885
Views
27
CrossRef citations to date
0
Altmetric
Review

Early investigational drugs targeting tau protein for the treatment of Alzheimer’s disease

, MD & , MD FAAN

Bibliography

  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010;362(4):329–44
  • Berk C, Paul G, Sabbagh M. Investigational drugs in Alzheimer’s disease: current progress. Expert Opin Investig Drugs 2014;23(6):837–46
  • Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 1986;83(13):4913–17
  • Williams DR. Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Intern Med J 2006;36(10):652–60
  • Boutajangout A, Wisniewski T. Tau-based therapeutic approaches for Alzheimer’s disease - a mini-review. Gerontology 2014;60(5):381–5
  • Giacobini E, Gold G. Alzheimer disease therapy--moving from amyloid-β to tau. Nat Rev Neurol 2013;9(12):677–86
  • Kontsekova E, Zilka N, Kovacech B, et al. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther 2014;6(4):44
  • Theunis C, Crespo-Biel N, Gafner V, et al. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PLoS One 2013;8(8):e72301
  • Bristol-Myers Squibb. A randomized, double-blind, placebo-controlled, single ascending dose study of intravenously administered BMS-986168 in healthy Subjects. In: ClinicalTrials.gov [Internet] National Library of Medicine (US). Bethesda, MD. 2000. Available from: https://clinicaltrials.gov/ct2/show/NCT02294851 NLM Identifier: NCT02294851 [Last accessed 18 May 2015]
  • Bright J, Hussain S, Dang V, et al. Human secreted tau increases amyloid-beta production. Neurobiol Aging 2015;36(2):693–709
  • Troquier L, Caillierez R, Burnouf S, et al. Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res 2012;9(4):397–405
  • Collin L, Bohrmann B, Göpfert U, et al. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain 2014;137(Pt 10):2834–46
  • Oz S, Kapitansky O, Ivashco-Pachima Y, et al. The NAP motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through microtubule end binding proteins. Mol Psychiatry 2014;19:1115–24
  • Gozes I. NAP (davunetide) provides functional and structural neuroprotection. Curr Pharm Des 2011;17(10):1040–4
  • Gozes I, Schirer Y, Idan-Feldman A, et al. NAP alpha-aminoisobutyric acid (IsoNAP). J Mol Neurosci 2014;52(1):1–9
  • Boxer AL, Lang AE, Grossman M, et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 2014;13:676–85
  • Gozes I, Iram T, Maryanovsky E, et al. Novel tubulin and tau neuroprotective fragments sharing structural similarities with the drug candidate NAP (Davuentide). J Alzheimers Dis 2014;40(Suppl 1):S23–36
  • Gozes I. The cytoskeleton as a drug target for neuroprotection: the case of the autism- mutated ADNP. Biol Chem 2015. [Epub ahead of print]
  • Brunden KR, Zhang B, Carroll J, et al. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 2010;30(41):13861–6
  • Zhang B, Carroll J, Trojanowski JQ, et al. The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 2012;32(11):3601–11
  • Bristol-Myers Squibb. Study to Evaluate the Safety, Tolerability and the Effect of BMS-241027 on Cerebrospinal Fluid Biomarkers in Subjects With Mild Alzheimer’s Disease. In: ClinicalTrials.gov. Internet National Library of Medicine (US), Bethesda, MD;2000. Available from: https://www.clinicaltrials.gov/ct/show/NCT01492374 Identifier: NCT01492374 [Last accessed 23 May 2015]
  • Cortice biosciences announces results from studies evaluating pipeline candidates TPI 287 and CRT 001 in preclinical models of tauopathies and Alzheimer’s disease. 2014. Available from: http://globenewswire.com/news-release/2014/11/12/682514/10107850/en/Cortice-Biosciences-Announces-Results-From-Studies-Evaluating-Pipeline-Candidates-TPI-287-and-CRT-001-in-Preclinical-Models-of-Tauopathies-and-Alzheimer-s-Disease.html [Last accessed 23 May 2015]
  • Wischik CM, Harrington CR, Storey JMD. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol 2014;88(4):529–39
  • Wischik CM, Staff RT, Wischik DJ, et al. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J Alzheimers Dis 2015;44(2):705–20
  • Del Ser T, Steinwachs KC, Gertz HJ, et al. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimers Dis 2013;33(1):205–15
  • Lovestone S, Boada M, Dubois B, et al. A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimers Dis 2015;45(1):75–88
  • Forlenza OV, Diniz BS, Radanovic M, et al. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry 2011;198(5):351–6
  • Forlenza OV, Coutinho AMN, Aprahamian I, et al. Long-Term Lithium treatment reduces glucose metabolism in the cerebellum and hippocampus of nondemented older adults: an [(18)F]FDG-PET study. ACS Chem Neurosci 2014;5(6):484–9
  • Forlenza OV, de Paula VJ, Machado-Vieira R, et al. Does lithium prevent Alzheimer’s disease? Drugs Aging 2012;29(5):335–42
  • Forlenza OV, De-Paula VJR, Diniz BSO. Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem Neurosci 2014;5(6):443–50
  • Hu JP, Xie JW, Wang CY, et al. Valproate reduces tau phosphorylation via cyclin-dependent kinase 5 and glycogen synthase kinase 3 signaling pathways. Brain Res Bull 2011;85(3-4):194–200
  • Tariot PN, Schneider LS, Cummings J, et al. Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease. Arch Gen Psychiatry 2011;68(8):853–61
  • Fleisher AS, Truran D, Mai JT, et al. Chronic divalproex sodium use and brain atrophy in Alzheimer disease. Neurology 2011;77(13):1263–71
  • Peng Y, Hu Y, Xu S, et al. L-3-n-butylphthalide reduces tau phosphorylation and improves cognitive deficits in AβPP/PS1-Alzheimer’s transgenic mice. J Alzheimers Dis 2012;29(2):379–91
  • Onishi T, Iwashita H, Uno Y, et al. A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease. J Neurochem 2011;119(6):1330–40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.