26
Views
2
CrossRef citations to date
0
Altmetric
Review

Cancer vaccine development

, , , , , & show all
Pages 1439-1452 | Published online: 23 Feb 2005

Bibliography

  • ABRAMS SI, HORAN HAND P, TSANG KY, SCHLOM J: Mu- tant Ras epitopes as targets for cancer vaccines. Sem. Oncology (1996) 23:118–134.
  • VOGELSTEIN B AND KINZLER KW: p53 function and dys-function. Cell (1992) 70:523–526.
  • BERCHUCK A, KOHLER MF, MARKS JR et al.: The p53 tu-mor suppressor gene frequently is altered in gyneco-logic cancers. Am. J. Obstet. Gynecol (1994) 170:246–252.
  • YANUCK M, CARBONE DP, PENDLETON CD et al: A mu-tant p53 tumor suppressor protein is a target for peptide-induced CD8+ cytotoxic T cells. Cancer Res. (1993) 53:3257–3261.
  • TILKIN A-F, LUBIN R, SOUSSI T et al.: Primary prolifera-tive T cell response to wild-type p53 protein in patients with breast cancer. Eur.J. Immunol (1995) 25:1765–1769.
  • THEOBALD M, BIGGS J, DITTMER D, LEVINE AJ, SHER-MAN LA: Targeting p53 as a general tumor antigen. Proc. Natl. Acad. Sci. USA (1995) 92:11993–11997.
  • ROTH J, DITTMER D, READ et al.: p53 as a target for can-cer vaccines: recombinant canarypox virus vectors ex-pressing p53 protect mice against lethal tumor cell challenge. Proc. Natl. Acad. Sci. USA (1996) 93:4781–4786.
  • ROPKE M, HALD J, GULDBERG P et al.: Spontaneous hu-man squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. Proc. Natl. Acad. Sci. USA (1996) 93:14704–14707.
  • MAYORDOMO JI, LOFTUS DJ, SAKAMOTO H et al.: Ther-apy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J. Exp. Med. (1996) 183:1357–1365.
  • ROBBINS PF, EGGENSBERGER D, QI C-F, SIMPSON J, SCHLOM J: Definition of the expression of the human carcinoembryonic antigen and non-specific crossre-acting antigen in human breast and lung carcinomas. Int. J. Cancer (1993) 53:892–897.
  • PIGNATELLI M, DURBIN H, BODMER WF: Carcinoembry-onic antigen functions as an accessory adhesion mole-cule mediating colon epithelial cell-collagen interactions. Proc. Natl. Acad. Sci. USA (1990) 87:1541–1545.
  • TURBIDE C, ROJAS M, STANNERS CP, BEAUCHEMIN N: Amouse carcinoembryonic antigen gene family mem-ber is a calcium-dependent cell adhesion molecule. J. Biol. Chem. (1991) 266:309–315.
  • GRIMM T, JOHNSON JP: Ectopic expression of carci-noembryonic antigen by a melanoma cell leads to changes in the transcription of two additional cell ad-hesion molecules. Cancer Res. (1995) 55:3254–3257.
  • OHANNESIAN DW, LOTAN D, THOMAS P et al.: Carci-noembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells. Cancer Res. (1995) 55:2191–2199.
  • HU J, KINDSVOGEL W, BUSBY S et al.: An evaluation ofthe potential to use tumor-associated antigens as tar-gets for antitumor T cell therapy using transgenic mice expressing a retroviral tumor antigen in normal lym-phoid tissues. J. Exp. Med. (1993) 177:1681–1690.
  • PAXTON RJ, MOOSER G, PANDE H, LEE TD, SHIVELY JE:Sequence analysis of carcinoembryonic antigen: iden-tification of glycosylation sites and homology with the immunoglobulin supergene family. Proc. Natl. Acad. Sci. USA (1987) 84:920–924.
  • THOMPSON J, ZIMMERMANN W: The carcinoembryonicantigen gene family: structure, expression and evolu-tion. Tumour Biol. (1988) 9:63–83.
