116
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Pituitary-targeted medical therapy of Cushing's disease

&
Pages 669-677 | Published online: 30 Apr 2008

Bibliography

  • Makras P, Toloumis G, Papadogias D, et al. The diagnosis and differential diagnosis of endogenous Cushing's syndrome. Hormones (Athens) 2006;5:231-50
  • Biller BMK, Grossman AB, Stewart PM, et al. Treatment of ACTH-dependent Cushing's Syndrome: A Consensus Statement. J Clin Endocrinol Metab 2008;In press
  • Cozzi R, Montini M, Attanasio R, et al. Primary treatment of acromegaly with octreotide LAR: a long-term (up to nine years) prospective study of its efficacy in the control of disease activity and tumor shrinkage. J Clin Endocrinol Metab 2006;91:1397-403
  • Modlin IM, Latich I, Kidd M, et al. Therapeutic options for gastrointestinal carcinoids. Clin Gastroenterol Hepatol 2006;4:526-47
  • Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol 1999;20:157-98
  • Nielsen S, Mellemkjaer S, Rasmussen LM, et al. Expression of somatostatin receptors on human pituitary adenomas in vivo and ex vivo. J Endocrinol Invest 2001;24:430-7
  • Batista DL, Zhang X, Gejman R, et al. The effects of SOM230 on cell proliferation and adrenocorticotropin secretion in human corticotroph pituitary adenomas. J Clin Endocrinol Metab 2006;91:4482-8
  • van der Hoek J, Waaijers M, van Koetsveld PM, et al. Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am J Physiol Endocrinol Metab 2005;289:E278-87
  • Hofland LJ, van der Hoek J, Feelders R, et al. The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5. Eur J Endocrinol 2005;152:645-54
  • Richardson UI, Schonbrunn A. Inhibition of adrenocorticotropin secretion by somatostatin in pituitary cells in culture. Endocrinology 1981;108:281-90
  • Heisler S, Reisine TD, Hook VY, Axelrod J. Somatostatin inhibits multireceptor stimulation of cyclic AMP formation and corticotropin secretion in mouse pituitary tumor cells. Proc Natl Acad Sci USA 1982;79:6502-6
  • Strowski MZ, Dashkevicz MP, Parmar RM, et al. Somatostatin receptor subtypes 2 and 5 inhibit corticotropin-releasing hormone-stimulated adrenocorticotropin secretion from AtT-20 cells. Neuroendocrinology 2002;75:339-46
  • Lamberts SW, Uitterlinden P, Klijn JM. The effect of the long-acting somatostatin analogue SMS 201-995 on ACTH secretion in Nelson's syndrome and Cushing's disease. Acta Endocrinol (Copenh) 1989;120:760-6
  • Invitti C, de Martin M, Brunani A, et al. Treatment of Cushing's syndrome with the long-acting somatostatin analogue SMS 201-995 (sandostatin). Clin Endocrinol (Oxf) 1990;32:275-81
  • Ambrosi B, Bochicchio D, Fadin C, et al. Failure of somatostatin and octreotide to acutely affect the hypothalamic-pituitary-adrenal function in patients with corticotropin hypersecretion. J Endocrinol Invest 1990;13:257-61
  • Stalla GK, Brockmeier SJ, Renner U, et al. Octreotide exerts different effects in vivo and in vitro in Cushing's disease. Eur J Endocrinol 1994;130:125-31
  • Schmid HA, Schoeffter P. Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinology 2004;80(Suppl 1):47-50
  • Sharma K, Patel YC, Srikant CB. C-terminal region of human somatostatin receptor 5 is required for induction of Rb and G1 cell cycle arrest. Mol Endocrinol 1999;13:82-90
  • Grozinsky-Glasberg S, Franchi G, Teng M, et al. Octreotide and the mTOR inhibitor RAD001 (everolimus) block proliferation and interact with the Akt-mTOR-p70S6K pathway in a neuroendocrine tumor cell line. Neuroendocrinol 2007 Nov 16 (Epub ahead of print)
