867
Views
41
CrossRef citations to date
0
Altmetric
Reviews

Investigational NMDA receptor modulators for depression

, , , &
Pages 91-102 | Published online: 21 Nov 2011

Bibliography

  • Hashimoto K, Sawa A, Iyo M. Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 2007;62:1310-16
  • Hashimoto K. Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev 2009;61:105-23
  • Kugaya A, Sanacora G. Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 2005;10:808-19
  • Sanacora G, Rothman DL, Mason G, Krystal JH. Clinical studies implementing glutamate neurotransmission in mood disorders. Ann N Y Acad Sci 2003;1003:292-308
  • Layer RT, Popik P, Olds T, Skolnick P. Antidepressant-like actions of the polyamine site NMDA antagonist, eliprodil (SL-82.0715). Pharmacol Biochem Behav 1995;52:621-7
  • Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 1990;185:1-10
  • Maj J, Rogoz Z, Skuza G, Sowinska H. The effect of CGP 37849 and CGP 39551, competitive NMDA receptor antagonists, in the forced swimming test. Pol J Pharmacol Pharm 1992;44:337-46
  • Maj J, Rogoz Z, Skuza G, Sowinska H. Effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur Neuropsychopharmacol 1992;2:37-41
  • Moryl E, Danysz W, Quack G. Potential antidepressive properties of amantadine, memantine and bifemelane. Pharmacol Toxicol 1993;72:394-7
  • Przegalinski E, Tatarczynska E, Deren-Wesolek A, Chojnacka-Wojcik E. Antidepressant-like effects of a partial agonist at strychnine-insensitive glycine receptors and a competitive NMDA receptor antagonist. Neuropharmacology 1997;36:31-7
  • Papp M, Moryl E. Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur J Pharmacol 1994;263:1-7
  • Ossowska G, Klenk-Majewska B, Szymczyk G. The effect of NMDA antagonists on footshock-induced fighting behavior in chronically stressed rats. J Physiol Pharmacol 1997;48:127-35
  • Skolnick P, Popik P, Trullas R. Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 2009;30:563-9
  • Berman RM, Cappiello A, Anand A, Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000;47:351-4
  • Collingridge GL, Olsen RW, Peters J, Spedding M. A nomenclature for ligand-gated ion channels. Neuropharmacology 2009;56:2-5
  • Mony L, Kew JN, Gunthorpe MJ, Paoletti P. Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br J Pharmacol 2009;157:1301-17
  • Hollmann M, O'Shea-Greenfield A, Rogers SW, Heinemann S. Cloning by functional expression of a member of the glutamate receptor family. Nature 1989;342:643-8
  • Moriyoshi K, Masu M, Ishii T, Molecular cloning and characterization of the rat NMDA receptor. Nature 1991;354:31-7
  • Traynelis SF, Wollmuth LP, McBain CJ, Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010;62:405-96
  • Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 1988;241:835-7
  • Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984;309:261-3
  • Nowak L, Bregestovski P, Ascher P, Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984;307:462-5
  • Huettner JE, Bean BP. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci USA 1988;85:1307-11
  • Mealing GA, Lanthorn TH, Murray CL, Differences in degree of trapping of low-affinity uncompetitive N-methyl-D-aspartic acid receptor antagonists with similar kinetics of block. J Pharmacol Exp Ther 1999;288:204-10
  • Parsons CG, Quack G, Bresink I, Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 1995;34:1239-58
  • Ransom RW, Deschenes NL. Polyamines regulate glycine interaction with the N-methyl-D-aspartate receptor. Synapse 1990;5:294-8
  • Ransom RW. Polyamine and ifenprodil interactions with the NMDA receptor's glycine site. Eur J Pharmacol 1991;208:67-71
  • Williams K. Interactions of polyamines with ion channels. Biochem J 1997;325(Pt 2):289-97
  • Fayyazuddin A, Villarroel A, Le GA, Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 2000;25:683-94
  • Peters S, Koh J, Choi DW. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science 1987;236:589-93
  • Westbrook GL, Mayer ML. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 1987;328:640-3
  • Banke TG, Dravid SM, Traynelis SF. Protons trap NR1/NR2B NMDA receptors in a nonconducting state. J Neurosci 2005;25:42-51
  • Tang CM, Dichter M, Morad M. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc Natl Acad Sci USA 1990;87:6445-9
  • Kohr G, Eckardt S, Luddens H, NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron 1994;12:1031-40
