284
Views
3
CrossRef citations to date
0
Altmetric
Review

Current Phase II drugs under investigation for the treatment of limb ischemia

, MD PhD EBIR, , MD PhD, , MD MSc PhD EBIR & , MD PhD EBIR

References

  • Norgren L, Hiatt WR, Dormandy JA, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 2007;45(Suppl S):S5-67
  • Adam DJ, Beard JD, Cleveland T, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 2005;366(9501):1925–34
  • Sanz-Nogues C, O’Brien T. MSCs isolated from patients with ischemic vascular disease have normal angiogenic potential. Mol Ther 2014;22(11):1888–9
  • Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA Guidelines for the Management of Patients with Peripheral Arterial Disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Associations for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (writing committee to develop guidelines for the management of patients with peripheral arterial disease)--summary of recommendations. J Vasc Interv Radiol 2006;17(9):1383–97; quiz 1398
  • Karnabatidis D, Spiliopoulos S, Katsanos K, et al. Below-the-knee drug-eluting stents and drug-coated balloons. Expert Rev Med Devices 2012;9(1):85–94
  • Yazdani SK, Pacheco E, Nakano M, et al. Vascular, downstream, and pharmacokinetic responses to treatment with a low dose drug-coated balloon in a swine femoral artery model. Catheter Cardiovasc Interv 2014;83(1):132–40
  • Katsanos K, Spiliopoulos S, Karunanithy N, et al. Bayesian network meta-analysis of nitinol stents, covered stents, drug-eluting stents, and drug-coated balloons in the femoropopliteal artery. J Vasc Surg 2014;59(4):1123–1133 e8
  • Zeller T, Baumgartner I, Scheinert D, et al. Drug-eluting balloon versus standard balloon angioplasty for infrapopliteal arterial revascularization in critical limb ischemia: 12-month results from the IN.PACT DEEP randomized trial. J Am Coll Cardiol 2014;64(15):1568–76
  • Liistro F, Porto I, Angioli P, et al. Drug-eluting balloon in peripheral intervention for below the knee angioplasty evaluation (DEBATE-BTK): a randomized trial in diabetic patients with critical limb ischemia. Circulation 2013;128(6):615–21
  • Fanelli F, Cannavale A, Corona M, et al. The "DEBELLUM"--lower limb multilevel treatment with drug eluting balloon--randomized trial: 1-year results. J Cardiovasc Surg (Torino) 2014;55(2):207–16
  • Ruef J, Störger H, Schwarz F, Haase J. Comparison of a polymer-free rapamycin-eluting stent (YUKON) with a polymer-based paclitaxel-eluting stent (TAXUS) in real-world coronary artery lesions. Catheter Cardiovasc Interv 2008;71(3):333–9
  • Scheinert D, Katsanos K, Zeller T, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in patients with ischemic peripheral arterial disease: 1-year results from the ACHILLES trial. J Am Coll Cardiol 2012;60(22):2290–5
  • Bosiers M, Scheinert D, Peeters P, et al. Randomized comparison of everolimus-eluting versus bare-metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. J Vasc Surg 2012;55(2):390–8
  • Karnabatidis D, Spiliopoulos S, Diamantopoulos A, et al. Primary everolimus-eluting stenting versus balloon angioplasty with bailout bare metal stenting of long infrapopliteal lesions for treatment of critical limb ischemia. J Endovasc Ther 2011;18(1):1–12
  • Spiliopoulos S. Antiplatelet therapy in critical limb ischemia: update on clopidogrel and cilostazol. J Cardiovasc Surg (Torino) 2014;55(5):631–40
  • Spiliopoulos S, Pastromas G, Katsanos K, et al. Platelet responsiveness to clopidogrel treatment after peripheral endovascular procedures: the PRECLOP study: clinical impact and optimal cutoff value of on-treatment high platelet reactivity. J Am Coll Cardiol 2013;61(24):2428–34
  • Tantry US, Bonello L, Aradi D, et al. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J Am Coll Cardiol 2013;62(24):2261–73