  • Viollet C, Vaillend C, Videau C, et al. Involvement of sst2 somatostatin receptor in locomotor, exploratory activity and emotional reactivity in mice. Eur J Neurosci 2000;12:3761-70
  • Park S, Kamegai J, Kineman RD. Role of glucocorticoids in the regulation of pituitary somatostatin receptor subtype (sst1-sst5) mRNA levels: evidence for direct and somatostatin-mediated effects. Neuroendocrinol 2003;78:163-75
  • Lamberts SW. The role of somatostatin in the regulation of anterior pituitary hormone secretion and the use of its analogs in the treatment of human pituitary tumors. Endocr Rev 1988;9:417-36
  • Invitti C, Pecori Giraldi F, et al. Effect of sandostatin on CRF-stimulated secretion of ACTH, beta-lipotropin and beta-endorphin. Horm Metab Res 1991;23:233-5
  • Stafford PJ, Kopelman PG, Davidson K, et al. The pituitary-adrenal response to CRF-41 is unaltered by intravenous somatostatin in normal subjects. Clin Endocrinol (Oxf) 1989;30:661-6
  • Fehm HL, Voigt KH, Lang R, et al. Somatostatin: a potent inhibitor of ACTH-hypersecretion in adrenal insufficiency. Klin Wochenschr 1976;54:173-5
  • Julesz J, Laczi F, Janáky T, László F. Effects of somatostatin and bromocryptine on the plasma ACTH level in bilaterally adrenalectomized patients with Cushing's disease. Endokrinologie 1980;76:68-72
  • Kelestimur F, Utas C, Ozbakir O, et al. The effects of octreotide in a patient with Nelson's syndrome. Postgrad Med J 1996;72:53-4
  • Kraus J, Wöltje M, Höllt V. Regulation of mouse somatostatin receptor type 2 gene expression by glucocorticoids. FEBS Lett 1999;459:200-4
  • Silva AP, Bethmann K, Raulf F, Schmid HA. Regulation of ghrelin secretion by somatostatin analogs in rats. Eur J Endocrinol 2005;152:887-94
  • Ruan W, Fahlbusch F, Clemmons DR, et al. SOM230 inhibits insulin-like growth factor-I action in mammary gland development by pituitary independent mechanism: mediated through somatostatin subtype receptor 3? Mol Endocrinol 2006;20:426-36
  • Boscaro M, Petersenn S, Atkinson AB, et al. Pasireotide (SOM230), the novel multi-ligand somatostatin analogue, is a promising medical therapy for patients with Cushing's disease: preliminary safety and efficacy results of a phase II study. ENDO 2006: The Endocrine Society 88th Annual Meeting; 27 June 2006, Boston, USA. 2006; Abstract OR 9-1
  • Missale C, Nash SR, Robinson SW, et al. Dopamine receptors: from structure to function. Physiol Rev 1998;78:189-225
  • Caron MG, Beaulieu M, Raymond V, et al. Dopaminergic receptors in the anterior pituitary gland. Correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release. J Biol Chem 1978;253:2244-53
  • Munemura M, Cote TE, Tsuruta K, et al. The dopamine receptor in the intermediate lobe of the rat pituitary gland: pharmacological characterization. Endocrinology 1980;107:1676-83
  • Stefaneanu L, Kovacs K, Horvath E, et al. Dopamine D2 receptor gene expression in human adenohypophysial adenomas. Endocrine 2001;14:329-36
  • Cronin MJ, Cheung CY, Wilson CB, et al. [3H]Spiperone binding to human anterior pituitaries and pituitary adenomas secreting prolactin, growth hormone, and adrenocorticotropic hormone. J Clin Endocrinol Metab 1980;50:387-91
  • Pivonello R, Ferone D, de Herder WW, et al. Dopamine receptor expression and function in corticotroph pituitary tumors. J Clin Endocrinol Metab 2004;89:2452-62
  • Pirker W, Riedl M, Luger A, et al. Dopamine D2 receptor imaging in pituitary adenomas using iodine-123-epidepride and SPECT. J Nucl Med 1996;37:1931-7
