434
Views
35
CrossRef citations to date
0
Altmetric
Reviews

Osteoarthritic pain: a review of current, theoretical and emerging therapeutics

&
Pages 619-640 | Published online: 30 Apr 2008

Bibliography

  • Fraenkel M, Bogardus ST, Concato J, Wittink DR. Treatment options in knee OA. Arch Intern Med 2004;164:1299-304
  • Catella-Lawson F, et al. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med 2001;345:1809-17
  • Fitzgerald GA. COX-2 in play at the AHA and FDA. Trends Pharmacol Sci 2007;28(7):303-8
  • Chou R, Helfand M, Peterson K, et al. Comparative Effectiveness and Safety of Analgesics for Osteoarthritis. Comparative Effectiveness Review No 4. Agency for Healthcare Research and Quality. 2006 September. Available from: www.effectivehealthcare.ahrq.gov/reports/final.cfm [Last accessed date September 2007]
  • Bjordal JM, Klovning A, Ljunggren AE, Slordal L. Short-term efficacy of pharmacotherapeutic interventions in osteoarthritic pain: a meta-analysis of randomised placebo-controlled trials. Eur J Pain 2007;11:125-38
  • Kearney PM, Baigent C, Godwin J, et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 2006;332:1302-8
  • Bresalier RS, Sandler RS, Quan H, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 2005;352:1092-102
  • Bertagnolli MM, Eagle CJ, Zauber AG, et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 2006;355:873-84
  • Nussmeier NA, Whelton AA, Brown MT, et al. Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N Engl J Med 2005;352:1081-91
  • Ott E, Nussmeier NA, Duke PC, et al. Efficacy and safety of the cyclooxygenase 2 inhibitors parecoxib and valdecoxib in patients undergoing coronary artery bypass surgery. J Thorac Cardiovasc Surg 2003;125:1481-92
  • Hernandez-Diaz S, Varas-Lorenzo C, Garcia Rodriguez LA. Non-steroidal antiinflammatory drugs and the risk of acute myocardial infarction. Basic Clin Pharmacol Toxicol 2006;98:266-74
  • Garcia Rodriguez LA, Varas-Lorenzo C, Maguire A, Gonzalez-Perez A. Nonsteroidal antiinflammatory drugs and the risk of myocardial infarction in the general population. Circulation 2004;109:3000-6
  • Rordorf CM, Choi L, Marshall P, Mangold JB. Clinical pharmacology of Lumiracoxib. A selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet 2005;44(12):1247-66
  • Farkouh ME, Kirshner H, Harrington RA, et al. Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and Gastrointestinal Event Trial (TARGET), cardiovascular outcomes: randomised controlled trial. Lancet 2004;364:675-84
  • Topol EJ, Falk GW. A coxib a day won't keep the doctor away. Lancet 2004;364:639-40
  • Cannon CP, Curtis SP, Fitzgerald GA, et al. Cardiovascular outcomes with etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme: a randomised comparison. Lancet 2006;368:1771-81
  • Laine L, Curtis SP, Cer B, et al. Assessment of upper gastrointestinal safety of etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme: a randomised comparison. Lancet 2007;369:465-73
  • Bjordal JM, Johnson MI, Lopes-Martins RAB, et al. Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomized placebo-controlled trials. BMC Musculoskelet Disord 2007;8:51-65
  • Freeman MAR, Wyke B. The innervation of the knee joint. An anatomical and histological study in the cat. J Anat 1967;101:505-32
  • Mach DB, Rogers SD, Sabino MC, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 2002;113:155-66
  • McDougall JJ, Bray RC, Sharkey KA. A morphological and immunohistochemical examination of nerves in normal and injured collateral ligaments of rat, rabbit and human knee joints. Anat Rec 1997;248:29-39
  • Schaible H-G, Grubb BD. Afferent and spinal mechanisms of joint pain. Pain 1993;55:5-54
  • Suri S, Gill SE, Massena DE, et al. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis 2007;66(11):1423-8
  • Miller LE, Weidler C, Falk W, et al. Increased prevalence of Semaphorin 3C, a repellent of sympathetic nerve fibres in the synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum 2004;50(4):1156-63
  • Weidler C, Holzer C, Harbuz M, et al. Low density of sympathetic nerve fibres and increased density of brain derived neurotrophic factor positive cells in the RA synovium. Ann Rheum Dis 2005;64:13-20
  • Hannan MT, Felson DT, Pincus T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol 2000;27:1513-7
  • Felson DT, Chaisson CE, Hill CL et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 2001;134:541-9
  • Torres L, Dunlop DD, Peterfy C, et al. The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis Cartilage 2006;14(10):1033-40
