1,401
Views
66
CrossRef citations to date
0
Altmetric
Reviews

Lysophosphatidic acid-1-receptor targeting agents for fibrosis

, , , , , , & show all
Pages 657-667 | Published online: 24 Mar 2011

Bibliography

  • Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008;20:199-210
  • Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007;117:524-9
  • Maher TM. Pirfenidone in idiopathic pulmonary fibrosis. Drugs Today (Barc) 2010;46:473-82
  • Iyer SN, Wild JS, Schiedt MJ, Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters. J Lab Clin Med 1995;125:779-85
  • Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther 1999;291:367-73
  • Zhao XY, Zeng X, Li XM, Pirfenidone inhibits carbon tetrachloride- and albumin complex-induced liver fibrosis in rodents by preventing activation of hepatic stellate cells. Clin Exp Pharmacol Physiol 2009;36:963-8
  • Shimizu T, Fukagawa M, Kuroda T, Pirfenidone prevents collagen accumulation in the remnant kidney in rats with partial nephrectomy. Kidney Int Suppl 1997;63:S239-43
  • Miric G, Dallemagne C, Endre Z, Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br J Pharmacol 2001;133:687-94
  • Cho ME, Smith DC, Branton MH, Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2007;2:906-13
  • Lin ME, Herr DR, Chun J. Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat 2010;91:130-8
  • Chun J, Hla T, Lynch KR, International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid Receptor Nomenclature. Pharmacol Rev 2010;62:579-87
  • Aoki J, Inoue A, Okudaira S. Two pathways for lysophosphatidic acid production. Biochim Biophys Acta 2008;1781:513-18
  • Pages C, Simon MF, Valet P, Saulnier-Blache JS. Lysophosphatidic acid synthesis and release. Prostaglandins Other Lipid Mediat 2001;64:1-10
  • Vogt W. Pharamacologically active acidic phospholipids and glycolipids. Biochem Pharmacol 1963;12:415-20
  • Proll MA, Clark RB, Butcher RW. Phosphatidate and monooleylphosphatidate inhibition of fibroblast adenylate cyclase is mediated by the inhibitory coupling protein, Ni. Mol Pharmacol 1985;28:331-7
  • Jalink K, van Corven EJ, Moolenaar WH. Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2+-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J Biol Chem 1990;265:12232-9
  • van Corven EJ, Groenink A, Jalink K, Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell 1989;59:45-54
  • van der Bend RL, Brunner J, Jalink K, Identification of a putative membrane receptor for the bioactive phospholipid, lysophosphatidic acid. Embo J 1992;11:2495-501
  • Hecht JH, Weiner JA, Post SR, Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol 1996;135:1071-83
  • Noguchi K, Herr D, Mutoh T, Chun J. Lysophosphatidic acid (LPA) and its receptors. Curr Opin Pharmacol 2009;9:15-23
  • Contos JJ, Fukushima N, Weiner JA, Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci USA 2000;97:13384-9
  • Choi JW, Herr DR, Noguchi K, LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 2010;50:157-86
  • Contos JJ, Ishii I, Fukushima N, Characterization of lpa2 (Edg4) and lpa1/lpa2 (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa2. Mol Cell Biol 2002;22:6921-9
  • Ye X, Hama K, Contos JJ, LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 2005;435:104-8
  • Hama K, Aoki J, Inoue A, Embryo spacing and implantation timing are differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biol Reprod 2007;77:954-9
  • Lee Z, Cheng CT, Zhang H, Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol Biol Cell 2008;19:5435-45
  • Sumida H, Noguchi K, Kihara Y, LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood 2010;116:5060-70
  • Tigyi G. Aiming drug discovery at lysophosphatidic acid targets. Br J Pharmacol 2010;161:241-70
  • Im DS. Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol Sin 2010;31:1213-22