  • Adams EF, Ashby MJ, Brown SM, et al. Bromocriptine suppresses ACTH secretion from human pituitary tumour cells in culture by a dopaminergic mechanism. Clin Endocrinol (Oxf) 1981;15:479-84
  • Yin D, Kondo S, Takeuchi J, Morimura T. Induction of apoptosis in murine ACTH-secreting pituitary adenoma cells by bromocriptine. FEBS Lett 1994;339:73-5
  • Miller JW, Crapo L. The medical treatment of Cushing's syndrome. Endocr Rev 1993;14:443-58
  • Sonino N, Boscaro M. Medical therapy for Cushing's disease. Endocrinol Metab Clin North Am 1999;28:211-22
  • Ishibashi M, Yamaji T. Direct effects of catecholamines, thyrotropin-releasing hormone, and somatostatin on growth hormone and prolactin secretion from adenomatous and nonadenomatous human pituitary cells in culture. J Clin Invest 1984;73:66-78
  • Nieman LK. Medical therapy of Cushing's disease. Pituitary 2002;5:77-82
  • Bevan JS, Webster J, Burke CW, Scanlon MF. Dopamine agonists and pituitary tumor shrinkage. Endocr Rev 1992;13:220-40
  • Kawamura M, Nakano T, Miki H, et al. Bromocriptine-responsive Cushing's disease; clinical and biochemical remission accompanied by amelioration of impaired ocular movement. Intern Med 2007;46:1117-22
  • Adachi M, Takayanagi R, Yanase T, et al. Cyclic Cushing's disease in long-term remission with a daily low dose of bromocriptine. Intern Med 1996;35:207-11
  • Boscaro M, Benato M, Mantero F. Effect of bromocriptine in pituitary-dependent Cushing's syndrome. Clin Endocrinol (Oxf) 1983;19:485-91
  • Lamberts SW, de Lange SA, Stefanko SZ. Adrenocorticotropin-secreting pituitary adenomas originate from the anterior or the intermediate lobe in Cushing's disease: differences in the regulation of hormone secretion. J Clin Endocrinol Metab 1982;54:286-91
  • McNicol AM, Teasdale GM, Beastall GH. A study of corticotroph adenomas in Cushing's disease: no evidence of intermediate lobe origin. Clin Endocrinol (Oxf) 1986;24:715-22
  • Croughs RJ, Koppeschaar HP, van't Verlaat JW, McNicol AM. Bromocriptine-responsive Cushing's disease associated with anterior pituitary corticotroph hyperplasia or normal pituitary gland. J Clin Endocrinol Metab 1989;68:495-8
  • Miyoshi T, Otsuka F, Takeda M, et al. Effect of cabergoline treatment on Cushing's disease caused by aberrant adrenocorticotropin-secreting macroadenoma. J Endocrinol Invest 2004;27:1055-9
  • Illouz F, Dubois-Ginouves S, Laboureau S, et al. Use of cabergoline in persisting Cushing's disease. Ann Endocrinol (Paris) 2006;67:353-6
  • Pivonello R, Ferone D, De Herder WW, et al. Dopamine receptor expression and function in human normal adrenal gland and adrenal tumors. J Clin Endocrinol Metab 2004;89:4493-502
  • Zanettini R, Antonini A, Gatto G, et al. Valvular heart disease and the use of dopamine agonists for Parkinson's disease. N Engl J Med 2007;356:39-46
  • Schade R, Andersohn F, Suissa S, et al. Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med 2007;356:29-38
  • Gruszka A, Ren SG, Dong J, et al. Regulation of growth hormone and prolactin gene expression and secretion by chimeric somatostatin-dopamine molecules. Endocrinology 2007;148:6107-14
  • Krieger DT, Amorosa L, Linick F. Cyproheptadine-induced remission of Cushing's disease. N Engl J Med 1975;293:893-6
  • Suda T, Tozawa F, Mouri T, et al. Effects of cyproheptadine, reserpine, and synthetic corticotropin-releasing factor on pituitary glands from patients with Cushing's disease. J Clin Endocrinol Metab 1983;56:1094-9