  • Zarate CA Jr, Singh JB, Carlson PJ, A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006;63:856-64
  • Phelps LE, Brutsche N, Moral JR, Family history of alcohol dependence and initial antidepressant response to an N-methyl-D-aspartate antagonist. Biol Psychiatry 2009;65:181-4
  • DiazGranados N, Ibrahim LA, Brutsche NE, Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin Psychiatry 2010;71:1605-11
  • DiazGranados N, Ibrahim L, Brutsche NE, A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 2010;67:793-802
  • Ibrahim L, DiazGranados N, Luckenbaugh DA, Rapid decrease in depressive symptoms with an N-methyl-d-aspartate antagonist in ECT-resistant major depression. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1155-9
  • Antunes PB, Rosa MA, Belmonte-de-Abreu PS, Electroconvulsive therapy in major depression: current aspects. Rev Bras Psiquiatr 2009;31(Suppl 1):S26-33
  • Kranaster L, Kammerer-Ciernioch J, Hoyer C, Sartorius A. Clinically favourable effects of ketamine as an anaesthetic for electroconvulsive therapy: a retrospective study. Eur Arch Psychiatry Clin Neurosci 2011; doi:10.1007/s00406-011-0205-7
  • Machado-Vieira R, Salvadore G, DiazGranados N, Zarate CA Jr. Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther 2009;123:143-50
  • Perry EB Jr, Cramer JA, Cho HS, Psychiatric safety of ketamine in psychopharmacology research. Psychopharmacology (Berl) 2007;192:253-60
  • Autry AE, Adachi M, Nosyreva E, NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011;475:91-5
  • Maeng S, Zarate CA Jr, Du J, Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008;63:349-52
  • Duman RS, Li N, Liu RJ, Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 2012;62:35-41
  • Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta 2008;1784:116-32
  • Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 2010;33:67-75
  • Mavrommati I, Maffucci T. mTOR inhibitors: facing new challenges ahead. Curr Med Chem 2011;18:2743-62
  • Li N, Lee B, LiuRJ, mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010;329:959-64
  • Jernigan CS, Goswami DB, Austin MC, The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1774-9
  • Rogoz Z, Skuza G, Maj J, Danysz W. Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacology 2002;42:1024-30
  • Zarate CA Jr, Singh JB, Quiroz JA, A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry 2006;163:153-5
  • Muhonen LH, Lonnqvist J, Juva K, Alho H. Double-blind, randomized comparison of memantine and escitalopram for the treatment of major depressive disorder comorbid with alcohol dependence. J Clin Psychiatry 2008;69:392-9
  • Szewczyk B, Kubera M, Nowak G. The role of zinc in neurodegenerative inflammatory pathways in depression. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:693-701
  • Nowak G, Siwek M, Dudek D, Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol 2003;55:1143-7
  • Siwek M, Dudek D, Paul IA, Zinc supplementation augments efficacy of imipramine in treatment resistant patients: a double blind, placebo-controlled study. J Affect Disord 2009;118:187-95
  • Poleszak E, Szewczyk B, Wlaz A, D-serine, a selective glycine/N-methyl-D-aspartate receptor agonist, antagonizes the antidepressant-like effects of magnesium and zinc in mice. Pharmacol Rep 2008;60:996-1000
  • Szewczyk B, Poleszak E, Sowa-Kucma M, The involvement of NMDA and AMPA receptors in the mechanism of antidepressant-like action of zinc in the forced swim test. Amino Acids 2010;39:205-17
  • Cichy A, Sowa-Kucma M, Legutko B, Zinc-induced adaptive changes in NMDA/glutamatergic and serotonergic receptors. Pharmacol Rep 2009;61:1184-91
  • Eby GA, Eby KL. Rapid recovery from major depression using magnesium treatment. Med Hypotheses 2006;67:362-70
  • Barragan-Rodriguez L, Rodriguez-Moran M, Guerrero-Romero F. Efficacy and safety of oral magnesium supplementation in the treatment of depression in the elderly with type 2 diabetes: a randomized, equivalent trial. Magnes Res 2008;21:218-23
  • Pavlinac D, Langer R, Lenhard L, Deftos L. Magnesium in affective disorders. Biol Psychiatry 1979;14:657-61
  • Chouinard G, Beauclair L, Geiser R, Etienne P. A pilot study of magnesium aspartate hydrochloride (Magnesiocard) as a mood stabilizer for rapid cycling bipolar affective disorder patients. Prog Neuropsychopharmacol Biol Psychiatry 1990;14:171-80
