631
Views
54
CrossRef citations to date
0
Altmetric
Reviews

New pharmacological avenues for the treatment of l-DOPA-induced dyskinesias in Parkinson's disease: targeting glutamate and adenosine receptors

&
Pages 153-168 | Published online: 11 Jan 2012

Bibliography

  • Betarbet R, Sherer TB, Di Monte DA, Greenamyre JT. Mechanistic approaches to Parkinson's disease pathogenesis. Brain Pathol 2002;21:499-510
  • Bonifati V, Oostra BA, Heutink P. Unraveling the pathogenesis of Parkinson's disease–the contribution of monogenic forms. Cell Mol Life Sci 2004;61:1729-50
  • Hirsch EC. Mechanism and consequences of nerve cell death in Parkinson's disease. J Neural Transm Suppl 1999;56:127-37
  • Jellinger KA. Neuropathology of movement disorders. Neurosurg Clin N Am 1998;9:237-62
  • Riederer P, Lange KW. Pathogenesis of Parkinson's disease. Curr Opin Neurol Neurosurg 1992;5:295-300
  • Schapira AH, Gu M, Taanman JW, Mitochondria in the etiology and pathogenesis of Parkinson's disease. Ann Neurol 1998;44:S89-98
  • Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol 2000;62:63-88
  • Jellinger KA. Pathology of Parkinson's disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 1991;14:153-97
  • Poewe W. Non-motor symptoms in Parkinson's disease. Eur J Neurol 2008;15(Suppl 1):14-20
  • Gasser T, Hardy J, Mizuno Y. Milestones in PD genetics. Mov Disord 2011;26:1042-8
  • Obeso JA, Olanow CW, Nutt JG. Levodopa motor complications in Parkinson's disease. Trends Neurosci 2000;23:S2-7
  • Gottwald MD, Aminoff MJ. Therapies for dopaminergic-induced dyskinesias in Parkinson disease. Ann Neurol 2011;69:919-27
  • Rascol O. Drugs and drug delivery in PD: optimizing control of symptoms with pramipexole prolonged-release. Eur J Neurol 2011;18(Suppl 1):3-10
  • Antonini A, Odin P. Pros and cons of apomorphine and L-dopa continuous infusion in advanced Parkinson's disease. Parkinsonism Relat Disord 2009;15(Suppl 4):S97-100
  • Stocchi F, Rascol O, Kieburtz K, Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol 2010;68:18-27
  • Kuoppamaki M, Korpela K, Marttila R, Comparison of pharmacokinetic profile of levodopa throughout the day between levodopa/carbidopa/entacapone and levodopa/carbidopa when administered four or five times daily. Eur J Clin Pharmacol 2009;65:443-55
  • Nutt JG. Effect of COMT inhibition on the pharmacokinetics and pharmacodynamics of levodopa in parkinsonian patients. Neurology 2000;55:S33-7
  • Nyholm D, Askmark H, Aquilonius SM. Stalevo reduction in dyskinesia evaluation in Parkinson's disease results were expected from a pharmacokinetic viewpoint. Ann Neurol 2011;69:424
  • Limousin P, Krack P, Pollak P, Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med 1998;339:1105-11
  • Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol 2009;8:67-81
  • Durif F, Deffond D, Dordain G, Tournilhac M. Apomorphine and diphasic dyskinesia. Clin Neuropharmacol 1994;17:99-102
  • Hely MA, Morris JG, Reid WG, The Sydney Multicentre Study of Parkinson's disease: a randomised, prospective five year study comparing low dose bromocriptine with low dose levodopa-carbidopa. J Neurol Neurosurg Psychiatry 1994;57:903-10
  • Poewe WH, Lees AJ, Stern GM. Low-dose L-dopa therapy in Parkinson's disease: a 6-year follow-up study. Neurology 1986;36:1528-30
  • Fabbrini G, Brotchie JM, Grandas F, Levodopa-induced dyskinesias. Mov Disord 2007;22:1379-89
  • Schrag A, Hovris A, Morley D, Young- versus older-onset Parkinson's disease: impact of disease and psychosocial consequences. Mov Disord 2003;18:1250-6
  • Zappia M, Annesi G, Nicoletti G, Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch Neurol 2005;62:601-5
  • Pechevis M, Clarke CE, Vieregge P, Effects of dyskinesias in Parkinson's disease on quality of life and health-related costs: a prospective European study. Eur J Neurol 2005;12:956-63
  • Di Monte DA, McCormack A, Petzinger G, Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov Disord 2000;15:459-66