  • van Waveren Hogervorst CO, Koppeschaar HP, Zelissen PM, et al. Cortisol secretory patterns in Cushing's disease and response to cyproheptadine treatment. J Clin Endocrinol Metab 1996;81:652-5
  • Tomita A, Suzuki S, Hara I, et al. Follow-up study on treatment in 27 patients with Cushing's disease: adrenalectomy, transsphenoidal adenomectomy and medical treatment. Endocrinol Jpn 1981;28:197-205
  • Ambrosi B, Gaggini M, Secchi F, Faglia G. Lack of effect of antiserotoninergic and/or dopaminergic treatment in patients with pituitary-dependent Cushing's syndrome. Horm Metab Res 1979;11:318-9
  • Cavagnini F, Raggi U, Micossi P, et al. Effect of an antiserotoninergic drug, metergoline, on the ACTH and cortisol response to insulin hypoglycemia and lysine-vasopressin in man. J Clin Endocrinol Metab 1976;43:306-12
  • Sonino N, Fava GA, Fallo F, et al. Effect of the serotonin antagonists ritanserin and ketanserin in Cushing's disease. Pituitary 2000;3:55-9
  • Tanakol R, Alagöl F, Azizlerli H, et al. Cyproheptadine treatment in Cushing's disease. J Endocrinol Invest 1996;19:242-7
  • Whitehead HM, Beacom R, Sheridan B, Atkinson AB. The effect of cyproheptadine and/or bromocriptine on plasma ACTH levels in patients cured of Cushing's disease by bilateral adrenalectomy. Clin Endocrinol (Oxf) 1990;32:193-201
  • Koppeschaar HP, Croughs RJ, Thijssen JH, Schwarz F. Sodium valproate and cyproheptadine may independently induce a remission in the same patient with Cushing's disease. Acta Endocrinol (Copenh) 1983;104:160-3
  • Beckers A, Stevenaert A, Pirens G, et al. Cyclical Cushing's disease and its successful control under sodium valproate. J Endocrinol Invest 1990;13:923-9
  • Colao A, Pivonello R, Tripodi FS, et al. Failure of long-term therapy with sodium valproate in Cushing's disease. J Endocrinol Invest 1997;20:387-92
  • Nussey SS, Price P, Jenkins JS, et al. The combined use of sodium valproate and metyrapone in the treatment of Cushing's syndrome. Clin Endocrinol (Oxf) 1988;28:373-80
  • Páez-Pereda M, Kovalovsky D, Hopfner U, et al. Retinoic acid prevents experimental Cushing syndrome. J Clin Invest 2001;108:1123-31
  • Castillo V, Giacomini D, Páez-Pereda M, et al. Retinoic acid as a novel medical therapy for Cushing's disease in dogs. Endocrinology 2006;147:4438-44
  • Philips A, Lesage S, Gingras R, et al. Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol Cell Biol 1997;17:5946-51
  • Tran P, Zhang XK, Salbert G, et al. COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol 1992;12:4666-76
  • Boutillier AL, Monnier D, Lorang D, et al. Corticotropin-releasing hormone stimulates proopiomelanocortin transcription by cFos-dependent and -independent pathways: characterization of an AP1 site in exon 1. Mol Endocrinol 1995;9:745-55
  • Kliewer SA, Umesono K, Heyman RA, et al. Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling. Proc Natl Acad Sci USA 1992;89:1448-52
  • Cooney AJ, Leng X, Tsai SY, et al. Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J Biol Chem 1993;268:4152-60
  • Schwartz E, Mezick JA, Gendimenico GJ, Kligman LH. In vivo prevention of corticosteroid-induced skin atrophy by tretinoin in the hairless mouse is accompanied by modulation of collagen, glycosaminoglycans, and fibronectin. J Invest Dermatol 1994;102:241-6
  • Heaney AP, Fernando M, Melmed S. PPAR-gamma receptor ligands: novel therapy for pituitary adenomas. J Clin Invest 2003;111:1381-8
