1,231
Views
24
CrossRef citations to date
0
Altmetric
Review

The potential role of immunotherapy to treat colorectal cancer

&

Bibliography

  • Lee WS, Yun SH, Chun HK, et al. Pulmonary resection for metastases from colorectal cancer: prognostic factors and survival. Int J Colorectal Dis 2007;22:699-704
  • Choti MA, Sitzmann JV, Tiburi MF, et al. Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg 2002;235:759-66
  • Kanas GP, Taylor A, Primrose JN, et al. Survival after liver resection in metastatic colorectal cancer: review and meta-analysis of prognostic factors. Clin Epidemiol 2012;4:283-301
  • Van CE, Nordlinger B, Adam R, et al. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer 2006;42:2212-21
  • Javed MA, Sheel AR, Sheikh AA, et al. Size of metastatic deposits affects prognosis in patients undergoing pulmonary metastectomy for colorectal cancer. Ann R Coll Surg Engl 2014;96:32-6
  • Andre T, Tournigand C, Achille E, et al. [Adjuvant treatment of colon cancer MOSAIC study’s main results]. Bull Cancer 2006;93(Suppl 1):S5-9
  • Cassidy J, Tabernero J, Twelves C, et al. XELOX (capecitabine plus oxaliplatin): active first-line therapy for patients with metastatic colorectal cancer. J Clin Oncol 2004;22:2084-91
  • Tournigand C, Andre T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 2004;22:229-37
  • Marshall J. The role of bevacizumab as first-line therapy for colon cancer. Semin Oncol 2005;32:S43-7
  • Grothey A, Flick ED, Cohn AL, et al. Bevacizumab exposure beyond first disease progression in patients with metastatic colorectal cancer: analyses of the ARIES observational cohort study. Pharmacoepidemiol Drug Saf 2014;23(7):726-34
  • Van CE, Tabernero J, Lakomy R, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012;30:3499-506
  • Price TJ, Peeters M, Kim TW, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol 2014;15:569-79
  • Van CE, Kohne CH, Lang I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 2011;29:2011-19
  • Engstrom PF. Systemic therapy for advanced or metastatic colorectal cancer: national Comprehensive Cancer Network guidelines for combining anti-vascular endothelial growth factor and anti-epidermal growth factor receptor monoclonal antibodies with chemotherapy. Pharmacotherapy 2008;28:18S-22S
  • Grothey A, Galanis E. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol 2009;6:507-18
  • Grothey A, Flick ED, Cohn AL, et al. Bevacizumab exposure beyond first disease progression in patients with metastatic colorectal cancer: analyses of the ARIES observational cohort study. Pharmacoepidemiol Drug Saf 2014;23(7):726-34
  • Hurwitz HI, Yi J, Ince W, et al. The clinical benefit of bevacizumab in metastatic colorectal cancer is independent of K-ras mutation status: analysis of a phase III study of bevacizumab with chemotherapy in previously untreated metastatic colorectal cancer. Oncologist 2009;14:22-8
  • Hurwitz HI, Tebbutt NC, Kabbinavar F, et al. Efficacy and safety of bevacizumab in metastatic colorectal cancer: pooled analysis from seven randomized controlled trials. Oncologist 2013;18:1004-12
  • Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008;8:592-603
  • Medzhitov R, Janeway CJr. Innate immunity. N Engl J Med 2000;343:338-44
  • Delves PJ, Roitt IM. The immune system. Second of two parts. N Engl J Med 2000;343:108-17
  • Fooksman DR. Organizing MHC Class II presentation. Front Immunol 2014;5:158
  • Nossal GJ. Current concepts: immunology. The basic components of the immune system. N Engl J Med 1987;316:1320-5
  • Searle PF, Young LS. Immunotherapy II: antigens, receptors and costimulation. Cancer Metastasis Rev 1996;15:329-49
  • Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007;117:1175-83
  • Podack ER. Functional significance of two cytolytic pathways of cytotoxic T lymphocytes. J Leukoc Biol 1995;57:548-52
  • Suzuki H, Chikazawa N, Tasaka T, et al. Intratumoral CD8(+) T/FOXP3 (+) cell ratio is a predictive marker for survival in patients with colorectal cancer. Cancer Immunol Immunother 2010;59:653-61
  • Mills KH. Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 2004;4:841-55
  • O’Garra A, Vieira P. Regulatory T cells and mechanisms of immune system control. Nat Med 2004;10:801-5
  • Biassoni R. Human natural killer receptors, co-receptors, and their ligands. Curr Protoc Immunol 2009;Chapter 14:Unit14.10
  • Orange JS, Fassett MS, Koopman LA, et al. Viral evasion of natural killer cells. Nat Immunol 2002;3:1006-12
  • Lane P. Development of B-cell memory and effector function. Curr Opin Immunol 1996;8:331-5
  • Avalos AM, Ploegh HL. Early BCR events and antigen capture, processing, and loading on MHC Class II on B cells. Front Immunol 2014;5:92
  • Tangye SG, Avery DT, Deenick EK, Hodgkin PD. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J Immunol 2003;170:686-94
  • Grizzi F, Bianchi P, Malesci A, Laghi L. Prognostic value of innate and adaptive immunity in colorectal cancer. World J Gastroenterol 2013;19:174-84
  • Mellman I. Dendritic cells: master regulators of the immune response. Cancer Immunol Res 2013;1:145-9
  • Fang H, Ang B, Xu X, et al. TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells. Cell Mol Immunol 2014;11:150-9
  • Liu K, Nussenzweig MC. Origin and development of dendritic cells. Immunol Rev 2010;234:45-54
  • Nagorsen D, Voigt S, Berg E, et al. Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med 2007;5:62
  • Ohnishi K, Komohara Y, Saito Y, et al. CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma. Cancer Sci 2013;104:1237-44
  • Goedegebuure P, Mitchem JB, Porembka MR, et al. Myeloid-derived suppressor cells: general characteristics and relevance to clinical management of pancreatic cancer. Curr Cancer Drug Targets 2011;11:734-51
  • Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009;182:4499-506
  • Ichikawa M, Williams R, Wang L, et al. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 2011;9:133-48
  • Hadden JW. Immunodeficiency and cancer: prospects for correction. Int Immunopharmacol 2003;3:1061-71
  • Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003;348:203-13
  • Pages F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005;353:2654-66
  • Vanhara P, Soucek K. Mutual cytokine crosstalk between colon cancer cells and microenvironment initiates development of distant metastases. JAKSTAT 2013;2:e23810
  • Wu D, Wu P, Huang Q, et al. Interleukin-17: a promoter in colorectal cancer progression. Clin Dev Immunol 2013;2013:436307
  • Shi Y, Lin H, Cui J, et al. The role of interleukin-17A in colorectal tumorigenesis. Cancer Biother Radiopharm 2013;28:429-32
  • Waldner MJ, Foersch S, Neurath MF. Interleukin-6 – a key regulator of colorectal cancer development. Int J Biol Sci 2012;8:1248-53
  • Sun J, Chen LJ, Zhang GB, et al. Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma. Cancer Immunol Immunother 2010;59:1163-71
  • Orsini G, Legitimo A, Failli A, et al. Defective generation and maturation of dendritic cells from monocytes in colorectal cancer patients during the course of disease. Int J Mol Sci 2013;14:22022-41
  • Pancione M, Giordano G, Remo A, et al. Immune escape mechanisms in colorectal cancer pathogenesis and liver metastasis. J Immunol Res 2014;2014:686879