  • Swaney JS, Chapman C, Correa LD, A novel, orally active LPA1 receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br J Pharmacol 2010;160:1699-713
  • Swaney JS, Chapman C, Correa LD, Pharmacokinetic and Pharmacodynamic Characterization of an Oral, LPA1-selective Antagonist. J Pharmacol Exp Ther 2010: published online 15 December 2010, doi: 10.1124/jpet.110.175901
  • Fischer DJ, Nusser N, Virag T, Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol Pharmacol 2001;60:776-84
  • Prestwich GD, Gajewiak J, Zhang H, Phosphatase-resistant analogues of lysophosphatidic acid: agonists promote healing, antagonists and autotaxin inhibitors treat cancer. Biochim Biophys Acta 2008;1781:588-94
  • Heise CE, Santos WL, Schreihofer AM, Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist. Mol Pharmacol 2001;60:1173-80
  • Xue J, Gan L, Li X, Effects of lysophosphatidic acid and its receptors LPA(1/3) on radiation pneumonitis. Oncol Rep 2010;24:1515-20
  • Heasley BH, Jarosz R, Lynch KR, Macdonald TL. Initial structure-activity relationships of lysophosphatidic acid receptor antagonists: discovery of a high-affinity LPA1/LPA3 receptor antagonist. Bioorg Med Chem Lett 2004;14:2735-40
  • Woclawek-Potocka I, Kowalczyk-Zieba I, Skarzynski DJ. Lysophosphatidic acid action during early pregnancy in the cow: in vivo and in vitro studies. J Reprod Dev 2010;56:411-20
  • Ohta H, Sato K, Murata N, Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol 2003;64:994-1005
  • Moughal NA, Waters CM, Valentine WJ, Protean agonism of the lysophosphatidic acid receptor-1 with Ki16425 reduces nerve growth factor-induced neurite outgrowth in pheochromocytoma 12 cells. J Neurochem 2006;98:1920-9
  • Durgam GG, Virag T, Walker MD, Synthesis, structure-activity relationships, and biological evaluation of fatty alcohol phosphates as lysophosphatidic acid receptor ligands, activators of PPARgamma, and inhibitors of autotaxin. J Med Chem 2005;48:4919-30
  • Murch O, Collin M, Thiemermann C. Lysophosphatidic acid reduces the organ injury caused by endotoxemia-a role for G-protein-coupled receptors and peroxisome proliferator-activated receptor-gamma. Shock 2007;27:48-54
  • Woclawek-Potocka I, Komiyama J, Saulnier-Blache JS, Lysophosphatic acid modulates prostaglandin secretion in the bovine uterus. Reproduction 2009;137:95-105
  • Ma L, Matsumoto M, Xie W, Evidence for lysophosphatidic acid 1 receptor signaling in the early phase of neuropathic pain mechanisms in experiments using Ki-16425, a lysophosphatidic acid 1 receptor antagonist. J Neurochem 2009;109:603-10
  • Boucharaba A, Serre CM, Guglielmi J, The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci USA 2006;103:9643-8
  • Castelino FV, Seiders J, Bain G, Genetic deletion or pharmacologic antagonism of LPA1 ameliorates dermal fibrosis in a scleroderma mouse model. Arthritis Rheum 2011: published online 28 January 2011. doi: 10.1002/art.30262
  • Ting SM, Nair H, Ching I, Overweight, obesity and chronic kidney disease. Nephron Clin Pract 2009;112:c121-c127; discussion c27
  • Boor P, Sebekova K, Ostendorf T, Floege J. Treatment targets in renal fibrosis. Nephrol Dial Transplant 2007;22:3391-407
  • Iwano M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. Curr Opin Nephrol Hypertens 2004;13:279-84
  • Pradere JP, Klein J, Gres S, LPA1 receptor activation promotes renal interstitial fibrosis. J Am Soc Nephrol 2007;18:3110-18
  • Klein J, Gonzalez J, Decramer S, Blockade of the kinin B1 receptor ameloriates glomerulonephritis. J Am Soc Nephrol 2010;21:1157-64
  • Klein J, Gonzalez J, Duchene J, Delayed blockade of the kinin B1 receptor reduces renal inflammation and fibrosis in obstructive nephropathy. Faseb J 2009;23:134-42
  • Bascands JL, Schanstra JP. Obstructive nephropathy: insights from genetically engineered animals. Kidney Int 2005;68:925-37