  • Creamer P, Hunt M, Dieppe P. Pain mechanisms in osteoarthritis of the knee: Effect of intra-articular anaesthetic. J Rheumatol 1996;23:1031-6
  • Crawford RW, Gie GA, Ling RS, Murray DW. Diagnostic value of intra-articular anaesthetic in primary osteoarthritis of the hip. J Bone Joint Surg 1998;80:279-81
  • Kosek E, Ordeberg G. Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following, surgical pain relief. Pain 2000;88:69-78
  • Buffington ALH, Hanlon CA, McKeown MJ. Acute and persistent pain modulation of attention-related anterior cingulated fMRI activations. Pain 2005;113:172-84
  • Dougados M, Nguyen M, Berdah L, et al. for the ECHODIAH Investigators Study Group. Evaluation of the structure-modifying effects of diacerein in hip osteoarthritis: ECHODIAH, a three-year, placebo-controlled trial. Arthritis Rheum 2001;44:2539-47
  • Reginster JY, Deroisy R, Rovati LC, et al. Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet 2001;357:251-6
  • Pavelka K, Gatterova J, Olejarova M, et al. Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double blind study. Arch Intern Med 2002;162:2113-23
  • Jubb RW, Piva S, Beinat L, et al. A one-year, randomised placebo (saline) controlled trial of 500-730 kDa sodium hyaluronate (Hyalgan) on the radiologic change in osteoarthritis of the knee. Int J Clin Pract 2003;57:467-74
  • Uebelhart D, Malaise M, Marcolongo R, et al. Intermittent treatment of knee osteoarthritis with oral chondroitin sulfate: a one-year, randomized, double blind, multicenter study versus placebo. Ostearthritis Cartilage 2004;12:269-76
  • Pham T, Le Henanff A, Ravaud P, et al. Evaluation of the symptomatic and structural efficacy of a new hyaluronic acid compound, NDR101, in comparison with diacerein and placebo in a 1 year randomised controlled study in symptomatic knee osteoarthritis. Ann Rheum Dis 2004;63:1611-7
  • Michel BA, Stucki G, Frey D, et al. Chondroitins 4 and 6 sulphate in osteoarthritis of the knee: a randomized, controlled trial. Arthritis Rheum 2005;52:779-86
  • Brandt KD, Mazzuca SA, Katz BP, et al. Effects of doxycycline on progression of osteoarthritis: results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum 2005;52:2015-25
  • Spector TD, Conaghan PG, Buckland-Wright JC, et al. Effect of risedronate on joint structure and symptoms of knee osteoarthritis: results of the BRISK randomized, controlled trial. Arthritis Res Ther 2005;7:R625-33
  • van Offel JF, Schuerwegh AJ, Bridts CH, et al. Effect of bisphosphonates on viability, proliferation, and dexamethasone-induced apoptosis of articular chondrocytes. Ann Rheum Dis 2002;61:925-8
  • van Offel JF, Dombrecht EJ, Bridts CH, et al. Influence of bisphosphonates on the production of pro-inflammatory cytokines by activated human articular chondrocytes. Cytokine 2005;31:298-304
  • Lequesne M, Brandt K, Bellamy N, et al. Guidelines for testing slow-acting and disease modifying drugs in osteoarthritis. J Rheumatol 1994;21(41):65-71
  • Brandt KD, Mazzuca SA. Lessons learned from nine clinical trials of disease-modifying osteoarthritis drugs. Arthritis Rheum 2005;52(11):3349-59
  • Clegg DO, Reda DJ, Harris CL, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med 2006;354:795-808
  • Towheed TE, Maxwell L, Anastassiades TP, et al. Glucosamine therapy for treating osteoarthritis. Cochrane Database Syst Rev 2006;4:Art. Number 0075320-100000000-01942
  • Bingham CO 3rd, Buckland-Wright JC, Garnero P, et al. Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. Arthritis Rheum 2006;54(11):3494-507
  • Buckland-Wright JC, Messent EA, Bingham CO 3rd, et al. A 2 yr longitudinal radiographic study examining the effect of a bisphosphonate (risedronate) upon subchondral bone loss in osteoarthritic knee patients. Rheumatology 2007;46(2):257-64
  • Fidelix TSA, Soares BGDO, Trevisani VFM. Diacerein for osteoarthritis. Cochrane Database Syst Rev 2006;1:Art. Number CD005117. DOI: 10.1002/14651858.CD005117.pub2
  • Dieppe P. Disease modification in osteoarthritis: Are drugs the answer? Arthritis Rheum 2005;57(7):1956-9
  • Hutchinson W, Tierney GM, Parsons SL, Davis TRC. Dupuytren's disease and frozen shoulder induced by treatment with a matrix metalloproteinase inhibitor. J Bone Joint Surg 1998;80-B:907
  • Reiter LA, Freeman-Cook KD, Jones CS. Potent, selective pyrimidinetrione-based inhibitors of MMP-13. Bioorg Med Chem Lett 2006;16(2):5822-6