  • Grimm M, Gasser M, Bueter M, et al. Evaluation of immunological escape mechanisms in a mouse model of colorectal liver metastases. BMC Cancer 2010;10:82
  • Whiteside TL. Tumor-induced death of immune cells: its mechanisms and consequences. Semin Cancer Biol 2002;12:43-50
  • DuPage M, Mazumdar C, Schmidt LM, et al. Expression of tumour-specific antigens underlies cancer immunoediting. Nature 2012;482:405-9
  • Mocellin S, Rossi CR, Lise M, Nitti D. Colorectal cancer vaccines: principles, results, and perspectives. Gastroenterology 2004;127:1821-37
  • Frey AB, Monu N. Signaling defects in anti-tumor T cells. Immunol Rev 2008;222:192-205
  • Vesely MD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci 2013;1284:1-5
  • Koido S, Ohkusa T, Homma S, et al. Immunotherapy for colorectal cancer. World J Gastroenterol 2013;19:8531-42
  • Cohen HV, Quek SY. The molecular biology of cancer. Part 2 – Why cancers can outsmart our immune systems!. J N J Dent Assoc 2011;82:34-6
  • Dudek NL, Perlmutter P, Aguilar MI, et al. Epitope discovery and their use in peptide based vaccines. Curr Pharm Des 2010;16:3149-57
  • Phan GQ, Wang E, Marincola FM. T-cell-directed cancer vaccines: mechanisms of immune escape and immune tolerance. Expert Opin Biol Ther 2001;1:511-23
  • Izumoto S. Peptide vaccine. Adv Exp Med Biol 2012;746:166-77
  • Goydos JS, Elder E, Whiteside TL, et al. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J Surg Res 1996;63:298-304
  • Sasatomi T, Suefuji Y, Matsunaga K, et al. Expression of tumor rejection antigens in colorectal carcinomas. Cancer 2002;94:1636-41
  • Bilusic M, Heery CR, Arlen PM, et al. Phase I trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunol Immunother 2014;63:225-34
  • Morse MA, Niedzwiecki D, Marshall JL, et al. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg 2013;258:879-86
  • Turriziani M, Fantini M, Benvenuto M, et al. Carcinoembryonic antigen (CEA)-based cancer vaccines: recent patents and antitumor effects from experimental models to clinical trials. Recent Pat Anticancer Drug Discov 2012;7:265-96
  • Staff C, Magnusson CG, Hojjat-Farsangi M, et al. Induction of IgM, IgA and IgE antibodies in colorectal cancer patients vaccinated with a recombinant CEA protein. J Clin Immunol 2012;32:855-65
  • Okuno K, Sugiura F, Itoh K, et al. Recent advances in active specific cancer vaccine treatment for colorectal cancer. Curr Pharm Biotechnol 2012;13:1439-45
  • Lesterhuis WJ, de Vries I, Schreibelt G, et al. Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res 2010;30:5091-7
  • Ojima T, Iwahashi M, Nakamura M, et al. Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)-expressing colon cancer using genetically modified dendritic cells that express CEA and T helper-type 1 cytokines in CEA transgenic mice. Int J Cancer 2007;120:585-93
  • Lesterhuis WJ, de Vries I, Schreibelt G, et al. Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol 2006;17:974-80
  • Miyagi Y, Imai N, Sasatomi T, et al. Induction of cellular immune responses to tumor cells and peptides in colorectal cancer patients by vaccination with SART3 peptides. Clin Cancer Res 2001;7:3950-62
  • Ito M, Shichijo S, Miyagi Y, et al. Identification of SART3-derived peptides capable of inducing HLA-A2-restricted and tumor-specific CTLs in cancer patients with different HLA-A2 subtypes. Int J Cancer 2000;88:633-9
  • Jiang C, Jiang Y, Huang Z, et al. Evaluation of the immunogenicity of a single chain chimeric peptide composed of hCGbeta and oLHalpha for inhibition of the growth of hCGbeta-expressing cancer cells. Cancer Immunol Immunother 2010;59:1771-9