  • THOMPSON JA: Molecular cloning and expression ofcarcinoembryonic antigen gene family members. Tu-mour Biol. (1995) 16:10–16.
  • LUNDWALL A: Characterization of the gene for prostate-specific antigen, a human glandular kallik-rein. Biochem. Biophy. Res. Comm. (1989) 161:1151–1159.
  • FRELINGER J, WEI C, WILLIS R et al.: Targeted CTL-mediated immunity for prostate cancer: development of human PSA-expressing transgenic mice. Proc. Am. Assoc. Cancer Res. (1996) 37:3027.
  • HASEGAWA T, ISOBE K, NAKASHIMA I SHIMOKATA K: Quantitative analysis of antigen for the induction of tolerance in carcinoembryonic antigen transgenic mice. Immunology (1992) 77:577–581.
  • SINCLAIR NRS: The trouble with transgenic mice. Immu-nol Cell Biol. (1995) 73:169–173.
  • MATZINGER P: Tolerance, danger, and the extended family. Annu. Rev. Immunol (1994) 12:991–1045.
  • NANDA NK, SERCARZ EE: Induction of anti-self-immunity to cure cancer. Cell (1995) 82:13–17.
  • RIDGE JP, FUCHS EJ, MATZINGER P: Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science (1996) 271:1723–1726.
  • FENTON RG, LONGO DL: Danger versus tolerance: paradigms for future studies of tumor-specific cyto-toxic T lymphocytes. J. Natl. Cancer Inst. (1997) 89:272–275.
  • TJOA BA, KRANZ DM. Generation of cytotoxic T-lymphocytes to a self-peptide/class I complex: a model for peptide-mediated tumor rejection. Cancer Res. (1994) 4:204–208.
  • FENNER F, HENDERSON DA, ARITA I, JEZEK Z, LADNYI ID: Smallpox and its Eradication. World Health Organiza-tion, Geneva (1998).
  • MOSS B: Genetically engineered poxviruses for recom-binant gene expression, vaccination, and safety. Proc. Natl. Acad. Sci. USA (1996) 93:11341–11348.
  • Recombinant Poxviruses. RINNS MM, SMITH GL (Eds.), CRC Press, Inc., Boca Raton, FL, USA (1992).
  • IRVINE K, KANTOR J, SCHLOM J: Comparison of a CEA-recombinant vaccinia virus, purified CEA, and an anti-idiotypic antibody bearing the image of a CEA epitope in the treatment and prevention of CEA- expressing tu-mors. Vaccine Res. (1993) 2:79–94.
  • PAOLETTI E: Applications of pox virus vectors to vacci-nation: an update. Proc. Natl. Acad. Sci. USA (1996) 93:11349–11353.
  • KAUFMAN H, SCHLOM J, KANTOR J: A recombinant vac-cinia virus expressing human carcinoembryonic anti-gen (CEA). Intl. J. Cancer (1991) 48:900–907.
  • KANTOR J, IRVINE K, ABRAMS S etal: Anti-tumor activity and immune responses induced by a recombinant vaccinia-carcinoembryonic antigen (CEA) vaccine. J. Natl. Cancer Inst. (1992) 84:1084–1091.
  • KANTOR J, IRVINE K, ABRAMS S et al.: Immunogenicity and safety of a recombinant vaccinia virus expressing the carcinoembryonic antigen (CEA)-vaccine in a non-human primate. Cancer Res. (1992) 52:6917–6925.
  • MIZOGUCHI H, O'SHEA JJ, LONGO DL et al.: Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science (1992) 258:1795–1798.
  • FINKE JH, ZEA AH, STANLEY J et al: Loss of T-cell recep-tor z chain and p561ckin T-cells infiltrating human re-nal cell carcinoma. Cancer Res. (1993) 53:5613–5616.
