644
Views
61
CrossRef citations to date
0
Altmetric
Review

Investigational agents for treatment of traumatic brain injury

, MD PhD, , MD, , MD & , PhD

Bibliography

  • Menon DK, Schwab K, Wright DW, et al. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil 2010;91(11):1637-40
  • Chauhan NB. Chronic neurodegenerative consequences of traumatic brain injury. Restor Neurol Neurosci 2014;32(2):337-65
  • Hyder AA, Wunderlich CA, Puvanachandra P, et al. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 2007;22(5):341-53
  • Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 2006;21(5):375-8
  • Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma 2010;27(8):1529-40
  • Davis AE. Mechanisms of traumatic brain injury: biomechanical, structural and cellular considerations. Crit Care Nurs Q 2000;23(3):1-13
  • Cernak I. Animal models of head trauma. NeuroRx 2005;2(3):410-22
  • Gaetz M. The neurophysiology of brain injury. Clin Neurophysiol 2004;115(1):4-18
  • Moppett IK. Traumatic brain injury: assessment, resuscitation and early management. Br J Anaesth 2007;99(1):18-31
  • Marklund N, Bakshi A, Castelbuono DJ, et al. Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr Pharm Des 2006;12(13):1645-80
  • Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 2010;31(12):596-604
  • Povlishock JT, Christman CW. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma 1995;12(4):555-64
  • Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci 2013;14(2):128-42
  • Cernak I, Noble-Haeusslein LJ. Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 2010;30(2):255-66
  • Janowitz T, Menon DK. Exploring new routes for neuroprotective drug development in traumatic brain injury. Sci Transl Med 2010;2(27):27
  • Hall ED, Traystman RJ. Role of animal studies in the design of clinical trials. Front Neurol Neurosci 2009;25:10-33
  • Chopp M, Li Y, Zhang J. Plasticity and remodeling of brain. J Neurol Sci 2008;265(1-2):97-101
  • Xiong Y, Mahmood A, Chopp M. Neurorestorative treatments for traumatic brain injury. Discov Med 2010;10(54):434-42
  • Xiong Y, Mahmood A, Chopp M. Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 2010;11(3):298-308
  • Brown JM, Deriso DM, Tansey KE. From contemporary rehabilitation to restorative neurology. Clin Neurol Neurosurg 2012;114(5):471-4
  • Algattas H, Huang JH. Traumatic brain injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int J Mol Sci 2014;15(1):309-41
  • Dewall J. The ABCs of TBI. Evidence-based guidelines for adult traumatic brain injury care. JEMS 2010;35(4):54-61. quiz 3
  • Narayan RK, Michel ME, Ansell B, et al. Clinical trials in head injury. J Neurotrauma 2002;19(5):503-57
  • Wright DW, Kellermann AL, Hertzberg VS, et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med 2007;49(4):391-402. e1-2
  • Xiao G, Wei J, Yan W, et al. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care 2008;12(2):R61
  • Peterson K, Carson S, Carney N. Hypothermia treatment for traumatic brain injury: a systematic review and meta-analysis. J Neurotrauma 2008;25(1):62-71
  • Marmarou A. Increased intracranial pressure in head injury and influence of blood volume. J Neurotrauma 1992;9(Suppl 1):S327-32
  • Wakai A, McCabe A, Roberts I, et al. Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev 2013;8:CD001049
  • Sahuquillo J, Arikan F. Decompressive craniectomy for the treatment of refractory high intracranial pressure in traumatic brain injury. Cochrane Database Syst Rev 2006;1:CD003983
  • Cooper DJ, Rosenfeld JV, Murray L, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 2011;364(16):1493-502
  • Sahuquillo J, Martinez-Ricarte F, Poca MA. Decompressive craniectomy in traumatic brain injury after the DECRA trial. Where do we stand? Curr Opin Crit Care 2013;19(2):101-6
  • Honeybul S, Ho KM, Lind CR. What can be learned from the DECRA study. World Neurosurg 2013;79(1):159-61