  • Carpelan-Holmstrom M, Louhimo J, Stenman UH, et al. CEA, CA 242, CA 19-9, CA 72-4 and hCGbeta in the diagnosis of recurrent colorectal cancer. Tumour Biol 2004;25:228-34
  • He LZ, Ramakrishna V, Connolly JE, et al. A novel human cancer vaccine elicits cellular responses to the tumor-associated antigen, human chorionic gonadotropin beta. Clin Cancer Res 2004;10:1920-7
  • Iversen PL, Mourich DV, Moulton HM. Monoclonal antibodies to two epitopes of beta-human chorionic gonadotropin for the treatment of cancer. Curr Opin Mol Ther 2003;5:156-60
  • Moulton HM, Yoshihara PH, Mason DH, et al. Active specific immunotherapy with a beta-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: antibody response is associated with improved survival. Clin Cancer Res 2002;8:2044-51
  • Dittmann J, Keller-Matschke K, Weinschenk T, et al. CD8+ T-cell response against MUC1-derived peptides in gastrointestinal cancer survivors. Cancer Immunol Immunother 2005;54:750-8
  • Karanikas V, Thynne G, Mitchell P, et al. Mannan mucin-1 peptide immunization: influence of cyclophosphamide and the route of injection. J Immunother 2001;24:172-83
  • Mulder WM, Stukart MJ, de Windt E, et al. Mucin-1-related T cell infiltration in colorectal carcinoma. Cancer Immunol Immunother 1996;42:351-6
  • Nakamura H, Hinoda Y, Nakagawa N, et al. Detection of circulating anti-MUC1 mucin core protein antibodies in patients with colorectal cancer. J Gastroenterol 1998;33:354-61
  • Zhang K, Sikut R, Hansson GC. A MUC1 mucin secreted from a colon carcinoma cell line inhibits target cell lysis by natural killer cells. Cell Immunol 1997;176:158-65
  • Foy KC, Wygle RM, Miller MJ, et al. Peptide vaccines and peptidomimetics of EGFR (HER-1) ligand binding domain inhibit cancer cell growth in vitro and in vivo. J Immunol 2013;191:217-27
  • Indar A, Maxwell-Armstrong CA, Durrant LG, et al. Current concepts in immunotherapy for the treatment of colorectal cancer. J R Coll Surg Edinb 2002;47:458-74
  • Ullenhag GJ, Spendlove I, Watson NF, et al. A neoadjuvant/adjuvant randomized trial of colorectal cancer patients vaccinated with an anti-idiotypic antibody, 105AD7, mimicking CD55. Clin Cancer Res 2006;12:7389-96
  • Li L, Spendlove I, Morgan J, Durrant LG. CD55 is over-expressed in the tumour environment. Br J Cancer 2001;84:80-6
  • Durrant LG, Maxwell-Armstrong C, Buckley D, et al. A neoadjuvant clinical trial in colorectal cancer patients of the human anti-idiotypic antibody 105AD7, which mimics CD55. Clin Cancer Res 2000;6:422-30
  • Durrant LG, Buckley DJ, Robins RA, Spendlove I. 105Ad7 cancer vaccine stimulates anti-tumour helper and cytotoxic T-cell responses in colorectal cancer patients but repeated immunisations are required to maintain these responses. Int J Cancer 2000;85:87-92
  • Kato Y. [WT1 peptide pulsed dendritic cell therapy with activated T lymphocytes therapy for advanced cancers]. Gan To Kagaku Ryoho 2010;37:2240-2
  • Bejrananda T, Phukaoloun M, Boonpipattanapong T, et al. WT1 expression as an independent marker of poor prognosis in colorectal cancers. Cancer Biomark 2010;8:35-42
  • Koesters R, Linnebacher M, Coy JF, et al. WT1 is a tumor-associated antigen in colon cancer that can be recognized by in vitro stimulated cytotoxic T cells. Int J Cancer 2004;109:385-92
  • Oji Y, Yamamoto H, Nomura M, et al. Overexpression of the Wilms’ tumor gene WT1 in colorectal adenocarcinoma. Cancer Sci 2003;94:712-17
  • Tsuruma T, Hata F, Torigoe T, et al. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer. J Transl Med 2004;2:19