  • Heaney AP, Fernando M, Yong WH, Melmed S. Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. Nat Med 2002;8:1281-7
  • Ambrosi B, Dall'Asta C, Cannavo S, et al. Effects of chronic administration of PPAR-gamma ligand rosiglitazone in Cushing's disease. Eur J Endocrinol 2004;151:173-8
  • Suri D, Weiss RE. Effect of pioglitazone on adrenocorticotropic hormone and cortisol secretion in Cushing's disease. J Clin Endocrinol Metab 2005;90:1340-6
  • Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Ann Rev Cell Dev Biol 1996;12:335-63
  • Bogazzi F, Russo D, Locci MT, et al. Peroxisome proliferator-activated receptor (PPAR)gamma is highly expressed in normal human pituitary gland. J Endocrinol Invest 2005;28:899-904
  • Winczyk K, Pawlikowski M. Immunohistochemical detection of PPARgamma receptors in the human pituitary adenomas: correlation with PCNA. Folia Histochem Cytobiol 2005;43:137-41
  • Emery MN, Leontiou C, Bonner SE, et al. PPAR-gamma expression in pituitary tumours and the functional activity of the glitazones: evidence that any anti-proliferative effect of the glitazones is independent of the PPAR-gamma receptor. Clin Endocrinol (Oxf) 2006;65:389-95
  • Catrina SB, Virtanen K, Hällsten K, et al. Effect of rosiglitazone on early-morning plasma cortisol levels. Neuro Endocrinol Lett 2005;26:763-4
  • Giraldi FP, Scaroni C, Arvat E, et al. Effect of protracted treatment with rosiglitazone, a PPARgamma agonist, in patients with Cushing's disease. Clin Endocrinol (Oxf) 2006;64:219-24
  • Dahia PL, Honegger J, Reincke M, et al. Expression of glucocorticoid receptor gene isoforms in corticotropin-secreting tumors. J Clin Endocrinol Metab 1997;82:1088-93
  • Antonini SR, Latronico AC, Elias LL, et al. Glucocorticoid receptor gene polymorphisms in ACTH-secreting pituitary tumours. Clin Endocrinol (Oxf) 2002;57:657-62
  • Kitay JI, Holub DA, Jailer JW. Inhibition of pituitary ACTH release;an extra-adrenal action of exogenous ACTH. Endocrinology 1959;64:475-82
  • Hodges JR, Vernikos J. Circulating corticotrophin in normal and adrenalectomized rats after stress. Acta Endocrinol (Copenh) 1959;30:188-96
  • Suda T, Tomori N, Yajima F, et al. A short negative feedback mechanism regulating corticotropin-releasing hormone release. J Clin Endocrinol Metab 1987;64:909-13
  • Morris DG, Kola B, Borboli N, et al. Identification of adrenocorticotropin receptor messenger ribonucleic acid in the human pituitary and its loss of expression in pituitary adenomas. J Clin Endocrinol Metab 2003;88:6080-7
  • Habib KE, Weld KP, Rice KC, et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc Natl Acad Sci USA 2000;97:6079-84
  • Holsboer F, Ising M. Central CRH system in depression and anxiety – Evidence from clinical studies with CRH1; receptor antagonists. Eur J Pharmacol 2008
  • Kronenberg HM, Melmed S, Polonsky KS, Larsen PR. Williams Textbook of Endocrinology. Canada: Saunders Elsevier, 2007; 222:Figure 8-53
  • Morris D, Grossman A. The medical management of Cushing's syndrome. Ann NY Acad Sci 2002;970:119-33
  • Gross BA, Mindea SA, Pick AJ, et al. Medical management of Cushing disease. Neurosurg Focus 2007;23:E10
  • Feelders RA, van der Hock J, Waaijers M, et al. Medical treatment of Cushing's disease: ketoconazole induces apoptosis of corticotroph tumor cells which is potentiated by the new somatostatin analogue SOM230. In: ENDO 2006: The Endocrine Society's 88th Annual Meeting, 24 – 27 June 2006, Boston, MA. 2006; P2-733 [Abstract]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.