  • Lundblad M, Picconi B, Lindgren H, Cenci MA. A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 2004;16:110-23
  • Paille V, Brachet P, Damier P. Role of nigral lesion in the genesis of dyskinesias in a rat model of Parkinson's disease. Neuroreport 2004;15:561-4
  • Carta M, Carlsson T, Kirik D, Bjorklund A. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 2007;130:1819-33
  • Tanaka H, Kannari K, Maeda T, Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 1999;10:631-4
  • Pavese N, Evans AH, Tai YF, Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 2006;67:1612-17
  • Lee J, Zhu WM, Stanic D, Sprouting of dopamine terminals and altered dopamine release and uptake in Parkinsonian dyskinaesia. Brain 2008;131:1574-87
  • Calon F, Hadj TA, Blanchet PJ, Dopamine-receptor stimulation: biobehavioral and biochemical consequences. Trends Neurosci 2000;23:S92-100
  • Linazasoro G. New ideas on the origin of L-dopa-induced dyskinesias: age, genes and neural plasticity. Trends Pharmacol Sci 2005;26:391-7.
  • Picconi B, Centonze D, Hakansson K, Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci 2003;6:501-6.
  • Picconi B, Paille V, Ghiglieri V, l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiol Dis 2008;29:327-35
  • Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2001;2:577-88
  • Aubert I, Guigoni C, Hakansson K, Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol 2005;57:17-26
  • Hakansson K, Lindskog M, Pozzi L, DARPP-32 and modulation of cAMP signaling: involvement in motor control and levodopa-induced dyskinesia. Parkinsonism Relat Disord 2004;10:281-6
  • Konradi C, Westin JE, Carta M, Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis 2004;17:219-36
  • Santini E, Valjent E, Usiello A, Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci 2007;27:6995-7005
  • Santini E, Sgambato-Faure V, Li Q, Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia. PLoS ONE 2010;5:e12322.
  • Bychkov E, Ahmed MR, Dalby KN, Gurevich EV. Dopamine depletion and subsequent treatment with L-DOPA, but not the long-lived dopamine agonist pergolide, enhances activity of the Akt pathway in the rat striatum. J Neurochem 2007;102:699-711
  • Lebel M, Chagniel L, Bureau G, Cyr M. Striatal inhibition of PKA prevents levodopa-induced behavioural and molecular changes in the hemiparkinsonian rat. Neurobiol Dis 2010;38:59-67
  • Morissette M, Samadi P, Hadj TA, Striatal Akt/GSK3 signaling pathway in the development of L-Dopa-induced dyskinesias in MPTP monkeys. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:446-54
  • Ding Y, Won L, Britt JP, Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci USA 2011;108:840-5
  • Dingledine R, Conn PJ. Peripheral glutamate receptors: molecular biology and role in taste sensation. J Nutr 2000;130:1039S-1042S
  • Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 2007;7:39-47
  • Greger IH, Ziff EB, Penn AC. Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci 2007;30:407-16
  • Huettner JE. Kainate receptors and synaptic transmission. Prog Neurobiol 2003;70:387-407
  • Nakanishi S. Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 1994;13:1031-7
  • Lujan-Miras R. Metabotropic glutamate receptors: new molecular targets in the treatment of neurological and psychiatric diseases. Rev Neurol 2005;40:43-53
  • Hallett PJ, Dunah AW, Ravenscroft P, Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Neuropharmacology 2005;48:503-16
  • Gardoni F, Picconi B, Ghiglieri V, A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J Neurosci 2006;26:2914-22
  • Nash JE, Ravenscroft P, McGuire S, The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson's disease. Exp Neurol 2004;188:471-9
  • Gardoni F, Sgobio C, Pendolino V, Targeting NR2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. Neurobiol Aging 2011[Epub ahead of print]
  • Oh JD, Chase TN. Glutamate-mediated striatal dysregulation and the pathogenesis of motor response complications in Parkinson's disease. Amino Acids 2002;23:133-9
