277
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Targeted therapy in sarcomas: mammalian target of rapamycin inhibitors from bench to bedside

, , , , , , & show all
Pages 1685-1705 | Published online: 20 Oct 2011

Bibliography

  • Mahalingam D, Mita A, Sankhala K, Targeting sarcomas: novel biological agents and future perspectives. Curr Drug Targets 2009;10(10):937-49
  • Wan X, Helman LJ. The biology behind mTOR inhibition in sarcoma. Oncologist 2007;12(8):1007-18
  • Jain S, Xu R, Prieto VG, Lee P. Molecular classification of soft tissue sarcomas and its clinical applications. Int J Clin Exp Pathol 2010;3(4):416-28
  • Taylor BS, Barretina J, Maki RG, Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer 2011;11(8):541-57
  • Gougelet A, Perez J, Pissaloux D, miRNA profiling: how to bypass the current difficulties in the diagnosis and treatment of sarcomas. Sarcoma 2011;2011:460650
  • Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer 2003;3(9):685-94
  • Yang JC, Chang AE, Baker AR, Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. J Clin Oncol 1998;16(1):197-203
  • Issels RD, Lindner LH, Verweij J, European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group (EORTC-STBSG); European Society for Hyperthermic Oncology (ESHO).. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 2010;11(6):561-70
  • Woll PJ, van Glabbeke M, Hohenberger P, EORTC Soft Tissue & Bone Sarcoma Group.. Adjuvant chemotherapy (CT) with doxorubicin and ifosfamide in resected soft tissue sarcoma (STS): interim analysis of a randomised phase III trial. 2007 ASCO Annual Meeting Proceedings Part I. J Clin Oncol 2007;25:(18 Suppl 20):10008
  • Bui-Nguyen B, Ray-Coquard I, Chevreau C, on behalf of the GSF-GETO French Sarcoma Group.. High-dose chemotherapy consolidation for chemosensitive advanced soft tissue sarcoma patients: an open-label, randomized controlled trial. Ann Oncol 2011; Jun 7: [Epub ahead of print].
  • Verma S, Younus J, Stys-Norman D, Members of the Sarcoma Disease Site Group of Cancer Care Ontario's Program in Evidence-Based Care.. Meta-analysis of ifosfamide-based combination chemotherapy in advanced soft tissue sarcoma. Cancer Treat Rev 2008;34(4):339-47
  • Borden EC, Baker LH, Bell RS, Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res 2003;9(6):1941-56
  • Gronchi A, Bui BN, Bonvalot S, Phase II clinical trial of neoadjuvant trabectedin in patients with advanced localized myxoid liposarcoma. Ann Oncol 2011; Jun 3: [Epub ahead of print].
  • Grosso F, Jones RL, Demetri GD, Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol 2007;8(7):595-602
  • Demetri GD, Chawla SP, von Mehren M, Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J Clin Oncol 2009;27(25):4188-96
  • Dematteo RP, Ballman KV, Antonescu CR, American College of Surgeons Oncology Group (ACOSOG) Intergroup Adjuvant GIST Study Team.. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 2009;373(9669):1097-104
  • Abrams TA, Schuetze SM. Targeted therapy for dermatofibrosarcoma protuberans. Curr Oncol Rep 2006;8(4):291-6
  • Sabers CJ, Martin MM, Brunn GJ, Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 1995;270(2):815-22
  • Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2(7):489-501
  • Thomas GV. mTOR and cancer: reason for dancing at the crossroads? Curr Opin Genet Dev 2006;16(1):78-84
  • Araki K, Turner AP, Shaffer VO, mTOR regulates memory CD8 T-cell differentiation. Nature 2009;460(7251):108-12
  • Saci A, Cantley LC, Carpenter CL. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol Cell 2011;42(1):50-61
  • Hara K, Maruki Y, Long X, Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002;110(2):177-89
  • Peterson TR, Laplante M, Thoreen CC, DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009;137(5):873-86
  • Fingar DC, Salama S, Tsou C, Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002;16(12):1472-87
  • Real S, Meo-Evoli N, Espada L, Tauler A. E2F1 regulates cellular growth by mTORC1 signaling. PLoS One 2011;6(1):e16163
  • Lippman SI, Broach JR. Protein kinase A and TORC1 activate genes for ribosomal biogenesis by inactivating repressors encoded by Dot6 and its homolog Tod6. Proc Natl Acad Sci USA 2009;106(47):19928-33
  • Guertin DA, Guntur KV, Bell GW, Functional genomics identifies TOR-regulated genes that control growth and division. Curr Biol 2006;16(10):958-70
  • Tsang CK, Liu H, Zheng XF. mTOR binds to the promoters of RNA polymerase I- and III-transcribed genes. Cell Cycle 2010;9(5):953-7
  • Shor B, Wu J, Shakey Q, Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J Biol Chem 2010;285(20):15380-92
  • Kantidakis T, Ramsbottom BA, Birch JL, mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci USA 2010;107(26):11823-8
  • Machida M, Takeda K, Yokono H, Reduction of ribosome biogenesis with activation of the mTOR pathway in denervated atrophic muscle. J Cell Physiol 2011; Jun 15: [Epub ahead of print].