  • NAKAGOMI H, PETERSSON M, MAGNUSSON I et al: De-creased expression of the signal-transducing z chains in tumor-infiltrating T-cells and NK cells of patients with colorectal carcinoma. Cancer Res. (1993) 53:5610–5612.
  • TSANG KY, ZAREMBA S, NIERODA CA et al: Generation of human cytotoxic T-cells specific for human carci-noembryonic antigen (CEA) epitopes from patients immunized with recombinant vaccinia-CEA (rN-CEA) vaccine. J. Natl. Cancer Inst. (1995) 87:982–990.
  • TSANG KY, ZHU MZ, NIERODA CA et al.: Phenotypic sta-bility of a cytotoxic T cell line directed against an im-munodominant epitope of human carcinoembryonic antigen. Clin. Cancer Res. (1997) 3:2439–2449.
  • BEI R, KANTOR J, KASHMIRI SVS, ABRAMS S, SCHLOM J: Enhanced immune responses and anti-tumor activity by baculovirus recombinant CEA in mice primed with the recombinant vaccinia CEA. J. Immunother. (1994) 16:275–282.
  • HODGE JW, MCLAUGHLIN JP, KANTOR JA, SCHLOM J: Di-versified prime and boost protocols using recombi-nant vaccinia virus and recombinant nonreplicating avian pox virus to enhance T-cell immunity and antitu-mor responses. Vaccine (1997) 16:759–768.
  • MURATA K, GARCIA-SASTRE A, TSUJI M et al.: Characteri-zation of in vivo primary and secondary CD8+ T cell re-sponses induced by recombinant influenza and vaccinia viruses. Cell. Immunol (1996) 173:96–107.
  • COONEY EL, MCELRATH MJ, COREY L et al.: Enhancedimmunity to human immunodeficiency virus (HIV) envelope elicited by a combined vaccine regimen con-sisting of priming with a vaccinia recombinant ex-pressing HIV envelope and boosting with gp100 protein. Proc. Natl. Acad. Sci. USA (1993) 90:1882–1886.
  • PHILIP R, BRUNETTE E, ALTERS S et al.: Gene modifiedand peptide pulsed dendritic cells for the generation of active immunotherapy strategies. J. Immunother. (1996) 19:467.
  • ALTERS SE, GADEA JR, SORICH M et al.: Dendritic cellspulsed with CEA peptide induce CEA specific CTL with restricted TcR repertoire and an activated phenotype in vitro. J. Immunother. (1998) 21:17–26.
  • WONG C, MORSE M, NAIR S: Induction of primary, hu-man antigen-specific cytotoxic T lymphocytes in vitro using dendritic cells pulsed with peptides. J. Immuno-ther. (1998) 21:32–40.
  • CORREALE P, WALMSLEY K, NIERODA C et al.: In vitrogeneration of human cytotoxic T cells specific for pep-tides derived from human prostate-specific antigen. J. Natl. Cancer Inst. (1997) 89:293–300.
  • SPITLER L: Clinical trials of OncoVax-P prostate can-cer vaccine and OncoVax-C1' colorectal cancer vac-cine. Cancer Vaccines Meeting. Bethesda, MD, USA (1998).
  • HODGE JW, DONOHUE SJ, LEVINE BS et al.: A recombi-nant vaccinia virus expressing human prostate-specific antigen (PSA): safety and immunogenicity in a nonhuman primate. Int. J. Cancer (1995) 63:231–237.
  • TSANG KY, NIERODA CA, DEFILIPPI R et al.: Induction ofhuman cytotoxic T-cell lines directed against point mutated p21 ras-derived synthetic peptides. Vaccine Res. (1994) 3:183–193.
  • ABRAMS SI, DOBRZANSKI MJ, WELLS DT et al.: Peptide-specific activation of cytolytic CD4+ T-lymphocytes against tumor cells bearing mutated epitopes of K-ras p21. Eur. j Immunol. (1995) 25:2588–2597.
  • ABRAMS SI, STANZIALE SF, LUNIN SD, ZAREMBA S,SCHLOM J: Identification of overlapping epitopes in mutant ras oncogene peptides that activate CD4+ and CD8+ T cell responses. Eur. J. Immunol. (1996) 26:435–443.