  • Li W, Hu X, Li J, et al. Identification of Potent and Selective MMP-13 Inhibitors [abstract 5067]. Inflamm Res 2005;54(Suppl 2)
  • Amgen World Wide Website. 2007 July 16. Available from: http://wwwext.amgen.com/media/media_pr_detail.jsp?year=2007&releaseID=1026577 [Last accessed date September 2007]
  • Bowyer J, Webster R, Westwood R, et al. Naproxen and a matrix metalloproteinase inhibitor both reduce weight bearing asymmetry, indicative of behavioural pain, in the rat meniscal transaction model of osteoarthritis. Proceedings of the 2007 World congress on Osteoarthritis, Osteoarthritis Research Society International. Osteoarthritis Cartilage 2007;15(Suppl 3):C16-C17
  • Buma P, Elmans L, van Den Berg WB, Schrama. Neurovascular plasticity in the knee joint of an arthritic mouse model. Anat Rec 2000;260:51-61
  • Sherman MS. The nerves of bone. J Bone Joint Surg 1963;45-A:522-8
  • Bjurholm A. Neuroendocrine peptides in bone. Int Orthop 1991;15:325-9
  • Hukkanen M, Konttinen YT, Rees RG, et al. Distribution of nerve endings and sensory neuropeptides in rat meniscus and bone. Int J Tissue React 1992;14:1-10
  • Schaible H-G, Grubb BD. Afferent and spinal mechanisms of joint pain. Pain 1993;55:5-54
  • Schaible H-G, Schmidt RF. Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 1985;54:1109-22
  • Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 2000;215:835-40
  • Lo GH, Hunter DJ, Zhang Y, et al. Bone marrow lesions in the knee are associated with increased local bone density. Arthritis Rheum 2005;52(9):2814-21
  • Halvorson KG, Sevcik MA, Ghilardi JR, et al. Similarities and differences in tumor growth, skeletal remodeling and pain in an osteolytic and osteoblastic model of bone cancer. Clin J Pain 2006;22(7):587-600
  • Ivanavicius SP, Ball AD, Heapy CG, et al. Structural pathology in a rodent model of osteoarthritis is associated with neuropathic pain: increased expression of ATF-3 and pharmacological characterization. Pain 2007;128:272-82
  • Hopper RA, Read S, Bowyer J, Murray F. Pain related behaviour is associated with dorsal root ganglion ATF-3 expression in a surgically induced rat osteoarthritis model. Proceedings of the 4th World Congress World Institute of Pain. Pain Pract 2007;7(S1):P2019
  • Bove SE, Laemont KD, Brooker RM, et al. Surgically induced osteoarthritis in the rat results in the development of both osteoarthritis-like joint pain and secondary hyperalgesia. Osteoarthritis Cartilage 2006;14(10):1041-8
  • Emisphere World Wide Website Press Release. 2007 May. Available from: http://www.emisphere.com/press_releases.asp [Last accessed date September 2007]
  • Manicourt DH, Azria M, Mindeholm L, et al. Oral salmon calcitonin reduces Lequesne's algofunctional index scores and decreases urinary and serum levels of biomarkers of joint metabolism in knee osteoarthritis. Arthritis Rheum 2006;54(10):3205-11
  • Azria M. Possible Mechanisms of the Analgesic Action of Calcitonin. Bone 2002;30(Suppl 1):65-86
  • Carvalho AP, Bezerra MM, Girao VC, et al. Anti-inflammatory and anti-nociceptive activity of risedronate in experimental pain models in rats and mice. Clin Exp Pharmacol Physiol 2006;33(7):601-6
  • Baumann TK, Chaudhary P, Martenson ME. Background potassium channel block and TRPV1 activation contribute to proton depolarization of sensory neurons from humans with neuropathic pain. Eur J Neurosci 2004;19:1343-51
  • Leffler A, Monter B, Koltzenburg M. The role of the capsaicin receptor TRPV1 and acid sensing ion channels (ASICs) in proton sensitivity of subpopulation of primary nociceptive neurons in rats and mice. Neuroscience 2006;139:699-709
  • Dube GR, Lehto SG, Breese NM, et al. Electrophysiological and in vivo characterization of A-317567, a novel blocker of acid sensing ion channels. Pain 2005;117:88-96
  • PainCeptor World Wide Website News Release. 2007 March 6. Available from: http://www.painceptor.com/page.asp?intNodeID=15188 [Last accessed date September 2007]
  • Arnoldi CC, Djurhuus JC, Heerfordt J, Karle A. Intraosseus phlebography, intraosseous pressure measurements and 99mTC-polyphosphate scintigraphy in patients with various painful conditions in the knee and hip. Acta Orthop Scand 1980;51:19-28
  • Simkin PA. Bone pain and pressure in osteoarthritic joints. In: Chadwick DJ, Goode J, editors, Osteoarthritic joint pain. US: Wiley & Sons Ltd; 1994. p. 179-86
  • Roach HI, Aigner T, Soder S, et al. Pathobiology of osteoarthritis: pathomechanisms and potential therapeutic targets. Curr Drug Targets 2007;8:271-82