  • Hutchinson PJ, Corteen E, Czosnyka M, et al. Decompressive craniectomy in traumatic brain injury: the randomized multicenter RESCUEicp study. Acta Neurochir Suppl 2006;96:17-20
  • Maas AI. Neuroprotective agents in traumatic brain injury. Expert Opin Investig Drugs 2001;10(4):753-67
  • Lu J, Gary KW, Neimeier JP, et al. Randomized controlled trials in adult traumatic brain injury. Brain Inj 2012;26(13-14):1523-48
  • Maas AI, Roozenbeek B, Manley GT. Clinical trials in traumatic brain injury: past experience and current developments. Neurotherapeutics 2010;7(1):115-26
  • Kabadi SV, Faden AI. Neuroprotective strategies for traumatic brain injury: improving clinical translation. Int J Mol Sci 2014;15(1):1216-36
  • McConeghy KW, Hatton J, Hughes L, et al. A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs 2012;26(7):613-36
  • Jain KK. Neuroprotection in traumatic brain injury. Drug Discov Today 2008;13(23-24):1082-9
  • Wheaton P, Mathias JL, Vink R. Impact of pharmacological treatments on cognitive and behavioral outcome in the postacute stages of adult traumatic brain injury: a meta-analysis. J Clin Psychopharmacol 2011;31(6):745-57
  • Wheaton P, Mathias JL, Vink R. Impact of early pharmacological treatment on cognitive and behavioral outcome after traumatic brain injury in adults: a meta-analysis. J Clin Psychopharmacol 2009;29(5):468-77
  • Lei J, Gao G, Jiang J. Acute traumatic brain injury: is current management evidence based? An empirical analysis of systematic reviews. J Neurotrauma 2013;30(7):529-37
  • Doppenberg EM, Choi SC, Bullock R. Clinical trials in traumatic brain injury: lessons for the future. J Neurosurg Anesthesiol 2004;16(1):87-94
  • Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 2011;164(4):1207-29
  • Roozenbeek B, Lingsma HF, Maas AI. New considerations in the design of clinical trials for traumatic brain injury. Clin Investig (Lond) 2012;2(2):153-62
  • Stein DG. On improving human clinical trials to the level of animal ischemic stroke studies. Metab Brain Dis 2014. [Epub ahead of print]
  • Melcangi RC, Giatti S, Calabrese D, et al. Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol 2014;113:56-69
  • Stein DG. A clinical/translational perspective: can a developmental hormone play a role in the treatment of traumatic brain injury? Horm Behav 2013;63(2):291-300
  • Wei J, Xiao GM. The neuroprotective effects of progesterone on traumatic brain injury: current status and future prospects. Acta Pharmacol Sin 2013;34(12):1485-90
  • Skolnick BE, Maas AI, Narayan RK, et al. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med 2014;371(26):2467-76
  • Wright DW, Yeatts SD, Silbergleit R, et al. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 2014;371(26):2457-66
  • Berry C, Ley EJ, Tillou A, et al. The effect of gender on patients with moderate to severe head injuries. J Trauma 2009;67(5):950-3
  • Farace E, Alves WM. Do women fare worse: a metaanalysis of gender differences in traumatic brain injury outcome. J Neurosurg 2000;93(4):539-45
  • Leitgeb J, Mauritz W, Brazinova A, et al. Effects of gender on outcomes after traumatic brain injury. J Trauma 2011;71(6):1620-6
  • Hall ED, Gibson TR, Pavel KM. Lack of a gender difference in post-traumatic neurodegeneration in the mouse controlled cortical impact injury model. J Neurotrauma 2005;22(6):669-79
  • Wagner AK, Willard LA, Kline AE, et al. Evaluation of estrous cycle stage and gender on behavioral outcome after experimental traumatic brain injury. Brain Res 2004;998(1):113-21
  • Maghool F, Khaksari M, Siahposht Khachki A. Differences in brain edema and intracranial pressure following traumatic brain injury across the estrous cycle: involvement of female sex steroid hormones. Brain Res 2013;1497:61-72