  • SCHOTT ME, WELLS DT, SCHLOM J, ABRAMS SI: Compari-son of linear and branched peptide forms (MAPs) in the induction and specificity of T-helper responses to point-mutated ras immunogens. Cellular Immunol. (1996) 174:199-209. © Ashley Publications Ltd. All rights reserved.Exp. Opin. Invest. Drugs (1998) 7(9)
  • PEACE DJ, CHEN W, NELSON H, CHEEVER MA: T cell rec- ognition of transforming proteins encoded by mu-tated ras proto-oncogenes. J. Immunol. (1991) 146:2059–2065.
  • JUNG S, SCHLUESENER HJ: Human T lymphocytes rec-ognize a peptide of single point-mutated, oncogenic ras proteins. I. Exp. Med. (1991) 173:273–276.
  • FOSSUM B, GEDDE-DAHL T, HANSEN T et al.: Overlap-ping epitopes encompassing a point mutation (12 Gly- Arg) in p21 ras can be recognized by HLA-DR, -DP and -DQ restricted T cells. Eur. j Immunol (1993) 23:2687–2691.
  • JURETIC A, JURGENS-GOBEL J, SCHAEFER C et al.: Cyto-toxic T-lymphocyte responses against mutated p21 ras peptides: an analysis of specific T-cell-receptor gene usage. Int. J. Cancer (1996) 68:471–474.
  • PEACE DJ, SMITH JW, CHEN W et al.: Lysis of ras oncogene-transformed cells by specific cytotoxic T lymphocytes elicited by primary in vitro immuniza-tion with mutated ras peptide. J. Exp. Med. (1994) 179:473–479.
  • FENTON RG, KELLER CJ, HANNA N, TAUB DD: Induction of T-cell immunity against ras oncoproteins by soluble protein or ras-expressing Escherichia coif J. Natl. Can-cer Inst. (1995) 87:1853–1861.
  • ABRAMS SI, KHLEIF SN, BERGMANN-LEITNER ES, SCHLOM J: Production of CD4+ and CD8+ T cell lines from patients vaccinated with mutated ras peptides. J. Immunother. (1996) 19:459.
  • BERGMANN-LEITNER ES, KANTOR JA, SHUPERT WL et al.: Identification of a human CD8+ T lymphocyte neo-epitope created by a ras codon 12 mutation which is restricted by the HLA-A2 allele. Cellular Immunol (In press.)
  • GJERTSEN MK, BJORHEIM J, SAETERDAL I, MYKLEBUST J: Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Va0 peptide vaccination of a pa-tient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int. J. Cancer (1997) 72:784–790.
  • WALTER EA, GREENBERG PD, GILBERT MJ et al.: Recon-stitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. New Engl. J. Med. (1995) 333:1038–1044.
  • HESLOP HE, NG CYC, LI C et al.: Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nature Med. (1996) 2:551–555.
  • PARKHURST MR, SALGALLER ML, SOUTHWOOD S et al.: Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J. Immunol. (1996) 157:2539–2548.
  • BAKKER ABH, VANDERBURG SH, HUUBENS RJF et al Analogues of CTL epitopes with improved MHC class-I binding capacity elicit anti-melanoma CTL recognizing the wild type epitope. Int. J. Cancer (1997) 70:302–309.
  • POGUE RR, ERON J, FRELINGER JA, MATSUI M: Amino-terminal alteration of the HLA-A*0201-restricted hu-man immunodeficiency virus pol peptide increases complex stability and in vitro immunogenicity. Proc. Natl. Acad. Sci. USA (1995) 92:8166–8170.
  • LIPFORD G, BAUER S, WAGNER H, HEEG K: Peptide engi-neering allows cytotoxic T cell vaccination against hu-man papilloma virus tumor antigen E6. Immunity (1995) 84:298–303.