  • Lai YJ, Lin CI, Wang CL, Chao JI. Expression of survivin and p53 modulates honokiol-induced apoptosis in colorectal cancer cells. J Cell Biochem 2014;115(11):1888-99
  • Shintani M, Sangawa A, Yamao N, Kamoshida S. Immunohistochemical expression of nuclear and cytoplasmic survivin in gastrointestinal carcinoma. Int J Clin Exp Pathol 2013;6:2919-27
  • Krieg A, Werner TA, Verde PE, et al. Prognostic and clinicopathological significance of survivin in colorectal cancer: a meta-analysis. PLoS One 2013;8:e65338
  • Wang YQ, Zhang HH, Liu CL, et al. Correlation between auto-antibodies to survivin and MUC1 variable number tandem repeats in colorectal cancer. Asian Pac J Cancer Prev 2012;13:5557-62
  • Gjertsen MK, Gaudernack G. Mutated Ras peptides as vaccines in immunotherapy of cancer. Vox Sang 1998;74(Suppl 2):489-95
  • Rochlitz C, Figlin R, Squiban P, et al. Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer. J Gene Med 2003;5:690-9
  • Higgins JP, Bernstein MB, Hodge JW. Enhancing immune responses to tumor-associated antigens. Cancer Biol Ther 2009;8:1440-9
  • Bronte V, Tsung K, Rao JB, et al. IL-2 enhances the function of recombinant poxvirus-based vaccines in the treatment of established pulmonary metastases. J Immunol 1995;154:5282-92
  • Gurunathan S, Irvine KR, Wu CY, et al. CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. J Immunol 1998;161:4563-71
  • Barth RJJr, Fisher DA, Wallace PK, et al. A randomized trial of ex vivo CD40L activation of a dendritic cell vaccine in colorectal cancer patients: tumor-specific immune responses are associated with improved survival. Clin Cancer Res 2010;16:5548-56
  • Gregoriadis G, McCormack B, Obrenovic M, et al. Vaccine entrapment in liposomes. Methods 1999;19:156-62
  • Jabbal-Gill I, Lin W, Jenkins P, et al. Potential of polymeric lamellar substrate particles (PLSP) as adjuvants for vaccines. Vaccine 1999;18:238-50
  • Kavanagh B, Ko A, Venook A, et al. Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides. J Immunother 2007;30:762-72
  • Mazzaferro V, Coppa J, Carrabba MG, et al. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 2003;9:3235-45
  • Restifo NP, Bacik I, Irvine KR, et al. Antigen processing in vivo and the elicitation of primary CTL responses. J Immunol 1995;154:4414-22
  • Conry RM, Khazaeli MB, Saleh MN, et al. Phase I trial of a recombinant vaccinia virus encoding carcinoembryonic antigen in metastatic adenocarcinoma: comparison of intradermal versus subcutaneous administration. Clin Cancer Res 1999;5:2330-7
  • Marshall JL, Hawkins MJ, Tsang KY, et al. Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J Clin Oncol 1999;17:332-7
  • Horig H, Lee DS, Conkright W, et al. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol Immunother 2000;49:504-14
  • Speetjens FM, Kuppen PJ, Welters MJ, et al. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res 2009;15:1086-95
  • Menon AG, Kuppen PJ, van der Burg SH, et al. Safety of intravenous administration of a canarypox virus encoding the human wild-type p53 gene in colorectal cancer patients. Cancer Gene Ther 2003;10:509-17
  • Freis PC. DNA vaccines. N Engl J Med 1999;341:1623-4
  • Burgdorf SK. Dendritic cell vaccination of patients with metastatic colorectal cancer. Dan Med Bull 2010;57:B4171
  • Morisaki T, Matsumoto K, Onishi H, et al. Dendritic cell-based combined immunotherapy with autologous tumor-pulsed dendritic cell vaccine and activated T cells for cancer patients: rationale, current progress, and perspectives. Hum Cell 2003;16:175-82