  • Patel NS, Collino M, Yaqoob MM, et al. Erythropoietin in the intensive care unit: beyond treatment of anemia. Ann Intensive Care 2011;1:40
  • Ehrenreich H, Aust C, Krampe H, et al. Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Dis 2004;19(3-4):195-206
  • Peng W, Xing Z, Yang J, et al. The efficacy of erythropoietin in treating experimental traumatic brain injury: a systematic review of controlled trials in animal models. J Neurosurg 2014;121(3):653-64
  • Robertson CS, Hannay HJ, Yamal JM, et al. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA 2014;312(1):36-47
  • Mahmood A, Lu D, Qu C, et al. Treatment of traumatic brain injury in rats with erythropoietin and carbamylated erythropoietin. J Neurosurg 2007;107(2):392-7
  • Gaddam SK, Cruz J, Robertson C. Erythropoietin and cytoprotective cytokines in experimental traumatic brain injury. Methods Mol Biol 2013;982:141-62
  • Xiong Y, Mahmood A, Zhang Y, et al. Effects of posttraumatic carbamylated erythropoietin therapy on reducing lesion volume and hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome in rats following traumatic brain injury. J Neurosurg 2011;114(2):549-59
  • Robertson CS, Cherian L, Shah M, et al. Neuroprotection with an erythropoietin mimetic peptide (pHBSP) in a model of mild traumatic brain injury complicated by hemorrhagic shock. J Neurotrauma 2012;29(6):1156-66
  • van Velzen M, Heij L, Niesters M, et al. ARA 290 for treatment of small fiber neuropathy in sarcoidosis. Expert Opin Investig Drugs 2014;23(4):541-50
  • Brines M, Dunne AN, Van Velzen M, et al. ARA 290, a non-erythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol Med 2014. [Epub ahead of print]
  • Ahn EY, Shrestha A, Hoang NH, et al. Structural characterization of cyclosporin A, C and microbial bio-transformed cyclosporin A analog AM6 using HPLC-ESI-ion trap-mass spectrometry. Talanta 2014;123:89-94
  • Kawakami M. Molecular dissection of cyclosporin A’s neuroprotective effect reveals potential therapeutics for ischemic brain injury. Brain Sci 2013;3(3):1325-56
  • Scheff SW, Sullivan PG. Cyclosporin A significantly ameliorates cortical damage following experimental traumatic brain injury in rodents. J Neurotrauma 1999;16(9):783-92
  • Gajavelli S, Sinha VK, Mazzeo AT, et al. Evidence to support mitochondrial neuroprotection, in severe traumatic brain injury. J Bioenerg Biomembr 2014;47(1-2):133-48
  • Sullivan PG, Rabchevsky AG, Hicks RR, et al. Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience 2000;101(2):289-95
  • Mazzeo AT, Brophy GM, Gilman CB, et al. Safety and tolerability of cyclosporin a in severe traumatic brain injury patients: results from a prospective randomized trial. J Neurotrauma 2009;26(12):2195-206
  • Empey PE, McNamara PJ, Young B, et al. Cyclosporin A disposition following acute traumatic brain injury. J Neurotrauma 2006;23(1):109-16
  • Hatton J, Rosbolt B, Empey P, et al. Dosing and safety of cyclosporine in patients with severe brain injury. J Neurosurg 2008;109(4):699-707
  • Aminmansour B, Fard SA, Habibabadi MR, et al. The efficacy of cyclosporine-A on diffuse axonal injury after traumatic brain injury. Adv Biomed Res 2014;3:35
  • Luzi L, Pozza G. Glibenclamide: an old drug with a novel mechanism of action? Acta Diabetol 1997;34(4):239-44
  • Patel AD, Gerzanich V, Geng Z, et al. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J Neuropathol Exp Neurol 2010;69(12):1177-90
  • Kurland DB, Tosun C, Pampori A, et al. Glibenclamide for the treatment of acute CNS injury. Pharmaceuticals (Basel) 2013;6(10):1287-303
  • Zweckberger K, Hackenberg K, Jung CS, et al. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury. Neuroscience 2014;272:199-206
  • Sheth KN, Kimberly WT, Elm JJ, et al. Pilot study of intravenous glyburide in patients with a large ischemic stroke. Stroke 2014;45(1):281-3