  • Ushiyama T, Chano T, Inoue K, Matsusue Y. Cytokine production in the infrapatellar fat pad: another source of cytokines in knee synovial fluids. Ann Rheum Dis 2003;62:108-12
  • Toussirot E, Streit G, Wendling D. The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr Med Chem 2007;14:1095-100
  • Mogil JS, Pasternak GW. The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 2001;53(3):381-415
  • Yaksh TL. Pharmacology and mechanisms of opioid analgesic activity. Acta Anaesth Scand 1997;41:94-111
  • Hurley RW, Hammond DL. The analgesic effects of supraspinal μ and d opioid receptor agonists are potentiated during persistent inflammation. J Neurosci 2000;20:1249-59
  • Sawynok J. Topical and peripherally acting analgesics. Pharmacol Rev 2003;55:1-20
  • Likar R, Schafer M, Paulak F, et al. Intraarticular morphine analgesia in chronic pain patients with osteoarthritis. Anesth Analg 1997;84:1313-7
  • Valenzano KJ, Miller W, Chen Z, et al. DiPOA 8-(3,3-diphenyl-propyl)-4-oxo-1-phenyl-1,3,8-triaza spiro[4.5]dec-3-yl]-acetic acid), a peripherally-acting mu opioid agonist with anti-hyperalgesic properties. J Pharmacol Exp Ther 2004;310:783-29
  • Menendez L, Lastra A, Meana A, et al. Analgesic effects of loperamide in bone cancer pain in mice. Pharmacol Biochem Behav 2005;81:114-2
  • Whiteside GT, Boulet JM, Walker K. The role of central and peripheral mu opioid receptors in inflammatory pain and edema: a study using morphine and DiPOA ([8-(3,3-diphenyl-propyl)- 4-oxo-1-phenyl-1,3,8-triaza-spiro[4.5]dec-3-yl]-acetic acid). JPET 2005;314:1234-40
  • Dray A. Alternatives to mu-opioid analgesics: delta-opioid and galanin-receptor selective compounds. In: Kalso E, McQuay HJ, Wiesenfeld-Hallin Z, editors, Progress in pain research and management. IASP Press: Seattle; 1999. p. 269-80
  • Cahill CM, Morinville A, Lee M-C, et al. Prolonged morphine treatment targets δ-opioid receptors to neuronal plasma membranes and enhances d-mediated antinociception. J Neurosci 2001;21:7598-607
  • Adolor Corporation Initiates First of Three Proof of Concept Studies of Novel Delta Opioid Agonist for the Management of Pain. Adolor World Wide Website Press Release. 2007 July 9. Available from: http://phx.corporate-ir.net/phoenix.zhtml?c=120919&p=irol-newsArticle&t=Regular&id=1023437& [Last accessed date September 2007]
  • Dray A. Kinins and their receptors in hyperalgesia. Can J Pharmacol 1997;75:704-12
  • Dray A, Perkins MN. Bradykinin and inflammatory pain. Trends Neurosci 1993;16:99-104
  • Wotherspoon G, Winter J. Bradykinin B1 receptor is constitutively expressed in the rat sensory nervous system. Neurosci Lett 2000;294:175-8
  • Shughrue PJ, Ky B, Austin CP. Localization of B1 bradykinin receptors mRNA in the primate brain and spinal cord: an in situ hybridization study. J Comp Neurol 2003;46:372-84
  • Levy D, Zochodne DW. Increased mRNA expression of the B1 and B2 bradykinin receptors and antinociceptive effects of their antagonists in an animal model of neuropathic pain. Pain 2000;86:265-71
  • Fox A, Wotherspoon G, McNair K, et al. Regulation and function of spinal and peripheral neuronal B1; bradykinin receptors in inflammatory mechanical hyperalgesia. Pain 2003;104:683-91
  • Ferreira J, Beirith A, Mori MAS, et al. Reduced nerve injury induced neuropathic pain in kinin B1 receptor knock-out mice. J Neurosci 2005;25:2405-12
  • Eisenbarth H, Rukwied R, Petersen M, Schmelz M. Sensitization to bradykinin B1 and B2 receptor activation in UV-B irradiated human kin. Pain 2004;110:197-204
  • Vellani V, Zachrisson O, McNaughton PA. Functional bradykinin B1 receptors are expressed in nociceptive neurons and are upregulated by the neurotrophin GDNF. J Physiol 2004;560:391-401
  • Marceau F, Hess JF, Bachvarov DR. The B1 receptors for kinins. Pharmacol Rev 1998;50:357-86
  • Liang YF, Haake B, Reeh PW. Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action. J Physiol 2001;532:229-39
  • Fox A, Kaur S, Li B, et al. Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor. Br J Pharmacol 2005;144:889-99
  • Stewart JM. Bradykinin antagonists: discovery and development. Peptides 2004;25:727-32
  • Burgess GM, Perkins MN, Rang HP, et al. Bradyzide, a potent nonpeptide B2 bradykinin receptors antagonist with long lasting oral activity in animal models of inflammatory hyperalgesia. Br J Pharmacol 2000;129:77-86
  • Gougat J, Ferrari B, Lionel S, et al. SSR240612 [(2R)-2-[((3R0-3-(1,3-benzodiol-5-yl)-3-{[(6-methoxy-2-napthyl)sulfonyl]amino}propanoyl)amino]-3-(4-{[2R,6S)-2,6-dimethylpiperidyl]methyl}phenyl}-N-isoproyl-Nmethylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. JPET 2005;309:661-9
