59
Views
43
CrossRef citations to date
0
Altmetric
Review

Anti-inflammatory drugs: a hope for Alzheimer’s disease?

, &
Pages 671-683 | Published online: 24 Feb 2005

Bibliography

  • WHITEHOUSE PJ, KITTNER B, ROESSNER M et al: Clinical trial designs for demonstrating disease-course-altering effects in dementia. Alzheimer Dis. Ass. Disord. (1998) 12:281–294.
  • •The authors discuss the design, instruments and duration of clinical trials to show not only a symptomatic but also a reduction of disease progression in AD.
  • RONALD REAGAN RESEARCH INSTITUT: Consensusreport of the Working Group on: 'Molecular and Biochemical Markers of Alzheimer's disease'. Neurobiol Aging (1998) 19:109–116.
  • HARDY J: Amyloid, the presenilins and Alzheimer'sdisease. Trends Neurosci. (1997) 20:154–159.
  • LIPPA CF, SAUNDERS AM, SMITH TW et al: Familial andsporadic Alzheimer's disease: neuropathology cannot exclude a final common pathway. Neurology (1996) 46:406–412.
  • GOMEZ-ISLA T, GROWDON WB, MCNAMARA MJ et al.:The impact of different presenilin 1 andpresenilin 2 mutations on amyloid deposition, neurofibrillary changes and neuronal loss in the familial Alzheimer's disease brain: evidence for other phenotype-modifying factors. Brain (1999) 122: 1709-1719.
  • SAUNDERS AM, HULETTE C, WELSH-BOHMER KA et al: Specificity, sensitivity, and predictive value of apolipoprotein-E genotyping for sporadic Alzheimer's disease. Lancet (1996) 348:90–93.
  • BREITNER JCS: APOE genotyping and Alzheimer's disease. Lancet (1996) 347:1184–1185.
  • ROSES AD: Apolipoprotein E alleles as risk factors in Alzheimer's disease. Ann. Rev. Med. (1996) 47:387–400.
  • HUANG DY, GOEDERT M, JAKES R et al.: Isoform-specific interactions of apolipoprotein E with the microtubule-associated protein MAP2c: implications for Alzheimer's disease. Neurosci. Lett. (1994) 182:55–58.
  • GUTMAN CR, STRITTMATTER WJ, WEISGRABER KH, MATTHEW WD: Apolipoprotein E binds to and potenti-ates the biological activity of ciliary neurotrophic factor. J. Neurosci. (1997) 17:6114–6121.
  • KAMBOH MI, SANGHERA DK, ASTON CE et al: Gender-specific nonrandom association between the a 1-antichymotrypsin and apolipoprotein E polymor-phisms in the general population and its implication for the risk of Alzheimer's disease. Genet. Epidem. (1997) 14:169–180.
  • PAPASSOTIROPOULOS A, BAGLI M, JESSEN F et al.: A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer's disease. Ann. Neurol (1999) 45:666–668.
  • SAITOH T, KANG D, MALLORY M, DETERESA R, MASLIAHE: Glial cells in Alzheimer's disease: Preferential effect of APOE risk on scattered microglia. Gerontology (1997) 43:109–118.
  • UCHIHARA T, DUYCKAERTS C, HE Y et al.: ApoE immunoreactivity and microglial cells in Alzheimer's disease brain. Neurosci. Lett. (1995) 195:5–8.
  • TERRY RD, MASLIAH E, SALMON DP et al: Physical basisof cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impair-ment. Ann. Neurol. (1991) 30:572–580.
  • GOEDERT M, SPILLANTINI MG, CAIRNS NJ, CROWTHER RA: Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron (1992) 8:159–168.
  • GOEDERT M, WISCHIK CM, CROWTHER RA, WALKER JE, KLUG A: Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer's disease: identification as the microtubule-associated protein tau. Proc. Natl. Acad. ScL USA (1988) 85:4051–4055.
  • BRAAK H, BRAAK E: Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging (1997) 18:351–357.
  • BANCHER C, BRAAK H, FISCHER P, JELLINGER KA.: Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer's and Parkinson's disease patients. Neurosci. Lett. (1993) 162:179–182.
  • BUSCIGLIO J, LORENZO A, YEH J, YANKNER BA: 6-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron (1995) 14:879–888.
  • MACKENZIE IRA: Senile plaques do not progressively accumulate with normal aging. Acta Neuropathol (1994) 87:520–525.
  • BEHL C: Amyloid beta-protein toxicity and oxidativestress in Alzheimer's disease. Cell Tissue Res. (1997) 290:471–480.
  • MATTSON MP, RYDEL RE: Alzheimer's disease - Amyloidox-tox transducers. Nature (1996) 382:674–675.
  • HARTMANN T, BIEGER SC, BRUHL B et al. Distinct sites of intracellular production for Alzheimer's disease A beta40/42 amyloid peptides. Nature Med. (1997) 3:1016–1020.