  • Balgi AD, Diering GH, Donohue E, Regulation of mTORC1 signaling by pH. PLoS One 2011;6(6):e21549
  • Land SC, Tee AR. Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 2007;282(28):20534-43
  • Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 2005;12(Suppl 2):1509-18
  • Porstmann T, Santos CR, Griffiths B, SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008;8(3):224-36
  • Peterson TR, Sengupta SS, Harris TE, mTOR complex 1 regulates Lipin 1 localization to control the SREBP pathway. Cell 2011;146(3):408-20
  • Liu E, Knutzen CA, Krauss S, Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proc Natl Acad Sci USA 2011;108(21):8680-5
  • Kwiatkowski DJ. Tuberous sclerosis: from tubers to mTOR. Ann Hum Genet 2003;67(Pt 1):87-96
  • Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003;17(15):1829-34
  • Sun Y, Fang Y, Yoon MS, Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci USA 2008;105(24):8286-91
  • Fang Y, Vilella-Bach M, Bachmann R, Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001;294(5548):1942-5
  • Yoon MS, Sun Y, Arauz E, Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect. J Biol Chem 2011;286(34):29568-74
  • Winter JN, Fox TE, Kester M, Phosphatidic acid mediates activation of mTORC1 through the ERK signaling pathway. Am J Physiol Cell Physiol 2010;299(2):C335-44
  • Chen Y, Rodrik V, Foster DA. Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene 2005;24(4):672-9
  • Pous C, Codogno P. Lysosome positioning coordinates mTORC1 activity and autophagy. Nat Cell Biol 2011;13(4):342-4
  • Sarbassov DD, Fox TE, Kester M, Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005;307(5712):1098-101
  • Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 2002;4(9):658-65
  • Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115(5):577-90
  • Beharry Z, Mahajan S, Zemskova M, The Pim protein kinases regulate energy metabolism and cell growth. Proc Natl Acad Sci USA 2011;108(2):528-33
  • Zhang F, Beharry ZM, Harris TE, PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells. Cancer Biol Ther 2009;8(9):846-53
  • Yoshida S, Hong S, Suzuki T, Redox regulates mTORC1 activity by modulating the TSC1/TSC2-Rheb pathway. J Biol Chem 2011;286(37):32651-60
  • Zheng M, Wang YH, Wu XN, Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol 2011;13(3):263-72
  • Findlay GM, Yan L, Procter J, A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J 2007;403(1):13-20
  • Nobukuni T, Joaquin M, Roccio M, Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 2005;102(40):14238-43
  • Sancak Y, Peterson TR, Shaul YD, The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008;320(5882):1496-501
  • Gong R, Li L, Liu Y, Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev 2011;25(16):1668-73
  • Demirkan G, Yu K, Boylan JM, Phosphoproteomic Profiling of In Vivo Signaling in Liver by the Mammalian Target of Rapamycin Complex 1 (mTORC1). PLoS One 2011;6(6):e21729
  • Hsu PP, Kang SA, Rameseder J, The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011;332(6035):1317-22
  • Yu Y, Yoon SO, Poulogiannis G, Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011;332(6035):1322-6
  • Jacinto E, Facchinetti V, Liu D, SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006;127(1):125-37
  • Pearce LR, Huang X, Boudeau J, Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 2007;405(3):513-22
  • Zeng Z, Sarbassov dos D, Samudio IJ, Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007;109(8):3509-12
  • Huang BX, Akbar M, Kevala K, Kim HY. Phosphatidylserine is a critical modulator for Akt activation. J Cell Biol 2011;192(6):979-92
  • Wu YT, Ouyang W, Lazorchak AS, mTOR complex 2 targets Akt for proteasomal degradation via phosphorylation at the hydrophobic motif. J Biol Chem 2011;286(16):14190-8
