae with CTX-M ESBLs. In: Program and Abstracts: 47th Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, September 17 – 20 2007. Abstract F1-319
  • Miossec C, Poirel L, Livermore D, et al. In vitro activity of the new β-lactamase inhibitor NXL 104: restoration of ceftazidime (CAZ) efficacy against carbapenem-resistant Enterobacteriaceae strains. In: Program and Abstracts: 47th Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, September 17 – 20 2007. Abstract F1-318
  • Cherry PC, Newall CE, Watson NS. Preparation of the 7-oxo-4-oxa-1-azabicyclo[3.2.0]hept-2-ene system and the reversible cleavage of its oxazoline ring. J Chem Soc Chem Commun 1978;11:469-70
  • Pfaendler HR, Weisner F, Metzger K. Synthesis and antibacterial activity of (1_R, 5R, 6R)-2-tert-butyl-6-(1_-hydroxyethyl)oxapenem-3-carboxylic acid. Bioorg Med Chem Lett 1993;3:2211-8
  • Jamieson CE, Lambert PA, Simpson IN. In vitro activities of novel oxapenems, alone and in combination with ceftazidime, against gram-positive and gram-negative organisms. Antimicrob Agents Chemother 2003;47:2615-8
  • Hamilton-Miller JM. Chemical and microbiologic aspects of penems, a distinct class of beta-lactams: focus on faropenem. Pharmacotherapy 2003;23:1497-507
  • Felmingham D, Robbins MJ, Mathias IL, et al. In vitro activity of faropenem, an oral penem. Abstracts of the Interscience Conference. Antimicrob Agents Chemother 2000;40:17-20
  • Dalhoff A, Janjic N, Echols R. Redefining penems. Biochem Pharmacol 2006;30:1085-95
  • Moellering RC. Problems with antimicrobial resistance in gram-positive cocci. Clin Infect Dis 1998;26:1177-8
  • Woodford N. Biological counterstrike: antibiotic resistance mechanisms of Gram-positive cocci. Clin Microbiol Infect 2005;11:2-21
  • Chambers HF, Hartman BJ, Tomasz A. Increased amounts of a novel penicillin-binding protein in a strain of methicillin-resistant Staphylococcus aureus exposed to nafcillin. J Clin Invest 1985;76:325-31
  • Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000;44:1549-55
  • Ito T, Kuwahara K, Hiramatsu K. Staphylococcal cassette chromosome mec (SCC mec) analysis of MRSA. Methods Mol Biol 2007;391:87-102
  • Ito T, Katayama Y, Asada K, et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2001;45:1323-36
  • Ma XX, Ito T, Tiensasitorn C, et al. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 2002;46:1147-52
  • Chambers HF. Ceftobiprole: in vivo profile of a bactericidal cephalosporin. Clin Microbiol Infect 2006;12:17-22
  • Page MG. Anti-MRSA beta-lactams in development. Curr Opin Pharmacol 2006;6:480-5
  • Hebeisen P, Heinze-Krauss I, Angehrn P, et al. In vitro and in vivo properties of Ro 63-9141, a novel broad spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob Agents Chemother 2001;45:825-36
  • Lin G, Appelbaum PC. Activity of ceftobiprole compared with those of other agents against Staphylococcus aureus strains with different resistotypes by time-kill analysis. Diagn Microbiol Infect Dis 2008;60(2):233-5
  • Queenan AM, Shang W, Kania M, et al. Interactions of ceftobiprole with beta-lactamases from molecular classes A to D. Antimicrob Agents Chemother 2007;51:3089-95
  • Zhanel GG, Decorby M, Laing N, et al. Activity of ceftobiprole against pathogens isolated from Canadian intensive care units: results of the Canadian National Intensive Care Unit (CAN-ICU) Study. In: Program and Abstracts: 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, September 17 – 20 2007. Abstract C2-867
  • Jones ME. In-vitro profile of a new beta-lactam, ceftobiprole, with activity against methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2007;13:17-24
  • Bogdanovich T, Ednie LM, Shapiro S, Appelbaum PC. Antistaphylococcal activity of ceftobiprole, a new broad-spectrum cephalosporin. Antimicrob Agents Chemother 2005;49:4210-9
  • Rouse MS, Steckelberg JM, Patel R. In vitro activity of ceftobiprole, daptomycin, linezolid, and vancomycin against methicillin-resistant staphylococci associated with endocarditis and bone and joint infection. Diagn Microbiol Infect Dis 2007;58:363-5
  • Noel GJ. Clinical profile of ceftobiprole, a novel beta-lactam antibiotic. Clin Microbiol Infect 2007;13(Suppl 2):25-9
  • Noel GJ, Strauss RS, Amsler K, et al. Treatment of complicated skin and skin structure infections caused by Gram-positive bacteria with ceftobiprole: results of a double-blind, randomized trial. Antimicrob Agents Chemother 2008;52:37-44
  • Arias CA, Singh KV, Panesso D, Murray BE. Evaluation of ceftobiprole medocaril against Enterococcus faecalis in a mouse peritonitis model. J Antimicrob Chemother 2007;60:594-8
  • Schmitt-Hoffmann A, Nyman L, Roos B, et al. Multiple-dose pharmacokinetics and safety of a novel broad-spectrum cephalosporin (BAL5788) in healthy volunteers. Antimicrob Agents Chemother 2004;7:2576-80