  • Gabra BH, Sirois P. Beneficial effects of chronic treatment with the selective bradykinin B1 receptor antagonists, R-715 and R-953, in attenuating streptozotocin-diabetic thermal hyperalgesia. Peptides 2003;24:1131-9
  • Flechtenmacher J, Talke M, Veith D, et al. Icatibant induces pain relief in patients with osteoarthritis of the knee. 9th World congress on Osteoarthritis, Osteoarthritis Research Society International; 2004;12:P332
  • Foax A, Bevan S. Therapeutic potential of cannabinoid receptor agonists as analgesic agents. Expert Opin Investig Drugs 2005;14:695-703
  • Rice ASC, Farquhar-Smith WP, Nagy I. Endocannabinoids and pain: spinal and peripheral analgesia in inflammation and neuropathy. Prostaglandins Leukot Essent Fatty Acids 2002;66:243-56
  • Mbvundula EC, Bunning RA, Rainsford KD. Arthritis and cannabinoids: HU-210 and Win-55,212-2 prevent IL-1alpha-induced matrix degradation in bovine articular chondrocytes in vitro. J Pharm Pharmacol 2006;58:351-8
  • Campbell FA, Tramer MR, Carroll D, et al. Are cannabinoids an effective and safe treatment option in the management of pain? A quantitative systematic review. BMJ 2001;323:13-6
  • Kreitzer AC, Regeher WG. Retrograde signaling by endocannabinoids. Curr Opin Neurobiol 2002;12:324-30
  • de Novellis V, Mariani L, Palazzo E, et al. Periaqueductal grey CB1 cannabinoid and metabotropic glutamate subtype 5 receptors modulate changes in rostral ventromedial medulla neuronal activities induced by subcutaneous formalin in the rat. Neuroscience 2005;134(1):269-81
  • Walker JM, Huang SM, Strangman NM, et al. Pain modulation by release of the endogenous cannabinoid anandamide. Proc Natl Acad Sci USA 1999;96(21):12198-203
  • Malan TP, Ibrahim MM, Lai J, et al. CB2 cannabinoid receptor agonists: pain relief without psychoactive effects? Curr Opin Pharmacol 2003;3:62-7
  • Labuda CJ, Koblish M, Little PJ. Cannabinoid CB2 receptor agonist activity in the hindpaw incision model of postoperative pain. Eur J Pharmacol 2005;527:172-5
  • Elmes SJR, Winyard LA, Medhurst A, et al. Activation of CB1 and CB2 receptors attenuates the induction and maintenance of inflammatory pain in the rat. Pain 2005;118:327-35
  • Sokal DM, Elmes SJR, Kendall DA, Chapman V. Intraplantar injection of anandamide inhibits mechanically-evoked responses of spinal neurons via activation of Cb2 receptors in anaesthetized rats. Neuropharmacology 2003;45:404-11
  • Cheng Y, Hitchcock SA. Targeting cannabinoid agonists for inflammatory and neuropathic pain. Expert Opin Investig Drugs 2007;16(7):951-65
  • Cravatt BF, Lichtman AH. The endogenous cannabinoid system and its role in nociceptive behavior. J Neurobiol 2004;61:149-60
  • Cravatt BF, Demarest K, Patricelli MP, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolyse. Proc Natl Acad Sci USA 2001;98:9371-6
  • Lichtman AH, Leung D, Shelton CC, et al. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. JPET 2004; 311:441-8
  • Chang L, Luo L, Palmer JA, et al. Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms. Br J Pharmacol 2006;148:102-13
  • Cichewicz DL, McCarthy EA. Antinociceptive synergy between D9 Tetrahydrocannabinol and opioids after oral administration. JPET 2003;304:1010- 5
  • Schumacher RH, Meng Z, Sieck M, et al. Effect of a nonsteroidal anti-inflammatory drug on synovial fluid in osteoarthritis. J Rheumatol 1996;23(10):1774-7
  • Yaksh TL, Dirig DM, Conway CM, et al. The acute hyperalgesic action of non-steroidal, anti-inflammatory drugs and release of spinal prostaglandin E2 is mediated by the inhibition of constitutive spinal cyclooxygenase-2 (COX-2) but not COX-1. J Neurosci 2001;21:5847-53
  • England S, Bevan S, Dougherty RJ. PGE2 modulate the tetrodotoxin-resistant sodium current in neonatal dorsal root ganglion neurons via the cyclic AMP-protein kinase A cascade. J Physiol 1996;495:429-40
  • Gold MS, Levine JD, Correa M. Modulation of TTX-R I Na by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci 1998;18:10345-55
  • Bar KJ, Natura G, Telleria-Diaz A, et al. Changes in the effect of spinal prostaglandin E2 during inflammation: prostaglandin E9EP1-EP4) receptors in spinal nociceptive processing of input from the normal and inflamed knee joint. J Neurosci 2004;24:642-51
  • Chandrasekharan NV, Dai H, Roos KLT, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 2002;99:13926-31