  • Verdoorn KS, Lindoso RS, Lowe J, Bone marrow mononuclear cells shift bioactive lipid pattern in injured kidney towards tissue repair in rats with unilateral ureteral obstruction. Nephrol Dial Transplant 2010;25:3867-74
  • Pradere JP, Gonzalez J, Klein J, Lysophosphatidic acid and renal fibrosis. Biochim Biophys Acta 2008;1781:582-7
  • Lloyd CM, Minto AW, Dorf ME, RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med 1997;185:1371-80
  • Strieter RM, Mehrad B. New mechanisms of pulmonary fibrosis. Chest 2009;136:1364-70
  • Gomer RH, Lupher ML Jr. Investigational approaches to therapies for idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2010;19:737-45
  • Chua F, Gauldie J, Laurent GJ. Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol 2005;33:9-13
  • Tager AM, LaCamera P, Shea BS, The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 2008;14:45-54
  • Mitra AK, Agrawal DK. Gene therapy of fibroproliferative vasculopathies: current ideas in molecular mechanisms and biomedical technology. Pharmacogenomics 2006;7:1185-98
  • Hayashi K, Takahashi M, Nishida W, Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res 2001;89:251-8
  • Komachi M, Damirin A, Malchinkhuu E, Signaling pathways involved in DNA synthesis and migration in response to lysophosphatidic acid and low-density lipoprotein in coronary artery smooth muscle cells. Vascul Pharmacol 2009;50:178-84
  • Zhang C, Baker DL, Yasuda S, Lysophosphatidic acid induces neointima formation through PPARgamma activation. J Exp Med 2004;199:763-74
  • Panchatcharam M, Miriyala S, Yang F, Lysophosphatidic acid receptors 1 and 2 play roles in regulation of vascular injury responses but not blood pressure. Circ Res 2008;103:662-70
  • Subramanian P, Karshovska E, Reinhard P, Lysophosphatidic acid receptors LPA1 and LPA3 promote CXCL12-mediated smooth muscle progenitor cell recruitment in neointima formation. Circ Res 2010;107:96-105
  • Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 2007;117:557-67
  • Tokumura A, Carbone LD, Yoshioka Y, Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. Int J Med Sci 2009;6:168-76
  • Pattanaik D, Postlethwaite AE. A role for lysophosphatidic acid and sphingosine 1-phosphate in the pathogenesis of systemic sclerosis. Discov Med 2010;10:161-7
  • Postlethwaite AE, Chiang TM. Platelet contributions to the pathogenesis of systemic sclerosis. Curr Opin Rheumatol 2007;19:574-9
  • Wu M, Varga J. In perspective: murine models of scleroderma. Curr Rheumatol Rep 2008;10:173-82
  • Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011;6:425-56
  • Wallace K, Burt AD, Wright MC. Liver fibrosis. Biochem J 2008;411:1-18
  • Tangkijvanich P, Melton AC, Chitapanarux T, Platelet-derived growth factor-BB and lysophosphatidic acid distinctly regulate hepatic myofibroblast migration through focal adhesion kinase. Exp Cell Res 2002;281:140-7
  • Ikeda H, Yatomi Y, Yanase M, Effects of lysophosphatidic acid on proliferation of stellate cells and hepatocytes in culture. Biochem Biophys Res Commun 1998;248:436-40
  • Ikeda H, Nagashima K, Yanase M, Involvement of Rho/Rho kinase pathway in regulation of apoptosis in rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2003;285:G880-6
  • Watanabe N, Ikeda H, Nakamura K, Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C. J Clin Gastroenterol 2007;41:616-23
  • Watanabe N, Ikeda H, Nakamura K, Plasma lysophosphatidic acid level and serum autotaxin activity are increased in liver injury in rats in relation to its severity. Life Sci 2007;81:1009-15
  • Cooper AB, Wu J, Lu D, Maluccio MA. Is autotaxin (ENPP2) the link between hepatitis C and hepatocellular cancer? J Gastrointest Surg 2007;11:1628-34; discussion 1634-1635
  • Liliom K, Guan Z, Tseng JL, Growth factor-like phospholipids generated after corneal injury. Am J Physiol 1998;274:C1065-74