  • Khanna A, Walcott BP, Kahle KT, et al. Effect of glibenclamide on the prevention of secondary brain injury following ischemic stroke in humans. Neurosurg Focus 2014;36(1):E11
  • Orsucci D, Calsolaro V, Mancuso M, et al. Neuroprotective effects of tetracyclines: molecular targets, animal models and human disease. CNS Neurol Disord Drug Targets 2009;8(3):222-31
  • Bye N, Habgood MD, Callaway JK, et al. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 2007;204(1):220-33
  • Homsi S, Piaggio T, Croci N, et al. Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J Neurotrauma 2010;27(5):911-21
  • Sara VR, Carlsson-Skwirut C, Bergman T, et al. Identification of Gly-Pro-Glu (GPE), the aminoterminal tripeptide of insulin-like growth factor 1 which is truncated in brain, as a novel neuroactive peptide. Biochem Biophys Res Commun 1989;165(2):766-71
  • Batchelor DC, Lin H, Wen JY, et al. Pharmacokinetics of glycine-proline-glutamate, the N-terminal tripeptide of insulin-like growth factor-1, in rats. Anal Biochem 2003;323(2):156-63
  • Wei HH, Lu XC, Shear DA, et al. NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats. J Neuroinflammation 2009;6:19
  • Aloe L, Rocco ML, Bianchi P, et al. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med 2012;10:239
  • Skaper SD. The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol Disord Drug Targets 2008;7(1):46-62
  • Alcala-Barraza SR, Lee MS, Hanson LR, et al. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug Target 2010;18(3):179-90
  • Lv Q, Lan W, Sun W, et al. Intranasal nerve growth factor attenuates tau phosphorylation in brain after traumatic brain injury in rats. J Neurol Sci 2014;345(1-2):48-55
  • Lv Q, Fan X, Xu G, et al. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Res 2013;1493:80-9
  • Tian L, Guo R, Yue X, et al. Intranasal administration of nerve growth factor ameliorate beta-amyloid deposition after traumatic brain injury in rats. Brain Res 2012;1440:47-55
  • Alali AS, McCredie VA, Golan E, et al. Beta blockers for acute traumatic brain injury: a systematic review and meta-analysis. Neurocrit Care 2014;20(3):514-23
  • Cotton BA, Snodgrass KB, Fleming SB, et al. Beta-blocker exposure is associated with improved survival after severe traumatic brain injury. J Trauma 2007;62(1):26-33. discussion 33-5
  • Ley EJ, Park R, Dagliyan G, et al. In vivo effect of propranolol dose and timing on cerebral perfusion after traumatic brain injury. J Trauma 2010;68(2):353-6
  • Patel MB, McKenna JW, Alvarez JM, et al. Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study): study protocol for a randomized controlled trial. Trials 2012;13:177
  • Lu D, Goussev A, Chen J, et al. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma 2004;21(1):21-32
  • Lu D, Qu C, Goussev A, et al. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 2007;24(7):1132-46
  • Wu H, Lu D, Jiang H, et al. Increase in phosphorylation of Akt and its downstream signaling targets and suppression of apoptosis by simvastatin after traumatic brain injury. J Neurosurg 2008;109(4):691-8
  • Wu H, Lu D, Jiang H, et al. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma 2008;25(2):130-9
  • Li B, Mahmood A, Lu D, et al. Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1beta level after traumatic brain injury. Neurosurgery 2009;65(1):179-85. discussion 85-6
  • Mahmood A, Goussev A, Kazmi H, et al. Long-term benefits after treatment of traumatic brain injury with simvastatin in rats. Neurosurgery 2009;65(1):187-91. discussion 91-2
  • Wible EF, Laskowitz DT. Statins in traumatic brain injury. Neurotherapeutics 2010;7(1):62-73
  • Jain KK. Cell therapy for CNS trauma. Mol Biotechnol 2009;42(3):367-76
  • Ho AD, Wagner W, Franke W. Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy 2008;10(4):320-30
  • Kassem M, Abdallah BM. Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases. Cell Tissue Res 2008;331(1):157-63