  • Jakobsson PJ, Thoen S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci USA 1999;96:7220-5
  • Claveau D, Sirinyan M, Guay J, et al. Microsomal prostaglandin synnthase-1 is a major terminal synthase that is selectively upregulated during cyclooxygenase-2-dependent prostaglandin E2 production in the rat adjuvant-arthritis model. J Immunol 2003;170:4738-44
  • Trebino CE, Stock JL, Gibbons CP, et al. Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc Natl Acad Sci USA 2003;100:9044-49
  • Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 2004;361(1-3):184-7
  • Ohtori S, Takahashi K, Moriya H, Myers RR. TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine 2004;29:1082-8
  • Pollock J, McFarlane SM, Connell MC, et al. TNF-alpha receptors simultaneously activate Ca2+ mobilisation and stress kinases in cultured sensory neurons. Neuropharmacology 2002;42:93-106
  • Grunke M, Schulze-Koops H. Successful treatment of inflammatory knee osteoarthritis with tumour necrosis factor blockade. Ann Rheum Dis 2006;65:555-6
  • Magnano MD, Chakravarty EF, Broudy C, et al. A pilot study of tumor necrosis factor inhibition in erosive/inflammatory osteoarthritis of the hands. J Rheumatol 2007;34(6):1323-7
  • Chevalier X, Giraudeau B, Conrozier T, et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J Rheumatol 2005;32(7):1317-23
  • Chevalier X. Results from a double blind, placebo-controlled, multicenter trial of a single intra-articular injection of anakinra (Kineret) in patients with osteoarthritis of the knee [abstract 1339]. ACR/ARHP Annual Scientific Meeting; 2005 November 12 – 17; San Diego
  • Amgen Investor Fact Sheet 3rd Quarter 2005; Amgen World-wide website: Available from: http://www.amgen. com/pdfs/investors/Fact_Sheet_Investors_2005_Q3.pdf [Last accessed date September 2007]
  • Watkins LR, Maier S. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 2002;82:981-1011
  • Zhang N, Inan S, Cowan A, et al. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Proc Natl Acad Sci USA 2005;102:4536-41
  • Oh SB, Tran PB, Gillard SE, et al. Chemokines and glycoprotein 120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 2001;21:5027-35
  • Miller LE, Wiedler C, Falk W, et al. Increased prevalence of semaphorin3C, a repellent of sympathetic nerve fibres in synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum 2004;50:1156-63
  • Sato J, Perl ER. Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science 1991;251:1608-10
  • Lee DH, Liu X, Kim HT, et al. Receptor subtype mediating the adrenergic sensitivity of pain behavior and ectopic discharges in neuropathic Lewis rats. J Neurophysiol 1999;81:2226-33
  • McNearney T, Baethge BA, Cao S, et al. Excitatory amino acids, TNFa and chemokine levels in synovial fluids of patients with active arthropathies. Clin Exp Immunol 2004;137:621-7
  • Varney MA, Gereau RW 4th. Metabotropic glutamate receptor involvement in models of acute and persistent pain: prospects for the development of novel analgesics. Curr Drug Targets CNS Neurol Disord 2002;1(3):283-96
  • Szekely JI, Torok K, Mate G. The role of ionotropic glutamate receptors in nociception with special regard to the AMPA binding sites. Curr Pharm Des 2002;8(10):887-912
  • Merle B, Itzstein C, Delmas PD, Chenu C. NMDA glutamate receptors are expressed by osteoclast precursors and involved in the regulation of osteoclastogenesis J Cell Biochem 2003;90(2):424-36
  • Salter DM, Wright MO, Millward-Sadler SJ. NMDA receptor expression and roles in human articular chondrocyte mechanotransduction. Biorheology 2004;41(3-4):273-81
  • Danysz W, Parsons CG. GlycineB recognition site of NMDA receptors and its antagonists. Amino Acids 1998;14:205-6
  • Quartaroli M, Fasdelli N, Bettelini L, et al. GV196771A, an NMDA receptor/glycine site antagonist, attenuates mechanical allodynia in neuropathic rats and reduces tolerance induced by morphine in mice. Eur J Pharmacol 2001;430:219-27
  • Wallace MS, Rowbotham MC, Katz NP, et al. A randomized, double blind, placebo-controlled trial of a glycine antagonist in neuropathic pain. Neurology 2002;59:1694-700
  • Taniguchi K, Shinjo K, Mizutani M, et al. Antinociceptive actions of CP-101,606, an NMDA receptor NR2B subunit antagonist. Br J Pharmacol 1997;12:809-12
  • Gogas KR. Glutamate-based therapeutic approaches: NR2B receptor antagonists. Curr Opi Pharm 2006;6(1):68-74
  • Evotec World-Wide Website. 2007. Available from: http://www.evotec.com/en/our_pipeline/evt101.aspx [Last accessed date September 2007]