  • Demoyer JS, Skalak TC, Durieux ME. Lysophosphatidic acid enhances healing of acute cutaneous wounds in the mouse. Wound Repair Regen 2000;8:530-7
  • Balazs L, Okolicany J, Ferrebee M, Topical application of the phospholipid growth factor lysophosphatidic acid promotes wound healing in vivo. Am J Physiol Regul Integr Comp Physiol 2001;280:R466-72
  • Wang J, Carbone LD, Watsky MA. Receptor-mediated activation of a Cl- current by LPA and S1P in cultured corneal keratocytes. Invest Ophthalmol Vis Sci 2002;43(10):3202-8
  • Sturm A, Sudermann T, Schulte KM, Modulation of intestinal epithelial wound healing in vitro and in vivo by lysophosphatidic acid. Gastroenterology 1999;117:368-77
  • Jeon ES, Moon HJ, Lee MJ, Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells 2008;26:789-97
  • Jeon ES, Lee IH, Heo SC, Mesenchymal stem cells stimulate angiogenesis in a murine xenograft model of A549 human adenocarcinoma through an LPA1 receptor-dependent mechanism. Biochim Biophys Acta 2010;1801:1205-13
  • Cheng R, Cheng L, Shao MY, Roles of lysophosphatidic acid and the Rho-associated kinase pathway in the migration of dental pulp cells. Exp Cell Res 2010;316:1019-27
  • Pattabiraman PP, Rao PV. Mechanistic basis of Rho GTPase-induced extracellular matrix synthesis in trabecular meshwork cells. Am J Physiol Cell Physiol 2010;298:C749-63
  • Morishita R, Nagata K, Ito H, Expression of smooth muscle cell-specific proteins in neural progenitor cells induced by agonists of G protein-coupled receptors and transforming growth factor-beta. J Neurochem 2007;101:1031-40
  • Yin Z, Tong Y, Zhu H, Watsky MA. ClC-3 is required for LPA-activated Cl- current activity and fibroblast-to-myofibroblast differentiation. Am J Physiol Cell Physiol 2008;294:C535-42
  • de Winter P, Leoni P, Abraham D. Connective tissue growth factor: structure-function relationships of a mosaic, multifunctional protein. Growth Factors 2008;26:80-91
  • Hahn A, Heusinger-Ribeiro J, Lanz T, Induction of connective tissue growth factor by activation of heptahelical receptors. Modulation by Rho proteins and the actin cytoskeleton. J Biol Chem 2000;275:37429-35
  • Heusinger-Ribeiro J, Eberlein M, Wahab NA, Goppelt-Struebe M. Expression of connective tissue growth factor in human renal fibroblasts: regulatory roles of RhoA and cAMP. J Am Soc Nephrol 2001;12:1853-61
  • Muehlich S, Schneider N, Hinkmann F, Induction of connective tissue growth factor (CTGF) in human endothelial cells by lysophosphatidic acid, sphingosine-1-phosphate, and platelets. Atherosclerosis 2004;175:261-8
  • Kantarci A, Black SA, Xydas CE, Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis. J Pathol 2006;210:59-66
  • Chudgar SM, Deng P, Maddala R, Regulation of connective tissue growth factor expression in the aqueous humor outflow pathway. Mol Vis 2006;12:1117-26
  • Wiedmaier N, Muller S, Koberle M, Bacteria induce CTGF and CYR61 expression in epithelial cells in a lysophosphatidic acid receptor-dependent manner. Int J Med Microbiol 2008;298:231-43
  • Vial C, Zuniga LM, Cabello-Verrugio C, Skeletal muscle cells express the profibrotic cytokine connective tissue growth factor (CTGF/CCN2), which induces their dedifferentiation. J Cell Physiol 2008;215:410-21
  • Lopes LB, Furnish EJ, Komalavilas P, Cell permeant peptide analogues of the small heat shock protein, HSP20, reduce TGF-beta1-induced CTGF expression in keloid fibroblasts. J Invest Dermatol 2009;129:590-8
  • Kita T, Hata Y, Kano K, Transforming growth factor-beta2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes 2007;56:231-8
  • Graness A, Giehl K, Goppelt-Struebe M. Differential involvement of the integrin-linked kinase (ILK) in RhoA-dependent rearrangement of F-actin fibers and induction of connective tissue growth factor (CTGF). Cell Signal 2006;18:433-40