  • Ahmed I, Bose SK, Pavese N, Glutamate NMDA receptor dysregulation in Parkinson's disease with dyskinesias. Brain 2011;134:979-86
  • Luginger E, Wenning GK, Bosch S, Poewe W. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson's disease. Mov Disord 2000;15:873-8
  • Verhagen ML, Del Dotto P, van den MP, Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson's disease. Neurology 1998;50:1323-6
  • Crosby NJ, Deane KH, Clarke CE. Amantadine for dyskinesia in Parkinson's disease. Cochrane Database Syst Rev 2003;CD003467
  • Snow BJ, Macdonald L, Mcauley D, Wallis W. The effect of amantadine on levodopa-induced dyskinesias in Parkinson's disease: a double-blind, placebo-controlled study. Clin Neuropharmacol 2000;23:82-5
  • Wolf E, Seppi K, Katzenschlager R, Long-term antidyskinetic efficacy of amantadine in Parkinson's disease. Mov Disord 2010;25:1357-63
  • Sawada H, Oeda T, Kuno S, Amantadine for dyskinesias in Parkinson's disease: a randomized controlled trial. PLoS One 2010;5:e15298
  • Nutt JG, Gunzler SA, Kirchhoff T, Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord 2008;23:1860-6
  • Nash JE, Ravenscroft P, McGuire S, The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson's disease. Exp Neurol 2004;188:471-9
  • Kobylecki C, Cenci MA, Crossman AR, Ravenscroft P. Calcium-permeable AMPA receptors are involved in the induction and expression of l-DOPA-induced dyskinesia in Parkinson's disease. J Neurochem 2010;114:499-511
  • Ouattara B, Hoyer D, Gregoire L, Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience 2010;167:1160-7
  • Konitsiotis S, Blanchet PJ, Verhagen L, AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 2000;54:1589-95
  • Eggert K, Squillacote D, Barone P, Safety and efficacy of perampanel in advanced Parkinson's disease: a randomized, placebo-controlled study. Mov Disord 2010;25:896-905
  • Conn PJ, Battaglia G, Marino MJ, Nicoletti F. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 2005;6:787-98
  • Samadi P, Gregoire L, Morissette M, mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 2008;29:1040-51
  • Ouattara B, Gregoire L, Morissette M, Metabotropic glutamate receptor type 5 in levodopa-induced motor complications. Neurobiol Aging 2011;32:1286-95
  • Johnston TH, Fox SH, McIldowie MJ, Reduction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease. J Pharmacol Exp Ther 2010;333:865-73
  • Levandis G, Bazzini E, Armentero MT, Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson's disease. Neurobiol Dis 2008;29:161-8.
  • Marin C, Bonastre M, Aguilar E, Jimenez A. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl) pyridine decreases striatal VGlut2 expression in association with an attenuation of L-dopa-induced dyskinesias. Synapse 2011;65:1080-6
  • Rylander D, Recchia A, Mela F, Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 2009;330:227-35
  • Yamamoto N, Soghomonian JJ. Metabotropic glutamate mGluR5 receptor blockade opposes abnormal involuntary movements and the increases in glutamic acid decarboxylase mRNA levels induced by l-DOPA in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience 2009;163:1171-80
  • Gregoire L, Morin N, Ouattara B, The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in L-Dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord 2011;17:270-6
  • Berg D, Godau J, Trenkwalder C, AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord 2011;26:1243-50
  • Fredholm BB, AP IJ, Jacobson KA, International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001;53:527-52
  • Fredholm BB, AP IJ, Jacobson KA, International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors–an update. Pharmacol Rev 2011;63:1-34
  • Rosin DL, Robeva A, Woodard RL, Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 1998;401:163-86
  • Jenner P, Mori A, Hauser R, Adenosine, adenosine A 2A antagonists, and Parkinson's disease. Parkinsonism Relat Disord 2009;15:406-13
  • Morelli M, Carta AR, Jenner P. Adenosine A2A receptors and Parkinson's disease. Handb Exp Pharmacol 2009;193:589-615.