  • •The authors demonstrate the intraneuronal production of A13 proteins and therefore the possibility that A13 acts primarily intracellularly.
  • MASLIAH E, TERRY RD, MALLORY M, ALFORD M, HANSEN LA: Diffuse plaques do not accentuate synapse loss in Alzheimer's disease. Am. J. Pathol. (1990) 137:1293–1297.
  • MASLIAH E: Mechanisms of synaptic dysfunction in Alzheimer's disease. Histopathol. (1995) 10:509–519.
  • MACKENZIE IRA, HAO CH, MUNOZ DG: Role of microglia in senile plaque formation. Neurobiol. Aging (1995) 16:797–804.
  • •This paper stresses the role of microglial activation in the formation of neuritic plaques.
  • SHENG JG, MRAK RE, GRIFFIN WST: Neuritic plaque evolution in Alzheimer's disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms. Acta Neuropathol. (1997) 94:1–5.
  • •This report shows extensive microglial activation inside and outside of amyloid plaques.
  • SASAKI A, YAMAGUCHI H, OGAWA A, SUGIHARA S, NAKAZATO Y: Microglial activation in early stages of amyloid 3 protein deposition. Acta Neuropathol. (1997) 94:316–322.
  • BARGER SW, HARMON AD: Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature (1997) 388:878–881.
  • MCDONALD DR, BAMBERGER ME, COMBS CK, LANDRETH GE: 9-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J. NeuroscL (1998) 18:4451–4460.
  • ARENDT T, HOLZER M, GROSSMANN A, ZEDLICK D, BRUCKNER MK: Increased expression and subcellular translocation of the mitogen activated protein kinase kinase and mitogen-activated protein kinase in Alzheimer's disease. Neuroscience (1995) 68:5–18.
  • HENSLEY K, FLOYD RA, ZHENG NY et al.: p38 kinase is activated in the Alzheimer's disease brain. J. Neurochem. (1999) 72:2053–2058.
  • MCDONALD DR, BRUNDEN KR, LANDRETH GE: Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J. Neurosci. (1997) 17:2284–2294.
  • ROGERS J, COOPER NR, WEBSTER S et al.: Complement activation by beta-amyloid in Alzheimer's disease. Proc. Natl. Acad. ScL USA (1992) 89:10016–10020.
  • WATSON MD, ROHER AE, KIM KS, SPIEGEL K, EMMERLING MR: Complement interactions with amyloid-01-42: a nidus for inflammation in AD brains. Amyloid-Intern. J. Exp. Olin. Invest. (1997) 4:147–156.
  • ROE MT, DAWSON DV, HULETTE CM, EINSTEIN G, CRAIN BJ Microglia are not exclusively associated with plaque-rich regions of the dentate gyrus in Alzheimer's disease. J. Neuropathol. Exp. Neurol. (1996) 55:366–371.
  • •The report clearly demonstrate microglial activation in the absence of amyloid deposition in AD.
  • GIULIAN D, HAVERKAMP LJ, YU JH et al: Specificdomains of 9-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J. NeuroscL (1996) 16:6021–6037.
  • SUGAYA K, REEVES M, MCKINNEY M: Topographic associations between DNA fragmentation and Alzheimer's disease neuropathology in the hippocampus. Neurochem. Int. (1997) 31:275–281.
  • LASSMANN H, BANCHER C, BREITSCHOPF H et al: Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathol. (1995) 89:35–41.
  • DIPATRE PL,GELMAN BB: Microglial cell activation in aging and Alzheimer's disease: Partial linkage with neurofibrillary tangle burden in the hippocampus. J. Neuropathol. Exp. Neurol. (1997) 56:143–149.
  • GRIFFIN WST, SHENG JG, ROBERTS GW, MRAK RE:Interleukin-1 expression in different plaque types in Alzheimer's disease: Significance in plaque evolution. J. Neuropathol. Exp. Neurol (1995) 54:276–281.
  • STRAUSS S, BAUER J, GANTER U et al.: Detection of interleukin 6 and alpha-2-macroglobulin immunore-activity in cortex and hippocampus of Alzheimer's disease patients. Lab. Invest. (1992) 66:223–230.
  • FIEBICH BL, HULL M, LIEB K et al: Prostaglandin E2 induces interleukin-6 synthesis in human astrocy-toma cells. J. Neurochem. (1997) 68:704–709.
  • •This paper shows a possible link between suppression of PGE2 by classical NSAIDs and a reduction of IL-6 synthesis in the brain.
  • DEL BO R, ANGERETTI N, LUCCA E, GRAZIA DE SIMONI M, FORLONI G: Reciprocal control of inflammatory cytokines, IL-1 and IL- 6, and 0-amyloid production in cultures. NeuroscL Lett. (1995) 188:70–74.
  • MRAK RE, SHENG JG, GRIFFIN WST: Glial cytokines in Alzheimer's disease: review and pathogenic implica-tions. Hum. Pathol. (1995) 26:816–823.