  • Greco SJ, Rameshwar P. Enhancing effect of IL-1alpha on neurogenesis from adult human mesenchymal stem cells: implication for inflammatory mediators in regenerative medicine. J Immunol 2007;179(5):3342-50
  • Lu D, Mahmood A, Wang L, et al. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 2001;12(3):559-63
  • Mahmood A, Lu D, Qu C, et al. Human marrow stromal cell treatment provides long-lasting benefit after traumatic brain injury in rats. Neurosurgery 2005;57(5):1026-31. discussion 1026-31
  • Lu D, Li Y, Wang L, et al. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 2001;18(8):813-19
  • Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res 2002;69(5):687-91
  • Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 2004;21(1):33-9
  • Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol 2002;1(2):92-100
  • Qu C, Mahmood A, Lu D, et al. Treatment of traumatic brain injury in mice with marrow stromal cells. Brain Res 2008;1208:234-9
  • Chen J, Chopp M. Neurorestorative treatment of stroke: cell and pharmacological approaches. NeuroRx 2006;3(4):466-73
  • Jiang Q, Qu C, Chopp M, et al. MRI evaluation of axonal reorganization after bone marrow stromal cell treatment of traumatic brain injury. NMR Biomed 2011;24(9):1119-28
  • Lu D, Mahmood A, Qu C, et al. Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery 2007;61(3):596-602. discussion -3
  • Mahmood A, Wu H, Qu C, et al. Suppression of neurocan and enhancement of axonal density in rats after treatment of traumatic brain injury with scaffolds impregnated with bone marrow stromal cells. J Neurosurg 2014;120(5):1147-55
  • Mahmood A, Wu H, Qu C, et al. Down-regulation of Nogo-A by collagen scaffolds impregnated with bone marrow stromal cell treatment after traumatic brain injury promotes axonal regeneration in rats. Brain Res 2014;1542:41-8
  • Zhang ZX, Guan LX, Zhang K, et al. A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy 2008;10(2):134-9
  • Tian C, Wang X, Wang L, et al. Autologous bone marrow mesenchymal stem cell therapy in the subacute stage of traumatic brain injury by lumbar puncture. Exp Clin Transplant 2013;11(2):176-81
  • Liao GP, Harting MT, Hetz RA, et al. Autologous bone marrow mononuclear cells reduce therapeutic intensity for severe traumatic brain injury in children. Pediatr Crit Care Med 2015. [Epub ahead of print]
  • Cox CSJr, Baumgartner JE, Harting MT, et al. Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children. Neurosurgery 2011;68(3):588-600
  • Harhangi BS, Kompanje EJ, Leebeek FW, et al. Coagulation disorders after traumatic brain injury. Acta Neurochir (Wien) 2008;150(2):165-75. discussion 75
  • Shakur H, Roberts I, Bautista R, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010;376(9734):23-32
  • Guerriero C, Cairns J, Perel P, et al. Cost-effectiveness analysis of administering tranexamic acid to bleeding trauma patients using evidence from the CRASH-2 trial. PLoS One 2011;6(5):e18987
  • Zehtabchi S, Abdel Baki SG, Falzon L, et al. Tranexamic acid for traumatic brain injury: a systematic review and meta-analysis. Am J Emerg Med 2014;32(12):1503-9
  • Roberts I, Shakur H, Coats T, et al. The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol Assess 2013;17(10):1-79
  • Yutthakasemsunt S, Kittiwatanagul W, Piyavechvirat P, et al. Tranexamic acid for patients with traumatic brain injury: a randomized, double-blinded, placebo-controlled trial. BMC Emerg Med 2013;13:20
  • Effect of tranexamic acid in traumatic brain injury: a nested randomised, placebo controlled trial (CRASH-2 Intracranial Bleeding Study). BMJ 2011;343:d3795
  • Dewan Y, Komolafe EO, Mejia-Mantilla JH, et al. CRASH-3 - tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. Trials 2012;13:87
  • Chen S, Wu H, Klebe D, et al. Valproic acid: a new candidate of therapeutic application for the acute central nervous system injuries. Neurochem Res 2014;39(9):1621-33