  • Xie X, Zhang D, Zhao B, IkappaB kinase epsilon and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci USA 2011;108(16):6474-9
  • Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell 2011;144(5):757-68
  • Sarbassov DD, Ali SM, Kim DH, Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004;14(14):1296-302
  • Guertin DA, Stevens DM, Thoreen CC, Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006;11(6):859-71
  • Liu L, Das S, Losert W, Parent CA. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 2010;19(6):845-57
  • Kuehn HS, Jung MY, Beaven MA, Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J Biol Chem 2011;286(1):391-402
  • Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004;14(18):1650-6
  • Zhang H, Bajraszewski N, Wu E, PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 2007;117(3):730-8
  • Wan X, Harkavy B, Shen N, Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 2007;26(13):1932-40
  • O'Reilly KE, Rojo F, She QB, mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006;66(3):1500-8
  • Chen CH, Shaikenov T, Peterson TR, ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor. Sci Signal 2011;4(161):ra10
  • Julien LA, Carriere A, Moreau J, Roux PP. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 2010;30(4):908-21
  • Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol 2006;18(1):77-82
  • Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006;6(3):184-92
  • Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 2011;11(4):289-301
  • Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature 2011;476(7359):163-9
  • Huse JT, Brennan C, Hambardzumyan D, The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 2009;23(11):1327-37
  • Poliseno L, Salmena L, Riccardi L, Identification of the miR-106b∼25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 2010;3(117):ra29
  • Poliseno L, Salmena L, Zhang J, A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010;465(7301):1033-8
  • Salmena L, Poliseno L, Tay Y, A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell 2011;146(3):353-8
  • Song MS, Carracedo A, Salmena L, Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell 2011;144(2):187-99
  • Trotman LC, Wang X, Alimonti A, Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 2007;128(1):141-56
  • Dancey J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol 2010;7(4):209-19
  • Shuda M, Kwun HJ, Feng H, Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. J Clin Invest 2011;121(9):3623-34
  • Uesugi A, Kozaki K, Tsuruta T, The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res 2011;71(17):5765-78
  • Kim EK, Yun SJ, Ha JM, Selective activation of Akt1 by mammalian target of rapamycin complex 2 regulates cancer cell migration, invasion, and metastasis. Oncogene 2011;30(26):2954-63
  • Hudson CC, Liu M, Chiang GG, Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 2002;22(20):7004-14
  • Peponi E, Drakos E, Reyes G, Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol 2006;169(6):2171-80
  • Sun Q, Chen X, Ma J, Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA 2011;108(10):4129-34
  • Hedberg Y, Ljungberg B, Roos G, Landberg G. Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray. Br J Cancer 2003;88(9):1417-23
  • Del Bufalo D, Ciuffreda L, Trisciuoglio D, Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 2006;66(11):5549-54
  • Lee DF, Kuo HP, Chen CT, IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 2007;130(3):440-55
  • Bader AG, Kang S, Zhao L, Vogt PK. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 2005;5(12):921-9
  • Xie Y, Skytting B, Nilsson G, Expression of insulin-like growth factor-1 receptor in synovial sarcoma: association with an aggressive phenotype. Cancer Res 1999;59(15):3588-91
  • Girnita L, Girnita A, Wang M, A link between basic fibroblast growth factor (bFGF) and EWS/FLI-1 in Ewing's sarcoma cells. Oncogene 2000;19(37):4298-301