  • Sader HS, Fritsche TR, Kaniga K, et al. Antimicrobial activity and spectrum of PPI-0903M (T-91825), a novel cephalosporin, tested against a worldwide collection of clinical strains. Antimicrob Agents Chemother 2005;49:3501-12
  • Iizawa Y, Nagai J, Ishikawa T, et al. In vitro antimicrobial activity of T-91825, a novel anti-MRSA cephalosporin, and in vivo anti-MRSA activity of its prodrug, TAK-599. J Infect Chemother 2004;10:146-56
  • Jacqueline C, Caillon J, Le Mabecque V, et al. In vivo efficacy of ceftaroline (PPI-0903), a new broad-spectrum cephalosporin, compared with linezolid and vancomycin against methicillin-resistant and vancomycin-intermediate Staphylococcus aureus in a rabbit endocarditis model. Antimicrob Agents Chemother 2007;51:3397-400
  • Mushtaq S, Warner M, Ge Y, et al. In vitro activity of ceftaroline (PPI-0903M, T-91825) against bacteria with defined resistance mechanisms and phenotypes. J Antimicrob Chemother 2007;60:300-11
  • Talbot GH, Thye D, Das A, Ge Y. Phase 2 study of ceftaroline versus standard therapy in treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother 2007;51:3612-16
  • Zhanel GG, Wiebe R, Dilay L, et al. Comparative review of the carbapenems. Drugs 2007;67:1027-52
  • Livermore DM, Neil W. Carbapenemases: a problem in waiting? Curr Opin Microbiol 2000;3:489-95
  • Rice LB, Bonomo RA. Beta-lactamases: which ones are clinically important? Drug Resist Updates 2000;3:178-89
  • Rasmussen BA, Bush K. Carbapenem-hydrolyzing blactamases. Antimicrob Agents Chemother 1997;41:223-32
  • DiNinno F, Beattie TR, Christensen BG. Aldol condensations of regiospecific penicillanate and cephalosporanate enolates. Hydroxyethylation at C-6 and C-7. J Org Chem 1977;42:2960-5
  • Golemi D, Maveyraud L, Ishiwata A, et al. 6-(hydroxyalkyl)penicillanates as probes for mechanisms of β-lactamases. J Antibiot 2000;53:1022-7
  • Buynak JD, Chen H, Vogeti L, et al. Penicillin-derived inhibitors that simultaneously target both metallo- and serine-blactamases. Bioorg Med Chem Lett 2004;14:1299-304
  • Mori M, Hikida M, Nishihara T, et al. Comparative stability of carbapenem and penem antibiotics to human recombinant dehydropeptidase-I. J Antimicrob Chemother 1996;37:1034-6
  • Ge Y, Wikler MA, Sahm DF, et al. In vitro antimicrobial activity of doripenem, a new carbapenem. Antimicrob Agents Chemother 2004;48:1384-96
  • Jones RN, Huynh HK, Biedenbach DJ. Activities of doripenem (S-4661) against drug-resistant clinical pathogens. Antimicrob Agents Chemother 2004;48:3136-40
  • Bhavnani SM, Hammel JP, Cirincione BB, et al. Use of pharmacokinetic-pharmacodynamic target attainment analyses to support phase 2 and 3 dosing strategies for doripenem. Antimicrob Agents Chemother 2005;49:3944-7
  • Jones RN, Huynh HK, Biedenbach DJ, et al. Doripenem (S-4661), a novel carbapenem: comparative activity against contemporary pathogens including bactericidal action and preliminary in vitro methods evaluations. J Antimicrob Chemother 2004;54:144-54
  • Watanabe A, Takahaski H, Kikuchi T, et al. Comparative in vitro activity of S-4661, a new parenteral carbapenem, and other antimicrobial agents against respiratory pathogens. Chemotherapy 2000;46:184-7
  • Mushtaq S, Ge Y, Livermore DM. Comparative activities of doripenem versus isolates, mutants, and transconjugants of Enterobacteriaceae and Acinetobacter spp. with characterized β-lactamases. Antimicrob Agents Chemother 2004;48:1313-9
  • Fritsche TR, Stilwell MG, Jones RN. Antimicrobial activity of doripenem (S-4661): a global surveillance report (2003). Clin Microbiol Infect 2005;11:974-84
  • Chastre J, Wunderink R, Prokocimer P, et al. Efficacy and safety of doripenem vs imipenem for ventilator associated pneumonia. In: Program and Abstracts: 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, September 17 – 20 2007. Abstract L-486
  • Solomkin J, Umeh O, Jiang J, et al. Doripenem vs meropenem with an option for oral step-down therapy in the treatment of complicated intra-abdominal infections. In: Program and Abstracts: 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, September 17 – 20 2007. Abstract L-487
  • Rea-Neto A, Niederman M, Prokicimer P, et al. Efficacy and safety of intravenous doripenem vs piperacillin/tazobactam in nosocomial pneumonia. In: Program and Abstracts: 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, September 17 – 20, 2007. Abstract L-731
  • Goldstein EJ, Citron DM, Merriam CV, et al. In vitro activities of doripenem and six comparator drugs against 423 aerobic and anaerobic bacteria isolated from infected diabetic foot wounds. Antimicrob Agents Chemother 2008;52(2):761-6
  • Maruyama T, Yamamoto Y, Kano Y, et al. CP5484, a novel quaternary carbapenem with potent anti-MRSA activity and reduced toxicity. Bioorg Med Chem 2007;15:6379-87

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.