  • Cox IM, Campbell MJ, Dowson D. Red blood cell magnesium and chronic fatigue syndrome. Lancet 1991;337:757-60
  • Heiden A, Frey R, Presslich O, Treatment of severe mania with intravenous magnesium sulphate as a supplementary therapy. Psychiatry Res 1999;89:239-46
  • Poleszak E, Wlaz P, Kedzierska E, NMDA/glutamate mechanism of antidepressant-like action of magnesium in forced swim test in mice. Pharmacol Biochem Behav 2007;88:158-64
  • Gogas KR. Glutamate-based therapeutic approaches: NR2B receptor antagonists. Curr Opin Pharmacol 2006;6:68-74
  • Preskorn SH, Baker B, Kolluri S, An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 2008;28:631-7
  • Mott DD, Doherty JJ, Zhang S, Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat Neurosci 1998;1:659-67
  • Beneyto M, Kristiansen LV, Oni-Orisan A, Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 2007;32:1888-902
  • Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:70-5
  • Taniguchi S, Nakazawa T, Tanimura A, Involvement of NMDAR2A tyrosine phosphorylation in depression-related behaviour. EMBO J 2009;28:3717-29
  • Boyce-Rustay JM, Holmes A. Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 2006;31:2405-14
  • Mullasseril P, Hansen KB, Vance KM, A subunit-selective potentiator of. Nat Commun 2010;1:90
  • Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 1997;37:205-37
  • Brakeman PR, Lanahan AA, O'Brien R, Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 1997;386:284-8
  • Lujan R, Nusser Z, Roberts JD, Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 1996;8:1488-500
  • Tu JC, Xiao B, Yuan JP, Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 1998;21:717-26
  • Tu JC, Xiao B, Naisbitt S, Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 1999;23:583-92
  • Xiao B, Tu JC, Petralia RS, Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 1998;21:707-16
  • Attucci S, Carla V, Mannaioni G, Moroni F. Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges. Br J Pharmacol 2001;132:799-806
  • Awad H, Hubert GW, Smith Y, Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 2000;20:7871-9
  • Doherty AJ, Palmer MJ, Bortolotto ZA, A novel, competitive mGlu(5) receptor antagonist (LY344545) blocks DHPG-induced potentiation of NMDA responses but not the induction of LTP in rat hippocampal slices. Br J Pharmacol 2000;131:239-44
  • Pisani A, Gubellini P, Bonsi P, Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience 2001;106:579-87
  • Benquet P, Gee CE, Gerber U. Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 2002;22:9679-86
  • Cosford ND, Tehrani L, Roppe J, 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem 2003;46:204-6
  • Cowen MS, Djouma E, Lawrence AJ. The metabotropic glutamate 5 receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine reduces ethanol self-administration in multiple strains of alcohol-preferring rats and regulates olfactory glutamatergic systems. J Pharmacol Exp Ther 2005;315:590-600
  • Gasparini F, Lingenhohl K, Stoehr N, 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 1999;38:1493-503
  • Belozertseva IV, Kos T, Popik P, Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests. Eur Neuropsychopharmacol 2007;17:172-9
  • Palucha A, Branski P, Szewczyk B, Potential antidepressant-like effect of MTEP, a potent and highly selective mGluR5 antagonist. Pharmacol Biochem Behav 2005;81:901-6
  • Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 2001;132:1423-30
  • Li X, Need AB, Baez M, Witkin JM. Metabotropic glutamate 5 receptor antagonism is associated with antidepressant-like effects in mice. J Pharmacol Exp Ther 2006;319:254-9
  • Pilc A, Klodzinska A, Branski P, Multiple MPEP administrations evoke anxiolytic- and antidepressant-like effects in rats. Neuropharmacology 2002;43:181-7
  • Wieronska JM, Szewczyk B, Branski P, Antidepressant-like effect of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist in the olfactory bulbectomized rats. Amino Acids 2002;23:213-16
  • Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 2005;29:627-47
  • Deschwanden A, Karolewicz B, Feyissa AM, Reduced Metabotropic Glutamate Receptor 5 Density in Major Depression Determined by [11C]ABP688 PET and Postmortem Study. Am J Psychiatry 2011;168:727-34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.