  • ZAREMBA S, BARZAGA E, ZHU MZ et al.: Identification ofan enhancer agonist CTL peptide from human carci-noembryonic antigen. Cancer Res. (1997) 57:4570–4577.
  • DEMAGISTRIS MT, ALEXANDER J, COGGESHALL M et al.:Antigen analog-major histocompatability complexes act as antagonists of the T cell receptor. Cell (1992) 68:625–634.
  • BERTOLETTI A, SETTE A, CHISSARI FV et al.: Natural vari-ants of cytotoxic epitopes are T cell receptor antago-nists for antiviral cytotoxic T cells. Nature (1994) 369:407–410.
  • KLENERMAN P, ROWLAND-JONES S, MCADAM S et al.: Cy-totoxic T cell activity antagonized by naturally occur-ring HIV-1 gag variants. Nature (1994) 369:403–407.
  • KUCHROO VK, GREER JM, KAUL D et al.: A single TCR an-tagonist peptide inhibits experimental allergic en-cephalomyelitis mediated by a diverse T cell repertoire. J. Immunol. (1994) 153:3326–3336.
  • JAMESON SC, BE VAN MJ: T cell receptor antagonists andpartial agonists. Immunity (1995) 2:1–11.
  • MEIER U-C, KLEERMAN P, GRIFFIN P et al: Cytotoxic Tlymphocyte lysis inhibited by viable HIV mutants. Sci-ence (1995) 270:1360–1362.
  • CHEN A, EDE NJ, JACKSON DC, MCCLUSKEY J, PURCELLAW: CTL recognition of an altered peptide associated with asparagine bond rearrangement: implications for immunity and vaccine design. J. Immunol (1996) 157:1000–1010
  • RAMMENSEE H-G, FRIEDE T, STEVANOVIC S: MHC ligands and peptide motifs: first listing. Immunogenet-ics (1995) 41:178–228.
  • MADRENAS J, GERMAIN RN: Variant TCR ligands: newinsights into the molecular basis of antigen-dependent signal transduction and T-cell activation. Semin. Immu-nol (1996) 8:83–101.
  • MADDEN DR, GARBOCZI DN, WILEY DC: The antigenicidentity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell (1993) 75:693–708.
  • HARDING FA, MCARTHUR JG, GROSS JA, RAULET DH, AL-LISON JP: CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature (1992) 356:607–609.
  • TOWNSEND SE, ALLISON JP: Tumor rejection after di-rect costimulation of CD8+ T cells by B7-transfected melanoma cells. Science (1993) 259:368–370.
  • BASKAR S, CLEMENTS VK, GLIMCHER LH, NABAVI N, OSTRAND-ROSENBERG S: Rejection of MHC class II-transfected tumor cells requires induction of tumor-encoded B7-1 and/or B7-2 costimulatory molecules. J. Immunol (1996) 156:3821–3827.
  • CAVALLO F, MARTIN-FONTECHA A, BELLONE M et al: Co-expression of B7-1 and ICAM-1 on tumors is re-quired for rejection and the establishment of a mem-ory response. Eur.J. Immunol (1995) 25:1154–1162.
  • GUINAN EC, GRIBBEN JG, BOUSSIOTIS VA, FREEMAN GJ, NADLER LM: Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity. Blood (1994) 84:3261–3282.
  • WU T-C, HUANG AYC, JAFFEE EM, LEVITSKY HI, PAR-DOLL DM: A reassessment of the role of B7-1 expres-sion in tumor rejection. J. Exp. Med. (1995) 182:1415–1521.
  • WINGREN AG, PARRA E, VARGA M et al.: T cell activation pathways: B7, LFA-3, and ICAM-1 shape unique T cell profiles. Crit. Rev. Immunol (1995) 15:235–253.
  • DUBEY C, CROFT M, SWAIN SL: Costimulatory require-ments of naive CD4+ T cells: ICAM-1 or B7-1 can costimulate naive CD4 T cell activation but both are re-quired for optimum response. J. Immunol (1995) 155:45–57.