  • Rossi M, Young JW. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol 2005;175:1373-81
  • Proudfoot O, Pouniotis D, Sheng KC, et al. Dendritic cell vaccination. Expert Rev Vaccines 2007;6:617-33
  • Chen W, Rains N, Young D, Stubbs RS. Dendritic cell-based cancer immunotherapy: potential for treatment of colorectal cancer? J Gastroenterol Hepatol 2000;15:698-705
  • Jack AM, Aydin N, Montenegro G, et al. A novel dendritic cell-based cancer vaccine produces promising results in a syngenic CC-36 murine colon adenocarcinoma model. J Surg Res 2007;139:164-9
  • Liu Y, Zhang W, Zhang B, et al. DC vaccine therapy combined concurrently with oral capecitabine in metastatic colorectal cancer patients. Hepatogastroenterology 2013;60:23-7
  • Liu K, Caldwell SA, Greeneltch KM, et al. CTL adoptive immunotherapy concurrently mediates tumor regression and tumor escape. J Immunol 2006;176:3374-82
  • Morse MA, Niedzwiecki D, Marshall JL, et al. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg 2013;258:879-86
  • Lesterhuis WJ, de Vries I, Aarntzen EA, et al. A pilot study on the immunogenicity of dendritic cell vaccination during adjuvant oxaliplatin/capecitabine chemotherapy in colon cancer patients. Br J Cancer 2010;103:1415-21
  • Koido S, Ohkusa T, Homma S, et al. Immunotherapy for colorectal cancer. World J Gastroenterol 2013;19:8531-42
  • Keenan BP, Jaffee EM. Whole cell vaccines--past progress and future strategies. Semin Oncol 2012;39:276-86
  • Liu SY, Wei W, Yue H, et al. Nanoparticles-based multi-adjuvant whole cell tumor vaccine for cancer immunotherapy. Biomaterials 2013;34:8291-300
  • Xu M, Zhou L, Zhang P, et al. Enhanced antitumor efficacy by combination treatment with a human umbilical vein endothelial cell vaccine and a tumor cell lysate-based vaccine. Tumour Biol 2013;34:3173-82
  • Koido S, Homma S, Okamoto M, et al. Fusions between dendritic cells and whole tumor cells as anticancer vaccines. Oncoimmunology 2013;2:e24437
  • Onishi H, Morisaki T, Baba E, et al. Long-term vaccine therapy with autologous whole tumor cell-pulsed dendritic cells for a patient with recurrent rectal carcinoma. Anticancer Res 2011;31:3995-4005
  • Sobol RE, Shawler DL, Carson C, et al. Interleukin 2 gene therapy of colorectal carcinoma with autologous irradiated tumor cells and genetically engineered fibroblasts: a Phase I study. Clin Cancer Res 1999;5:2359-65
  • Hoover HCJr, Brandhorst JS, Peters LC, et al. Adjuvant active specific immunotherapy for human colorectal cancer: 6.5-year median follow-up of a phase III prospectively randomized trial. J Clin Oncol 1993;11:390-9
  • Vermorken JB, Claessen AM, van Tinteren H, et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 1999;353:345-50
  • Harris JE, Ryan L, Hoover HCJr, et al. Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: eastern Cooperative Oncology Group Study E5283. J Clin Oncol 2000;18:148-57
  • Liang W, Wang H, Sun TM, et al. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive tract. World J Gastroenterol 2003;9:495-8
  • Silberman D, Bucknum A, Kozlowski M, et al. Cytokine treatment of macrophage suppression of T cell activation. Immunobiology 2010;215:70-80
  • Schulze T, Kemmner W, Weitz J, et al. Cancer Immunol Immunother 2009;58(1):61-9
  • Fields AL, Keller A, Schwartzberg L, et al. J Clin Oncol 2009;27(12):1941-7
  • Noble S, Goa KL. Aldesleukin (recombinant interleukin-2). BioDrugs 1997;7:394-422
  • Schmidinger M, Hejna M, Zielinski CC. Aldesleukin in advanced renal cell carcinoma. Expert Rev Anticancer Ther 2004;4:957-80