  • Dash PK, Orsi SA, Zhang M, et al. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS One 2010;5(6):e11383
  • Tai YT, Lee WY, Lee FP, et al. Low dose of valproate improves motor function after traumatic brain injury. Biomed Res Int 2014;2014:980657
  • Temkin NR, Dikmen SS, Anderson GD, et al. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg 1999;91(4):593-600
  • Dikmen SS, Machamer JE, Winn HR, et al. Neuropsychological effects of valproate in traumatic brain injury: a randomized trial. Neurology 2000;54(4):895-902
  • Wheaton P, Mathias JL, Vink R. Impact of pharmacological treatments on outcome in adult rodents after traumatic brain injury: a meta-analysis. J Psychopharmacol 2011;25(12):1581-99
  • Goldstein AL, Hannappel E, Kleinman HK. Thymosin beta4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med 2005;11(9):421-9
  • Low TL, Goldstein AL. Thymosins: structure, function and therapeutic applications. Thymus 1984;6(1-2):27-42
  • Crockford D. Development of thymosin beta4 for treatment of patients with ischemic heart disease. Ann N Y Acad Sci 2007;1112:385-95
  • Morris DC, Chopp M, Zhang L, et al. Thymosin beta4: a candidate for treatment of stroke? Ann N Y Acad Sci 2010;1194:112-17
  • Smart N, Risebro CA, Melville AA, et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 2007;445(7124):177-82
  • Ruff D, Crockford D, Girardi G, et al. A randomized, placebo-controlled, single and multiple dose study of intravenous thymosin beta4 in healthy volunteers. Ann N Y Acad Sci 2010;1194:223-9
  • Sun W, Kim H. Neurotrophic roles of the beta-thymosins in the development and regeneration of the nervous system. Ann N Y Acad Sci 2007;1112:210-18
  • Xiong Y, Mahmood A, Meng Y, et al. Treatment of traumatic brain injury with thymosin beta(4) in rats. J Neurosurg 2011;114(1):102-15
  • Stoorvogel W, Kleijmeer MJ, Geuze HJ, et al. The biogenesis and functions of exosomes. Traffic 2002;3(5):321-30
  • Record M, Carayon K, Poirot M, et al. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 2014;1841(1):108-20
  • Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010;73(10):1907-20
  • Wahlgren J, De LKT, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 2012;40(17):e130
  • van der Pol E, Boing AN, Harrison P, et al. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012;64(3):676-705
  • Lai RC, Yeo RW, Tan KH, et al. Exosomes for drug delivery - a novel application for the mesenchymal stem cell. Biotechnol Adv 2013;31(5):543-51
  • Zhang Y, Chopp M, Meng Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 2015. [Epub ahead of print]
  • Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 2012;11(8):633-52
  • Jones NC, Prior MJ, Burden-Teh E, et al. Antagonism of the interleukin-1 receptor following traumatic brain injury in the mouse reduces the number of nitric oxide synthase-2-positive cells and improves anatomical and functional outcomes. Eur J Neurosci 2005;22(1):72-8
  • Girard S, Sebire H, Brochu ME, et al. Postnatal administration of IL-1Ra exerts neuroprotective effects following perinatal inflammation and/or hypoxic-ischemic injuries. Brain Behav Immun 2012;26(8):1331-9
  • Greenhalgh AD, Galea J, Denes A, et al. Rapid brain penetration of interleukin-1 receptor antagonist in rat cerebral ischaemia: pharmacokinetics, distribution, protection. Br J Pharmacol 2010;160(1):153-9
  • Clark SR, McMahon CJ, Gueorguieva I, et al. Interleukin-1 receptor antagonist penetrates human brain at experimentally therapeutic concentrations. J Cereb Blood Flow Metab 2008;28(2):387-94
  • Helmy A, Guilfoyle MR, Carpenter KL, et al. Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J Cereb Blood Flow Metab 2014;34(5):845-51
  • Adibhatla RM, Hatcher JF. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies. CNS Neurol Disord Drug Targets 2008;7(3):243-53