  • Cabello-Verrugio C, Cordova G, Vial C, Connective tissue growth factor induction by lysophosphatidic acid requires transactivation of transforming growth factor type beta receptors and the JNK pathway. Cell Signal 2011;23:449-57
  • Mio T, Liu X, Toews ML, Rennard SI. Lysophosphatidic acid augments fibroblast-mediated contraction of released collagen gels. J Lab Clin Med 2002;139:20-7
  • Valenick LV, Schwarzbauer JE. Ligand density and integrin repertoire regulate cellular response to LPA. Matrix Biol 2006;25:223-31
  • Parizi M, Howard EW, Tomasek JJ. Regulation of LPA-promoted myofibroblast contraction: role of Rho, myosin light chain kinase, and myosin light chain phosphatase. Exp Cell Res 2000;254:210-20
  • Zhang Q, Checovich WJ, Peters DM, Modulation of cell surface fibronectin assembly sites by lysophosphatidic acid. J Cell Biol 1994;127:1447-59
  • Yin Z, Carbone LD, Gotoh M, Lysophosphatidic acid-activated Cl- current activity in human systemic sclerosis skin fibroblasts. Rheumatology (Oxford) 2010;49:2290-7
  • Ban CR, Twigg SM. Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc Health Risk Manag 2008;4:575-96
  • Sugaru E, Nakagawa T, Ono-Kishino M, SMP-534 ameliorates progression of glomerular fibrosis and urinary albumin in diabetic db/db mice. Am J Physiol Renal Physiol 2006;290:F813-20
  • Gutkowska J, Broderick TL, Bogdan D, Downregulation of oxytocin and natriuretic peptides in diabetes: possible implications in cardiomyopathy. J Physiol 2009;587:4725-36
  • Sahai A, Malladi P, Pan X, Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am J Physiol Gastrointest Liver Physiol 2004;287:G1035-43
  • Divoux A, Tordjman J, Lacasa D, Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 2010;59:2817-25
  • Henegar C, Tordjman J, Achard V, Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol 2008;9:R14
  • Ferry G, Tellier E, Try A, Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity. J Biol Chem 2003;278:18162-9
  • Boucher J, Quilliot D, Praderes JP, Potential involvement of adipocyte insulin resistance in obesity-associated up-regulation of adipocyte lysophospholipase D/autotaxin expression. Diabetologia 2005;48:569-77
  • Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer 2009;9:108-22
  • Levental KR, Yu H, Kass L, Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009;139:891-906
  • Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 2003;3:582-91
  • Peyruchaud O. Novel implications for lysophospholipids, lysophosphatidic acid and sphingosine 1-phosphate, as drug targets in cancer. Anticancer Agents Med Chem 2009;9:381-91
  • Park SY, Jeong KJ, Panupinthu N, Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene 2010: published online 22 November 2010, doi:10.1038/onc.2010.517
  • Fells JI, Tsukahara R, Liu J, Structure-based drug design identifies novel LPA3 antagonists. Bioorg Med Chem 2009;17:7457-64
  • Williams JR, Khandoga AL, Goyal P, Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation. J Biol Chem 2009;284:17304-19
  • Fells JI, Tsukahara R, Fujiwara Y, Identification of non-lipid LPA3 antagonists by virtual screening. Bioorg Med Chem 2008;16:6207-17
  • Durgam GG, Tsukahara R, Makarova N, Synthesis and pharmacological evaluation of second-generation phosphatidic acid derivatives as lysophosphatidic acid receptor ligands. Bioorg Med Chem Lett 2006;16:633-40
  • Jiang G, Xu Y, Fujiwara Y, alpha-substituted phosphonate analogues of lysophosphatidic acid (LPA) selectively inhibit production and action of LPA. ChemMedChem 2007;2:679-90
  • Liliom K, Tsukahara T, Tsukahara R, Farnesyl phosphates are endogenous ligands of lysophosphatidic acid receptors: inhibition of LPA GPCR and activation of PPARs. Biochim Biophys Acta 2006;1761:1506-14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.