  • Hudson LJ, Bevan S, McNair K, et al. Metabotropic glutamate receptor 5 up-regulation in A-fibers after spinal nerve injury: 2-methyl-6-(phenylethynyl)-pyridine (MPEP) reverses the induced thermal hyperalgesia. J Neurosci 2002;22:2660-8
  • Dogrul A, Ossipov MH, Lai J, et al. Peripheral and spinal antihyperalgesic activity of SIB-1757, a metabotropic glutamate receptor (mGluR5) antagonist, in experimental neuropathic pain in rats. Neurosci Lett 2000;292:115-8
  • Zhu CZ, Wilson SG, Mikusa JP, et al. Assessing the role of metabotropic glutamate receptor 5 in multiple nociceptive modalities. Eur J Pharm 2004;506(2):107-18
  • Boxall SJ, Berthele A, Laurie DJ, et al. Enhanced expression of metabotropic glutamate receptor 3 messenger RNA in the rat spinal cord during ultraviolet irradiation induced peripheral inflammation. Neuroscience 1998;82:591-602
  • Chiechio S, Caricasole A, Barletta E, et al. L-Acetylcarnitine induces analgesia by selectively upregulating mGlu2 metabotropic glutamate receptors. Mol Pharm 2002;61:989-96
  • Vellani V, Mappleback S, Moriondo A, et al. Protein kinase C activation gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 2001;534:813-25
  • Cantillon M, Vause E, Sykes D, et al. Safety, tolerability and efficacy of ALGRX 4975 in osteoarthritis (OA) of the knee [abstract#724]. Proceedings of the 24th Annual scientific meeting of the American Pain Society; Boston, MA; 2005
  • Bandell M, Story GM, Hwang SW, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 2004;41:849-53
  • McNamara CR, Mandel-Brehm J, Bautista DM, et al. TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA 2007;104(33):13525-30
  • Honore P, Kage K, Mikusa J, et al. Analgesic profile of intrathecal P2X3; antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 2002;99(1-2):11-9
  • Jarvis MF, Burgard EC, McGaraughty S, et al. A-317491, a novel potent and selective non nucleotide antagonist of P2X(3) and P2X(2/3) receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA 2002;99:17179-84
  • Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003;424:778-83
  • Deuchars SA, Atkinson L, Brooke RE, et al. Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 2001;21:7143-52
  • Chessell IP, Hatcher JP, Bountra C, et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 2005;114:386-96
  • Chaplan SR, Guo H-Q, Lee DH, et al. Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. J Neurosci 2003;23:1169-78
  • Yao H, Donnelly DF, Ma C, Lamotte RH. Upregulation of the hyperpolarization activation cation current after chronic compression of the dorsal root ganglion. J Neurosci 2003;23:2069-74
  • Matzner O, Devor M. Hyperexcitability at sites of nerve injury depends on voltage sensitive – sodium channels. J Neurophysiol 1994;72:349-59
  • Eglen RM, Hunter JC, Dray A. Ions in the fire: recent ion-channel research and approaches to pain therapy. Trends Pharmol Sci 1999;8:337-42
  • Devor M. Sodium channels and mechanisms of neuropathic pain. Pain 2005;7(Suppl 1):S3-12
  • Yaksh TL. Calcium channels as therapeutic targets in neuropathic pain. Pain 2006;7(Suppl 1):S13-30
  • Araujo MC, Sinnott CJ, Strichartz GR. Multiple phases of relief from experimental mechanical allodynia by systemic lidocaine: responses to early and late infusions. Pain 2003;103:21-9
  • Kastrup J, Petersen P, Dejgard A, Angelo FR. Intravenous lidocaine infusion – a new treatment of chronic painful diabetic neuropathy. Pain 1987;28:69-75
  • Joshi, et al. 36th Annual Meeting of the Society for Neuroscience; Atlanta; 2006
  • Altier C, Khosravani H, Evans RM, et al. ORL-1 receptor mediated internalization of N-type calcium channels. Nat Neurosci 2005;9:31-40
  • Kim C, Jun K, Lee T, et al. Altered nociceptive responses in mice deficient in the alpha1? subunit of the voltage dependent calcium channel. Mol Cell Neurosci 2001;18:235-245
  • Saegusa H, Kurihara T, et al. Suppression of inflammation and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 2001;20:2349-56
  • Xiao WH, Bennett GJ. Synthetic omega-conopeptides applied to the site of nerve injury suppress neuropathic pains in rats. JPET 1995;274:666-72
  • Snutch TP. Targeting chronic and neuropathic pain: the N-type calcium channel comes of age. NeuroRx 2005;2:662-70
  • Ikeda H, Heinke B, Ruscheweyh R, Sandkuhler J. Synaptic plasticity in spinal lamina 1 projection neurons that mediate hyperalgesia. Science 2003;299:1237-40