  • Ferre S, Quiroz C, Woods AS, An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. Curr Pharm Des 2008;14:1468-74
  • Tozzi A, de Iure A, Di Filippo M, The distinct role of medium spiny neurons and cholinergic interneurons in the D/AA receptor interaction in the striatum: implications for Parkinson's disease. J Neurosci 2011;31:1850-62
  • Agnati LF, Guidolin D, Albertin G, An integrated view on the role of receptor mosaics at perisynaptic level: focus on adenosine A(2A), dopamine D(2), cannabinoid CB(1), and metabotropic glutamate mGlu(5) receptors. J Recept Signal Transduct Res 2010;30:355-69
  • Orru M, Bakesova J, Brugarolas M, Striatal pre- and postsynaptic profile of adenosine A(2A) receptor antagonists. PLoS One 2011;6:e16088.
  • Costa J, Lunet N, Santos C, Caffeine exposure and the risk of Parkinson's disease: a systematic review and meta-analysis of observational studies. J Alzheimers Dis 2010;20(Suppl 1):S221-38
  • Shiozaki S, Ichikawa S, Nakamura J, Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology (Berl) 1999;147:90-5
  • Koga K, Kurokawa M, Ochi M, Adenosine A(2A) receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-Parkinsonian rats. Eur J Pharmacol 2000;408:249-55
  • Kase H, Aoyama S, Ichimura M, Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease. Neurology 2003;61:S97-100
  • Lundblad M, Vaudano E, Cenci MA. Cellular and behavioural effects of the adenosine A2a receptor antagonist KW-6002 in a rat model of l-DOPA-induced dyskinesia. J Neurochem 2003;84:1398-410
  • Ochi M, Koga K, Kurokawa M, Systemic administration of adenosine A(2A) receptor antagonist reverses increased GABA release in the globus pallidus of unilateral 6-hydroxydopamine-lesioned rats: a microdialysis study. Neuroscience 2000;100:53-62
  • Kanda T, Jackson MJ, Smith LA, Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 1998;43:507-13
  • Kanda T, Jackson MJ, Smith LA, Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 2000;162:321-7
  • Grondin R, Bedard PJ, Hadj Tahar A, Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 1999;52:1673-7
  • Bibbiani F, Oh JD, Petzer JP, A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson's disease. Exp Neurol 2003;184:285-94
  • Rao N, Uchimura T, Mori A. Evaluation of safety, tolerability, and multiple-dose pharmacokinetics of istradefylline in healthy subjects. Clin Parmacol Ther.2008;83(Suppl):S99
  • Rao N, Uchimura T, Mori A. Evaluation of safety, tolerability, and multiple-dose pharmacokinetics of istradefylline in Parkinson' disease patients. Clin Parmacol Ther.2008;83(Suppl):S99
  • Brooks DJ, Doder M, Osman S, Positron emission tomography analysis of [11C]KW-6002 binding to human and rat adenosine A2A receptors in the brain. Synapse 2008;62:671-81
  • Bara-Jimenez W, Sherzai A, Dimitrova T, Adenosine A(2A) receptor antagonist treatment of Parkinson's disease. Neurology 2003;61:293-6
  • Hauser RA, Hubble JP, Truong DD. Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology 2003;61:297-303
  • LeWitt PA, Guttman M, Tetrud JW, Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson's disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 2008;63:295-302
  • Stacy M, Silver D, Mendis T, A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology 2008;70:2233-40
  • Hauser RA, Shulman LM, Trugman JM, Study of istradefylline in patients with Parkinson's disease on levodopa with motor fluctuations. Mov Disord 2008;23:2177-85
  • Guttman M, Group US. Efficacy of istradefylline in Parkinson's disease patients treated with levodopa with motor-response complications: results of the KW-6002-US-018 study. Mov Disord 2006;21(S15):S585