  • Yoshida S, Shiosaka S. Plasticity-related serine proteases in the brain (review). Int J Mol Med 1999;3(4):405-9
  • Pang PT, Teng HK, Zaitsev E, et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 2004;306(5695):487-91
  • Meng Y, Chopp M, Zhang Y, et al. Subacute intranasal administration of tissue plasminogen activator promotes neuroplasticity and improves functional recovery following traumatic brain injury in rats. PLoS One 2014;9(9):e106238
  • Stein SC, Ganguly K, Belfield CM, et al. Erythrocyte-bound tissue plasminogen activator is neuroprotective in experimental traumatic brain injury. J Neurotrauma 2009;26(9):1585-92
  • Armstead WM, Riley J, Yarovoi S, et al. tPA-S481A prevents neurotoxicity of endogenous tPA in traumatic brain injury. J Neurotrauma 2012;29(9):1794-802
  • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011;12(12):861-74
  • Lei P, Li Y, Chen X, et al. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res 2009;1284:191-201
  • Redell JB, Moore AN, Ward NHIII, et al. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma 2010;27(12):2147-56
  • Truettner JS, Alonso OF, Bramlett HM, et al. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J Cereb Blood Flow Metab 2011;31(9):1897-907
  • Bao TH, Miao W, Han JH, et al. Spontaneous running wheel improves cognitive functions of mouse associated with miRNA expressional alteration in hippocampus following traumatic brain injury. J Mol Neurosci 2014;54(4):622-9
  • Sandhir R, Gregory E, Berman NE. Differential response of miRNA-21 and its targets after traumatic brain injury in aging mice. Neurochem Int 2014;78:117-21
  • Ge XT, Lei P, Wang HC, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 2014;4:6718
  • Gold EM, Su D, Lopez-Velazquez L, et al. Functional assessment of long-term deficits in rodent models of traumatic brain injury. Regen Med 2013;8(4):483-516
  • Peterson TC, Hoane MR, McConomy K, et al. A combination therapy of nicotinamide and progesterone improves functional recovery following traumatic brain injury. J Neurotrauma 2014. [Epub ahead of print]
  • Margulies S, Hicks R. Combination therapies for traumatic brain injury: prospective considerations. J Neurotrauma 2009;26(6):925-39
  • Benner EJ, Luciano D, Jo R, et al. Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature 2013;497(7449):369-73
  • Liu Z, Xin H, Chopp M. Reactive astrocytes promote axonal remodeling and neurological recovery after stroke. Neural Regen Res 2014;9(21):1874-5
  • Liu Z, Li Y, Cui Y, et al. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 2014;62(12):2022-33
  • Gibson CL, Gray LJ, Bath PM, et al. Progesterone for the treatment of experimental brain injury; a systematic review. Brain 2008;131(Pt 2):318-28
  • Sarkaki AR, Khaksari Haddad M, Soltani Z, et al. Time- and dose-dependent neuroprotective effects of sex steroid hormones on inflammatory cytokines after a traumatic brain injury. J Neurotrauma 2013;30(1):47-54
  • Shahrokhi N, Khaksari M, Soltani Z, et al. Effect of sex steroid hormones on brain edema, intracranial pressure, and neurologic outcomes after traumatic brain injury. Can J Physiol Pharmacol 2010;88(4):414-21
  • Stein DG. Is progesterone a worthy candidate as a novel therapy for traumatic brain injury? Dialogues Clin Neurosci 2011;13(3):352-9
  • Sayeed I, Stein DG. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. Prog Brain Res 2009;175:219-37
  • Mannix R, Berglass J, Berkner J, et al. Sex differences in the effect of progesterone after controlled cortical impact in adolescent mice: a preliminary study. J Neurosurg 2014;121(6):1337-41
  • Gilmer LK, Roberts KN, Scheff SW. Efficacy of progesterone following a moderate unilateral cortical contusion injury. J Neurotrauma 2008;25(6):593-602

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.