  • Hughes DP, Thomas DG, Giordano TJ, Cell surface expression of epidermal growth factor receptor and Her-2 with nuclear expression of Her-4 in primary osteosarcoma. Cancer Res 2004;64(6):2047-53
  • Ganti R, Skapek SX, Zhang J, Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 2006;19(9):1213-20
  • Tschoep K, Kohlmann A, Schlemmer M, Gene expression profiling in sarcomas. Crit Rev Oncol Hematol 2007;63(2):111-24
  • Dobashi Y, Suzuki S, Sato E, EGFR-dependent and independent activation of Akt/mTOR cascade in bone and soft tissue tumors. Mod Pathol 2009;22(10):1328-40
  • Hirota S, Isozaki K, Moriyama Y, Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279(5350):577-80
  • Heinrich MC, Corless CL, Duensing A, PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003;299(5607):708-10
  • Shimizu A, O'Brien KP, Sjöblom T, The dermatofibrosarcoma protuberans-associated collagen type Ialpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999;59(15):3719-23
  • Sato O, Wada T, Kawai A, Expression of epidermal growth factor receptor, ERBB2 and KIT in adult soft tissue sarcomas: a clinicopathologic study of 281 cases. Cancer 2005;103(9):1881-90
  • Bode B, Frigerio S, Behnke S, Mutations in the tyrosine kinase domain of the EGFR gene are rare in synovial sarcoma. Mod Pathol 2006;19(4):541-7
  • Scotlandi K, Manara MC, Hattinger CM, Prognostic and therapeutic relevance of HER2 expression in osteosarcoma and Ewing's sarcoma. Eur J Cancer 2005;41(9):1349-61
  • Jacinto E, Facchinetti V, Liu D, SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127(1): 125-37
  • Freeman SS, Allen SW, Ganti R, Copy number gains in EGFR and copy number losses in PTEN are common events in osteosarcoma tumors. Cancer 2008;113(6):1453-61
  • Kawaguchi K, Oda Y, Saito T, DNA hypermethylation status of multiple genes in soft tissue sarcomas. Mod Pathol 2006;19(1):106-14
  • Saito T, Oda Y, Kawaguchi K, PTEN and other tumor suppressor gene mutations as secondary genetic alterations in synovial sarcoma. Oncol Rep 2004;11(5):1011-15
  • Mori K, Blanchard F, Charrier C, Conditioned media from mouse osteosarcoma cells promote MC3T3-E1 cell proliferation using JAKs and PI3-K/Akt signal crosstalk. Cancer Sci 2008;99(11):2170-6
  • Gazitt Y, Kolaparthi V, Moncada K, Targeted therapy of human osteosarcoma with 17AAG or rapamycin: characterization of induced apoptosis and inhibition of mTOR and Akt/MAPK/Wnt pathways. Int J Oncol 2009;34(2):551-61
  • Duan Z, Choy E, Harmon D, MicroRNA-199a-3p Is Downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther 2011;10(8):1337-45
  • Moriceau G, Ory B, Mitrofan L, Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (Everolimus): pivotal role of the prenylation process. Cancer Res 2010;70(24):10329-39
  • Sodhi A, Chaisuparat R, Hu J, The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell 2006;10(2):133-43
  • Martin D, Galisteo R, Molinolo AA, PI3Kgamma mediates kaposi's sarcoma-associated herpesvirus vGPCR-induced sarcomagenesis. Cancer Cell 2011;19(6):805-13
  • Jham BC, Ma T, Hu J, Amplification of the angiogenic signal through the activation of the TSC/mTOR/HIF axis by the KSHV vGPCR in Kaposi's sarcoma. PLoS ONE 2011;6(4):e19103
  • Hernando E, Charytonowicz E, Dudas ME, The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med 2007;13(6):748-53
  • Dhingra S, Rodriguez ME, Shen Q, Constitutive activation with overexpression of the mTORC2-phospholipase D1 pathway in uterine leiomyosarcoma and STUMP: morphoproteomic analysis with therapeutic implications. Int J Clin Exp Pathol 2011;4(2):134-46
  • Setsu N, Yamamoto H, Kohashi K, The Akt/mammalian target of rapamycin pathway is activated and associated with adverse prognosis in soft tissue leiomyosarcomas. Cancer 2011; Aug 11: [Epub ahead of print].