  • Correale P, Tagliaferri P, Fioravanti A, et al. Immunity feedback and clinical outcome in colon cancer patients undergoing chemoimmunotherapy with gemcitabine + FOLFOX followed by subcutaneous granulocyte macrophage colony-stimulating factor and aldesleukin (GOLFIG-1 Trial). Clin Cancer Res 2008;14:4192-9
  • Correale P, Botta C, Rotundo MS, et al. Gemcitabine, oxaliplatin, levofolinate, 5-fluorouracil, granulocyte-macrophage colony-stimulating factor, and interleukin-2 (GOLFIG) versus FOLFOX chemotherapy in metastatic colorectal cancer patients: the GOLFIG-2 multicentric open-label randomized phase III trial. J Immunother 2014;37:26-35
  • Grothey A. EGFR antibodies in colorectal cancer: where do they belong? J Clin Oncol 2010;28:4668-70
  • Wolf I, Golan T, Shani A, Aderka D. Cetuximab in metastatic colorectal cancer. Lancet Oncol 2010;11:313-14
  • Sharma SP. Cetuximab for metastatic colorectal cancer. Lancet Oncol 2007;8:673
  • Rodriguez J, Zarate R, Bandres E, et al. Fc gamma receptor polymorphisms as predictive markers of Cetuximab efficacy in epidermal growth factor receptor downstream-mutated metastatic colorectal cancer. Eur J Cancer 2012;48:1774-80
  • Hirvinen M, Heiskanen R, Oksanen M, et al. Fc-gamma receptor polymorphisms as predictive and prognostic factors in patients receiving oncolytic adenovirus treatment. J Transl Med 2013;11:193
  • Mellor JD, Brown MP, Irving HR, et al. A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol 2013;6:1
  • Van CE, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009;360:1408-17
  • Bokemeyer C, Bondarenko I, Makhson A, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 2009;27:663-71
  • Susman E. Rash correlates with tumour response after cetuximab. Lancet Oncol 2004;5:647
  • Kim R. Cetuximab and panitumumab: are they interchangeable? Lancet Oncol 2009;10:1140-1
  • Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 2010;28:4697-705
  • Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013;369:1023-34
  • Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996;2:1096-103
  • Ohm JE, Gabrilovich DI, Sempowski GD, et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003;101:4878-86
  • Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335-42
  • Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 2008;26:2013-19
  • Lockhart AC, Rothenberg ML, Dupont J, et al. Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol 2010;28:207-14
  • Prieto PA, Yang JC, Sherry RM, et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res 2012;18:2039-47
  • Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711-23
  • Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011;364:2517-26
  • Mamalis A, Garcha M, Jagdeo J. Targeting the PD-1 pathway: a promising future for the treatment of melanoma. Arch Dermatol Res 2014;306(6):511-19
  • Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012;366:2455-65
  • Yasuda S, Sho M, Yamato I, et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin Exp Immunol 2013;172:500-6
  • Yu P, Steel JC, Zhang M, et al. Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin Cancer Res 2010;16:6019-28
  • Son CH, Bae JH, Shin DY, et al. CTLA-4 blockade enhances antitumor immunity of intratumoral injection of immature dendritic cells into irradiated tumor in a mouse colon cancer model. J Immunother 2014;37:1-7
  • Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010;363:411-22
  • Dutcher J. Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology (Williston Park) 2002;16:4-10
  • Wolchok JD, Hoos A, O’Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 2009;15:7412-20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.