  • Matthews EA, Dickenson AH. Effects of spinally delivered N-and P-type voltage dependent calacium channel antagonists on dorsal horn neuronal responses in a rat model of neuropathy. Eur J Pharmacol 2001;415:141-49
  • Flatters SJ, Bennett GJ. Ethosuximaide reverses paclitaxel and vincristine-induced painful peripheral neuropathy. Pain 2004;109:150-61
  • Lu Y, Westlund KN. Gabapentin attenuates nociceptive behaviours in an acute arthritis model in rats. JPET 1999;290:214-9
  • Luo ZD, Calcutt NA, Higuera ES, et al. Injury type-specific calcium channel alpha (2) delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. JPET 2002;303:1199-1205
  • Jaffe M, Iacobellis D, Young JP, et al. Post-hoc results show beneficial effects of pregabalin in patients with osteoarthritis of the hip. Arthritis Rheum 2000;43(Suppl):S337
  • Arnalich F, de Miguel E, Perez-Ayala C, et al. Neuropeptides and interleukin-6 in human joint inflammation.relationship between intraarticular substance P and interleukin-6. Neurosci Lett 1994;170:251-4
  • Ro LS, Chen ST, Tang LM, Jacobs JM. Effect of NGF and anti-NGF on neuropathic pain in rats following chronic constriction injury of the sciatic nerve. Pain 1999;79:265-74
  • Theodosiou M, Rush RA, Zhou XF, et al. Hyperalgesia due to nerve damage: role of nerve growth factor. Pain 1999;81:245-55
  • Hefti FF, Rosenthal A, Walicka PA, et al. Novel class of pain drug based on antagonism of NGF. TIPS 2005;27:85-91
  • Ji RR, Samad TA, Jin SX, et al. P38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 2002;36:57-68
  • Fjell J, Cummings TR, Fried K, et al. In vivo NGF deprivation reduces SNS expression and TTX-R sodium currents in IB4-negative DRG neurons. J Neurophysiol 1999;81:803-10
  • Mamet J, Lazdunski M, Voilley N. How nerve growth factor drives physiological and inflammatory expression of acid-sensing ion channels 3 in sensory neurons. J Biol Chem 2003;278:48907-13
  • Okuse K, Malik-Hall M, Baker MD, et al. Annexin II light chain regulates sensory neurone-specific sodium channel expression. Nature 2002;417:653-6
  • Lane N, Webster L, Shiao-Ping LU, et al. RN624 (Anti-NGF) improves pain and function in subjects with moderate knee osteoarthritis: a phase I study. Arthritis Rheum 2005;52:S461
  • Owolabi JB, Rizkalla G, Tehim A, et al. Characterization of antiallodynic actions ALE-0540, a novel nerve growth factor receptor antagonist, in the rat. JPET 1999;289:1271-6
  • Colquhoun A, Lawrance GM, Shamovsky IL, et al. Differential activity of the nerve growth factor (NGF) antagonist PD90780 [7-benzoylamino)-4,9-dihydro-4methyl-8-oxo-pyrazolo-[5,1-b]-quinazoline-2-carboxylic acid] suggest altered NGF-p75NTR interactions in the presence of trkA. J Pharmacol Exp Ther 2004;310:505-11
  • Le Bars D. The whole body receptive field of dorsal horn multireceptive neurones. Brain Res Rev 2002;40(1-3):29-44
  • Duloxetine vs. Placebo in the Treatment of Osteoarthritis Knee Pain. US National Institute of Health, Clinical Trial Register. 2007. Available from: http://clinicaltrials.gov/ct/show/NCT00433290?order=1 [Last accessed date September 2007]
  • The Osteoarthritis Initiative. Available from: www.oai.ucsf.edu [Last accessed date September 2007]
  • Woodcock J, Witter J, Dionne RA. Stimulating the development of mechanism-based, individualized, pain therapies. Nat Rev Drug Discov 2007;6:703-10
  • McNerney T, Baethge BA, Cao S, et al. Excitatory amino acids, TNF-a and chemokine levels in synovial fluids of patients with active arthropathies. Clin Exp Immunol 2004;137:621-7
  • Bertazzolo N, Punzi L, Stefani MP, et al. Interrelationships between interleukin (IL)-1, IL-6 and IL-8 in synovial fluid of various arthropathies. Agents Actions 1994;41:90-2
  • Westacott CI, Whicher JT, Barnes IC, et al. Synovial fluid concentration of five different cytokines in rheumatic diseases. Ann Rheum Dis 1990;49:676-81
  • Grimsholm O, Rantapaa-Dahlqvist S, Forsgren S. Levels of gastrin-releasing peptide and substance P in synovial fluid and serum correlate with levels of cytokines in rheumatoid arthritis. Arthritis Res Ther 2005;7:R416-26
  • Dicou E, Perrot S, Menkes CJ, et al. Nerve growth factor (NGF) autoantibodies and NGF in the synovial fluid: implications in spondylarthropathies. Autoimmunity 1996;24:1-9
  • Igari T, Tsuchizawa M, Shimamura T. Alteration of the synovial rheumatoid tryptophan metabolism in fluid of patients with arthritis and osteoarthritis. Tohoku J Exp Med 1987;153:79-86

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.