  • Cen L, Arnoczky KJ, Hsieh FC, Phosphorylation profiles of protein kinases in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 2007;20(9):936-46
  • Zenali MJ, Zhang PL, Bendel AE, Brown RE. Morphoproteomic confirmation of constitutively activated mTOR, ERK, and NF-kappaB pathways in Ewing family of tumors. Ann Clin Lab Sci 2009;39(2):160-6
  • Krishnan K, Bruce B, Hewitt S, Ezrin mediates growth and survival in Ewing's sarcoma through the AKT/mTOR, but not the MAPK, signaling pathway. Clin Exp Metastasis 2006;23(3-4):227-36
  • Friedrichs N, Trautmann M, Endl E, Phosphatidylinositol-3′-kinase/AKT signaling is essential in synovial sarcoma. Int J Cancer 2011;129(7):1564-75
  • Douro J. Suffness M. New natural products under development at the National Cancer Institute. Recent Results Cancer Res 1981;76:153-75
  • Dumont FJ, Su Q. Mechanism of action of the immunosuppressant rapamycin. Life Sci 1996;58(5):373-95
  • Choi J, Chen J, Schreiber SL, Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996;273(5272):239-42
  • Kim DH, Sarbassov DD, Ali SM, mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002;110(2):163-75
  • Sarbassov DD, Ali SM, Sengupta S, Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006;22(2):159-68
  • Nyfeler B, Bergman P, Triantafellow E, Relieving autophagy and 4EBP1 from rapamycin resistance. Mol Cell Biol 2011;31(14):2867-76
  • Thoreen CC, Kang SA, Chang JW, An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009;284(12):8023-32
  • Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet 2001;40(8):573-85
  • Hidalgo M, Buckner JC, Erlichman C, A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin Cancer Res 2006;12(19):5755-63
  • Hudes G, Carducci M, Tomczak P, Global ARCC Trial.. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007;356(22):2271-81
  • Schuler W, Sedrani R, Cottens S, SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 1997;64(1):36-42
  • Motzer RJ, Escudier B, Oudard S, RECORD-1 Study Group. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 2008;372(9637):449-56
  • Yao JC, Shah MH, Ito T, RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group.. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 2011;364(6):514-23
  • Mahalingam D, Sankhala K, Mita A, Targeting the mTOR pathway using deforolimus in cancer therapy. Future Oncol 2009;5(3):291-303
  • Liu Q, Thoreen C, Wang J, mTOR mediated anti-cancer drug discovery. Drug Discov Today Ther Strateg 2009;6(2):47-55
  • Richard DJ, Verheijen JC, Zask A. Recent advances in the development of selective, ATP-competitive inhibitors of mTOR. Curr Opin Drug Discov Devel 2010;13(4):428-40
  • Guba M, von Breitenbuch P, Steinbauer M, Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002;8(2):128-35
  • Feldman ME, Apsel B, Uotila A, Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009;7(2):e38
  • Yu K, Toral-Barza L, Shi C, Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009;69(15):6232-40
  • Chresta CM, Davies BR, Hickson I, AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2009;70(1):288-98
  • Bhagwat SV, Gokhale PC, Crew AP, Preclinical Characterization of OSI-027, a Potent and Selective Inhibitor of mTORC1 and mTORC2: distinct from Rapamycin. Mol Cancer Ther 2011;10(8):1394-406
  • Boratyńska M, Watorek E, Smolska D, Anticancer effect of sirolimus in renal allograft recipients with de novo malignancies. Transplant Proc 2007;39(9):2736-9
  • Marco de F, Infante B, Giovanni S, Gesualdo L. Rapamycin for Kaposi's sarcoma and graft-versus-host disease in bone marrow transplant recipient. Transplantation 2010;89(5):633-4
  • Schuetze SM, Baker LH, Maki RG. Sirolimus reduced tumor-related morbidity and resulted in biochemical and radiographic response in patients with progressive sarcoma. 2006 ASCO, Annual Meeting Proceedings Part I. J Clin Oncol 2006;24(18 Suppl 20):9503
  • Merimsky O, Bernstein-Molho R, Sagi-Eisenberg R. Targeting the mammalian target of rapamycin in myxoid chondrosarcoma. Anticancer Drugs 2008;19(10):1019-21
  • Okuno S, Bailey H, Mahoney MR, A phase 2 study of temsirolimus (CCI-779) in patients with soft tissue sarcomas: a study of the Mayo phase 2 consortium (P2C). Cancer 2011;117(15):3468-75
  • NCT00949325. Safety and Efficacy Study of Torisel and Liposomal Doxorubicin for Patients With Recurrent Sarcoma. Available from: www.clinicaltrials.gov
  • Italiano A, Kind M, Stoeckle E, Temsirolimus in advanced leiomyosarcomas: patterns of response and correlation with the activation of the mammalian target of rapamycin pathway. Anticancer Drugs 2011;22(5):463-7