  • Factor S, Mark MH, Watts R, A long-term study of istradefylline in subjects with fluctuating Parkinson's disease. Parkinsonism Relat Disord 2010;16:423-6
  • Mizuno Y, Hasegawa K, Kondo T, Clinical efficacy of istradefylline (KW-6002) in Parkinson's disease: a randomized, controlled study. Mov Disord 2010;25:1437-43
  • Fernandez HH, Greeley DR, Zweig RM, Istradefylline as monotherapy for Parkinson disease: results of the 6002-US-051 trial. Parkinsonism Relat Disord 2010;16:16-20
  • Hodgson RA, Bertorelli R, Varty GB, Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 [7-[2-[4-2,4-difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)-7H-pyrazol o[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] in rodent models of movement disorders and depression. J Pharmacol Exp Ther 2009;330:294-303
  • Neustadt BR, Hao J, Lindo N, Potent, selective, and orally active adenosine A2A receptor antagonists: arylpiperazine derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. Bioorg Med Chem Lett 2007;17:1376-80
  • Hodgson RA, Bedard PJ, Varty GB, Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders. Exp Neurol 2010;225:384-90
  • Hauser RA, Cantillon M, Pourcher E, Preladenant in patients with Parkinson's disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol 2011;10:221-9
  • Black KJ, Koller JM, Campbell MC, Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease. J Neurosci 2010;30:16284-92
  • Gillespie RJ, Bamford SJ, Botting R, Antagonists of the human A(2A) adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. J Med Chem 2009;52:33-47
  • He P, Papapetropoulos S, O'Neill GN, Pharmacokinetic profile of the adenosine A2A receptor antagonist BIIB014 in healthy volunteers. Mov Disord 2010;25(Suppl 2):S298
  • Brooks DJ, Papapetropoulos S, Vandenhende F, An open-label, positron emission tomography study to assess adenosine A2A brain receptor occupancy of vipadenant (BIIB014) at steady-state levels in healthy male volunteers. Clin Neuropharmacol 2010;33:55-60
  • Papapetropoulos S, He P, Zhu Y, Safety and tolerability profile of adeosine A2A receptor antagonist BIIB014 in healthy volunteers: pooled analysis of four phase 1 studies. Mov Disord 2010;25(Suppl 2):S304
  • Papapetropoulos S, Borgohain R, Kellet M, Safety and tolerability profile of the adenosine A2A receptor antagonist BIIB014 in Parkinson's disease: Pooled analysis of two placebo-controlled 8-week studies. Mov Disord 2010;25(Suppl 2):S304
  • Papapetropoulos S, Borgohain R, Kellet M, The adenosine A2A receptor antagonist BIIB014 is effective in improving ON-time in Parkinson's disease (PD) patients with motor fluctuations. Mov Disord 2010;25(Suppl 2):S305
  • Pinna A. Novel investigational adenosine A2A receptor antagonists for Parkinson's disease. Expert Opin Investig Drugs 2009;18:1619-31
  • Rose S, Jackson MJ, Smith LA, The novel adenosine A2a receptor antagonist ST1535 potentiates the effects of a threshold dose of L-DOPA in MPTP treated common marmosets. Eur J Pharmacol 2006;546:82-7
  • Rose S, Ramsay Croft N, Jenner P. The novel adenosine A2a antagonist ST1535 potentiates the effects of a threshold dose of l-dopa in unilaterally 6-OHDA-lesioned rats. Brain Res 2007;1133:110-14
  • Pinna A, Pontis S, Borsini F, Morelli M. Adenosine A2A receptor antagonists improve deficits in initiation of movement and sensory motor integration in the unilateral 6-hydroxydopamine rat model of Parkinson's disease. Synapse 2007;61:606-14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.