  • Spiliopoulos S, et al. Initial experience with ticagrelor in patients with critical limb ischemia and high on-clopidogrel platelet reactivity undergoing complex peripheral endovascular procedures. Cardiovasc Intervent Radiol 2014;37(6):1450–7
  • Okamoto E, Katsanos K, Pastromas G, et al. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation 2001;104(18):2228–35
  • Wilcox JN, Okamoto EI, Nakahara KI, et al. Perivascular responses after angioplasty which may contribute to postangioplasty restenosis: a role for circulating myofibroblast precursors? Ann N Y Acad Sci 2001;947:68–90; discussion 90-2
  • Owens CD, Gasper WJ, Walker JP, et al. Safety and feasibility of adjunctive dexamethasone infusion into the adventitia of the femoropopliteal artery following endovascular revascularization. J Vasc Surg 2014;59(4):1016–24
  • Weck M, Slesaczeck T, Rietzsch H, et al. Noninvasive management of the diabetic foot with critical limb ischemia: current options and future perspectives. Ther Adv Endocrinol Metab 2011;2(6):247–55
  • Weck M, Rietzsch H, Lawall H, et al. Intermittent intravenous urokinase for critical limb ischemia in diabetic foot ulceration. Thromb Haemost 2008;100(3):475–82
  • Yen HT, Hsieh MJ, Wu CC, Lee FY. Effect of systemic urokinase infusion after lower limb percutaneous transluminal angioplasty on limb salvage rate in patients with late-stage critical limb ischemia. Eur J Vasc Endovasc Surg 2014;48(4):414–22
  • Katsanos K, Karnabatidis D, Diamantopoulos A, et al. Thrombin promotes arteriogenesis and hemodynamic recovery in a rabbit hindlimb ischemia model. J Vasc Surg 2009;49(4):1000–12
  • Belch J, Hiatt WR, Baumgartner I, et al. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 2011;377(9781):1929–37
  • Mac Gabhann F, Ji JW, Popel AS. Multi-scale computational models of pro-angiogenic treatments in peripheral arterial disease. Ann Biomed Eng 2007;35(6):982–94
  • Morishita R, Ji JW, Popel AS, et al. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension 1999;33(6):1379–84
  • Powell RJ, Simons M, Mendelsohn FO, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 2008;118(1):58–65
  • Powell RJ, Goodney P, Mendelsohn FO, et al. Safety and efficacy of patient specific intramuscular injection of HGF plasmid gene therapy on limb perfusion and wound healing in patients with ischemic lower extremity ulceration: results of the HGF-0205 trial. J Vasc Surg 2010;52(6):1525–30
  • Teraa M, Sprengers RW, Leiner T, Verhaar MC. Re: Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant 2012;21(8):1803–4
  • Makinen K, Manninen H, Hedman M, et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol Ther 2002;6(1):127–33
  • Rajagopalan S, Mohler ERIII, Lederman RJ, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 2003;108(16):1933–8
  • Sarkar K, Fox-Talbot K, Steenbergen C, et al. Adenoviral transfer of HIF-1alpha enhances vascular responses to critical limb ischemia in diabetic mice. Proc Natl Acad Sci USA 2009;106(44):18769–74
  • Vincent KA, Shyu KG, Luo Y, et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1alpha/VP16 hybrid transcription factor. Circulation 2000;102(18):2255–61
  • Creager MA, Shyu KG, Luo Y, et al. Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation 2011;124(16):1765–73
  • Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 2004;109(20):2454–61
  • Kibbe MR. Abstract 19419: A Phase IIa Randomized Double-Blind, Placebo Controlled Study to Evaluate Plasmid Stromal Cell-Derived Factor-1 for Treatment of Critical Limb Ischemia - The STOP-CLI Trial. Circulation 2014;130(Suppl 2):A19419
  • Kumagai M, Marui A, Tabata Y, et al. Safety and efficacy of sustained release of basic fibroblast growth factor using gelatin hydrogel in patients with critical limb ischemia. Heart Vessels 2015; Epub ahead of print
  • Asahara T, Kawamoto A, Masuda H. Concise review: Circulating endothelial progenitor cells for vascular medicine. Stem Cells 2011;29(11):1650–5
  • Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999;85(3):221–8
  • Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 2000;87(9):728–30
  • Teraa M, Sprengers RW, Westerweel PE, et al. Bone marrow alterations and lower endothelial progenitor cell numbers in critical limb ischemia patients. PLoS ONE 2013;8(1):e55592
  • Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 2001;103(6):897–903
  • Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002;360(9331):427–35
  • Cuende N, Rico L, Herrera C. Concise review: bone marrow mononuclear cells for the treatment of ischemic syndromes: medicinal product or cell transplantation? Stem Cells Transl Med 2012;1(5):403–8
  • Walter DH, Krankenberg H, Balzer JO, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv 2011;4(1):26–37
  • Benoit E, O’Donnell TFJr, Iafrati MD, et al. The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. J Transl Med 2011;9:165
  • Losordo DW, et al. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv 2012;5(6):821–30
  • Li M, Kibbe MR, Mendelsohn F, et al. Autologous bone marrow mononuclear cells transplant in patients with critical leg ischemia: preliminary clinical results. Exp Clin Transplant 2013;11(5):435–9
  • Teraa M, Sprengers RW, Schutgens RE, et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation 2015;131(10):851–60
  • Caplan AI. Molecular and cellular differentiation of muscle, cartilage, and bone in the developing limb. Prog Clin Biol Res 1986;217B:307–18
  • Piersma A.H, et al. Characterization of fibroblastic stromal cells from murine bone marrow. Exp Hematol 1985;13(4):237–43
  • Zvaifler NJ, Brockbank KG, Ploemacher RE, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2000;2(6):477–88
  • Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13(12):4279–95
  • De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001;44(8):1928–42
  • Barlow S, Brooke G, Chatterjee K, et al. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 2008;17(6):1095–107
  • Ponte AL, Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 2007;25(7):1737–45
  • Ringe J, Strassburg S, Neumann K, et al. Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem 2007;101(1):135–46
  • Gupta PK, Chullikana A, Parakh R, et al. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med 2013;11:143
  • Lu D, Chen B, Liang Z, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 2011;92(1):26–36
  • Ko SH, Bandyk DF. Therapeutic angiogenesis for critical limb ischemia. Semin Vasc Surg 2014;27(1):23–31
  • van Overhagen H, Spiliopoulos S, Tsetis D. Below-the-knee interventions. Cardiovasc Intervent Radiol 2013;36(2):302–11
  • Tu C, Das S, Baker AB, et al. Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia. ACS Nano 2015;9(4):3436–52
  • Powell RJ, Marston WA, Berceli SA, et al. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther 2012;20(6):1280–6
  • Kassimis G, Spiliopoulos S, Katsanos K, et al. Bioresorbable scaffolds in peripheral arterial disease. Expert Rev Cardiovasc Ther 2014;12(4):443–50
  • Kitrou PM, Spiliopoulos S, Katsanos K, et al. Venous drug-eluting vs. bare-metal stenting: an experimental animal study using frequency domain optical coherence tomography. Hellenic J Cardiol 2014;55(5):386–92
  • Karnabatidis D, Katsanos K, Paraskevopoulos I, et al. Frequency-domain intravascular optical coherence tomography of the femoropopliteal artery. Cardiovasc Intervent Radiol 2011;34(6):1172–81
  • Srinivasan VJ, Jiang JY, Yaseen MA, et al. Rapid volumetric angiography of cortical microvasculature with optical coherence tomography. Opt Lett 2010;35(1):43–5
  • Wright KL, Seiberlich N, Jesberger JA, et al. Simultaneous magnetic resonance angiography and perfusion (MRAP) measurement: initial application in lower extremity skeletal muscle. J Magn Reson Imaging 2013;38(5):1237–44

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.