  • Italiano A, Delcambre C, Hostein I, Treatment with the mTOR inhibitor temsirolimus in patients with malignant PEComa. Ann Oncol 2010;21(5):1135-7
  • NCT00187174. Everolimus for Treating Pediatric Patients With Recurrent or Refractory Tumors. Available from: www.clinicaltrials.gov
  • Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene 2007;26(54):7560-8
  • Van Oosterom AT, Dumez H, Desai J, Combination signal transduction inhibition: A phase I/II trial of the oral mTOR-inhibitor everolimus (E, RAD001) and imatinib mesylate (IM) in patients (pts) with gastrointestinal stromal tumor (GIST) refractory to IM. 2004 ASCO Annual Meeting Proceedings (Post-Meeting Edition). J Clin Oncol 2004;22(14 Suppl 15):3002
  • Schoffski P, Reichardt P, Blay JY, A phase I-II study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Ann Oncol 2010;21(10):1990-8
  • NCT00767819. Treatment of Patients With RAD001 Who Have Progressive Sarcoma. Available from: www.clinicaltrials.gov
  • NCT01048723, Study of RAD001 in Soft Tissue Extremity and/or Retroperitoneal Sarcomas. Available from: www.clinicaltrials.gov
  • Chawla SP, Tolcher AW, Staddon AP, Updated results of a phase II trial of AP23573, a novel mTOR inhibitor, in patients (pts) with advanced soft tissue or bone sarcomas. 2006 ASCO Annual Meeting Proceedings Part I. J Clin Oncol 2006;24(18 Suppl 20):9505
  • ARIAD. ARIAD Announces Oral Ridaforolimus Achieved Primary Endpoint of Improved Progression-Free Survival in Patients with Metastatic Soft-Tissue or Bone Sarcomas in the Phase 3 SUCCEED Trial. Available from: http://investor.ariad.com/phoenix.zhtml?c=118422&p=irol-newsArticle&ID=1516618&highlight=
  • ARIAD. Merck and ARIAD Announce European Medicines Agency Accepts Marketing Authorization Application for Ridaforolimus, Investigational mTOR Inhibitor. Available from: http://investor.ariad.com/phoenix.zhtml?c=118422&p=irol-newsArticle&ID=1597862&highlight=
  • Dufner A, Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 1999;253(1):100-9
  • Castellvi J, Garcia A, Rojo F, Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer 2006;107(8):1801-11
  • Iwenofu OH, Lackman RD, Staddon AP, Phospho-S6 ribosomal protein: a potential new predictive sarcoma marker for targeted mTOR therapy. Mod Pathol 2008;21(3):231-7
  • Wang X, Zhan Y, Zhao L, Multi-Modal biomarker investigation on efficacy and mechanism of action for the mTOR inhibitor, Temsirolimus, in a Preclinical Mammary Carcinoma Oncomouse (PyMT) model: a Translational Medicine Study in Support for Early Clinical Development. J Pharmacol Exp Ther 2011; Aug 11: [Epub ahead of print].
  • Ma WW, Jacene H, Song D, [18F]fluorodeoxyglucose positron emission tomography correlates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy. J Clin Oncol 2009;27(16):2697-704
  • Dancey JE. Therapeutic targets: MTOR and related pathways. Cancer Biol Ther 2006;5(9):1065-73
  • Squillace RM, Miller D, Cookson M, Antitumor activity of ridaforolimus and potential cell cycle determinants of sensitivity in sarcoma and endometrial cancer models. Mol Cancer Ther 2011;10(10):1959-68
  • Subbiah V, Naing A, Brown RE, Targeted morphoproteomic profiling of Ewing's sarcoma treated with insulin-like growth factor 1 receptor (IGF1R) inhibitors: response/resistance signatures. PLoS One 2011;6(4):e18424
  • Ayral-Kaloustian S, Gu J, Lucas J, Hybrid inhibitors of phosphatidylinositol 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR): design, synthesis, and superior antitumor activity of novel wortmannin-rapamycin conjugates. J Med Chem 2010;53(1):452-9
  • Mills J, Hricik T, Siddiqi S, Matushansky I. Chromatin structure predicts epigenetic therapy responsiveness in sarcoma. Mol Cancer Ther 2011;10(2):313-24
  • Matushansky I, Taub RN. Adjuvant chemotherapy in 2011 for patients with soft-tissue sarcoma. Nat Rev Clin Oncol 2011;8(7):434-8
  • Sleijfer S, Ouali M, van Glabbeke M, Prognostic and predictive factors for outcome to first-line ifosfamide-containing chemotherapy for adult patients with advanced soft tissue sarcomas: an exploratory, retrospective analysis on large series from the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC-STBSG). Eur J Cancer 2010;46(1):72-83
  • Vincenzi B, Santini D, Schiavon G, PML expression in soft tissue sarcoma: Prognostic and predictive value in alkylating agents/antracycline-based first line therapy. J Cell Physiol 2011; Jun 15: [Epub ahead of print].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.