  • KRUMMEL MF, ALLISON JP: CD28 and CTLA-4 have op-posing effects on the response of T cells to stimulation. J. Exp. Med. (1995) 182:459–465.
  • OSTRAND-ROSENBERG S, BASKAR S, PATTERSON N, CLEMENTS VK: Expression of MHC Class II and B7-1 and B7-2 costimulatory molecules accompanies tumor re-jection and reduces the metastatic potential of tumor cells. Tissue Antigens (1996) 47:414–421.
  • SCHULTZE J, NADLER LM, GRIBBEN JG: B7-mediated costimulation and the immune response. Blood Rev. (1996) 10:111–127.
  • BLUESTONE JA: Is CTLA-4 a master switch for periph-eral T cell tolerance? J. Immunol. (1997) 158:1989–1993.
  • LEACH DR, KRUMMEL MF, ALLISON JP: Enhancement ofantitumor immunity by CTLA-4 blockade. Science (1996) 271: 1734-1736.
  • HODGE JW, MCLAUGHLIN JP, ABRAMS S et al. The ad- mixture of a recombinant vaccinia virus containing the gene for the costimulatory molecule B7 and a re-combinant vaccinia virus containing a tumor associ-ated antigen gene results in enhanced specific T-cell responses and antitumor immunity. Cancer Res. (1995) 55:3598–3603.
  • AKAGI J, HODGE JW, MCLAUGHLIN JP et al.: Therapeutic antitumor response after immunization with an ad-mixture of recombinant vaccinia viruses expressing a modified MUC1 gene and the murine T-cell costimula-tory molecule B7. J. Immunother. (1997) 20:38–47.
  • DAMLE NK, KLUSSMAN K, LINSLEY PS, ARUFFO A: Differ-ential costimulatory effects of adhesion molecules B7, ICAM-1, LFA-3, and VCAM-1 on resting and antigen-primed CD4+ T lymphocytes. J. Immunol. (1992) 148:1985–1992.
  • SPRINGER TA, DUSTIN ML, KISHIMOTO TK, MARLIN SD: The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptor of the im-mune system. Ann. Rev. Immunol (1987) 5:223–252.
  • DAMLE NK, KLUSSMAN K, LEYTZE G et al.: Costimulation with integrin ligands intercellular adhesion molecule-1 or vascular cell adhesion molecule-1 aug-ments activation-induced death of antigen-specific CD4+ T lymphocytes. J. Immunol. (1993) 151:2368–2379.
  • HELLSTROM I, HELLSTROM KE: Tumor immunology: an overview. Ann. NY Acad. ScL (1993) 690:24–31.
  • ALLISON JP, HURWITZ AA, LEACH DR: Manipulation of costimulatory signals to enhance antitumor T-cell re-sponses. Curr. Opin. Immunol. (1995) 7:682–686.
  • TUSHINSKI RJ AND MULE JJ: Biology of cytokines: the in-terleukins. In: Biologic Therapy of Cancer. DeVita VT, Hell-man S, Rosenberg SA (Eds.), JB Lippincott Company, Philadelphia, PA, USA (1995):87–94.
  • MOORE MAS: Colony-stimulating factors: basic princi-ples and preclinical studies. In: Biologic Therapy of Can-cer. DeVita VT, Hellman S, Rosenberg SA (Eds.), JB Lippincott Company, Philadelphia, PA, USA (1995) :121–140.
  • MCLAUGHLIN JP, SCHLOM J, KANTOR JA, GREINER J: Im-proved immunotherapy of a recombinant CEA vac-cinia vaccine when given in combination with Interleukin-2. Cancer Res. (1996) 56:2361–2367.
  • KASS E, KANTOR JA, PARKER J, SCHLOM J, GREINER J: En-hanced antigen-specific antitumor immunity by coad-ministering recombinant vaccinia constructs expressing carcinoembryonic antigen and granulocyte-macrophage colony-stimulating factor (GM-CSF). (Submitted.)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.