  • HULL M, STRAUSS S, VOLK B, BERGER M, BAUER J: Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer's disease patients. Acta Neuropathol. (1995) 89:544–551.
  • •This paper shows a link between IL-6 synthesis and the progression of amyloid pathology.
  • WOOD JA, WOOD PL, RYAN R et al.: Cytokine indices in Alzheimer's temporal cortex: no changes in mature IL-1 beta or 11-1 RA but increases in the associated acute phase proteins 11-6, alpha-2-macroglobulin and C-reactive protein. Brain Res. (1993) 629:245–252.
  • MAIMONE D, GUAZZI GC, ANNUNZIATA P: IL-6 detection in multiple sclerosis brain. J. Neurol. ScL (1997) 146:59–65.
  • CHIANG CS, STALDER A, SAMIMI A, CAMPBELL I: Reactivegliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice. Develop. NeuroscL (1994) 16:212–221.
  • BALASINGAM V, TEJADA-BERGES T, WRIGHT E, BOUCKOVA R, YONG VW: Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. j Neurosci. (1994) 14:846–856.
  • LIU XY, ERIKSON C, BRUN A: Cortical synaptic changesand gliosis in normal aging, Alzheimer's disease and frontal lobe degeneration. Dementia (1996) 7:128–134.
  • SALINERO 0, MORENO-FLORES MT, CEBALLOS ML, WANDOSELL F: 0-amyloid peptide induced cytoskeletal reorganization in cultured astrocytes. J. Neurosci. Res. (1997) 47:216–223.
  • LE PRINCE G, DELAERE P, FAGES C et al.: Alterations ofglial fibrillary acidic protein mRNA level in the aging brain and in senile dementia of the Alzheimer type. Neurosci. Lett. (1993) 151:71–73.
  • CAMPBELL IL, ABRAHAM CR, MASLIAH E et al.:Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl. Acad. ScL USA (1993) 90:10061–10065.
  • STEFFENSON SC, CAMPBELL IL, HENRIKSEN SJ:Site-specific hippocampal pathophysiology due to cerebral overexpression of interleukin-6 in transgenic mice. Brain Res. (1994) 652:149–153.
  • BELLINGER FP, MADAMBA SG, CAMPBELL IL, SIGGINS GR: Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpres-sion of interleukin-6. Neurosci. Lett. (1995) 198:95–98.
  • HEYSER CJ, MASLIAH E, SAMIMI A, CAMPBELL IL, GOLDLH: Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc. Natl. Acad. ScL USA (1997) 94:1500–1505.
  • BARNUM SR, JONES JL, MULLER-LADNER U et al: Chroniccomplement C3 gene expression in the CNS of transgenic mice with astrocyte-targeted interleukin-6 expression. Glias (1996) 18:107–117.
  • ABRAHAM CR, SELKOE DJ, POTTER H: Immunochemicalidentification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer's disease. Cell (1988) 52:487–501.
  • ROZEMULLER JM, STAM FC, EIKELENBOOM P: Acute phase proteins are present in amorphous plaques in the cerebral but not in the cerebellar cortex of patients with Alzheimer's disease. Neurosci. Lett. (1990) 119:75–78.
  • MA J, YEE A, BREWER HB, DAS S, POTTER H: Amyloid-associated proteins al-antichymotrypsin and apolipo-protein E promote assembly of Alzheimer 0-protein into filaments. Nature (1994) 372:92–94.
  • YASOJIMA K, SCHWAB C, MCGEER EG, MCGEER PL: Up-regulated production and activation of the comple-ment system in Alzheimer's disease brain. Am. J. Pathol. (1999) 154:927–936.
  • AFAGH A, CUMMINGS BJ, CRIBBS DH, COTMAN CW, TENNER AJ: Localization and cell association of Clq in Alzheimer's disease brain. Exp. Neurol. (1996) 138:22–32.
  • VALAZQUEZ P, CRIBBS DH, POULOS TL, TENNER AJ: Aspartate residue 7 in amyloid 0-protein is critical for classical complement pathway activation: Implica-tions for Alzheimer's disease pathogenesis. Nature Med. (1997) 3:77–79.
  • MCGEER PL, AKIYAMA H, ITAGAKI S, MCGEER EG: Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci. Lett. (1989) 107:341–346.
  • ITAGAKI S, AKIYAMA H, SAITO H, MCGEER PL: Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer's disease. Brain Res. (1994) 645:78–84.
  • VEERHUIS R, JANSSEN I, HACK CE, EIKELENBOOM P: Early complement components in Alzheimer's disease brains. Acta Neuropathol. (1996) 91:53–60.
  • ISCHENKO A, SAYAH S, PATTE C et al: Expression of a functional anaphylatoxin C3a receptor by astrocytes. Neurochem. (1998) 71:2487–2496.
  • PASINETTI GM, AISEN PS: Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer's disease brain. Neuroscience (1998) 87:319–324.
  • LUKIW WJ, BAZAN NG: Cyclooxygenase 2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex. j Neurosci. Res. (1997) 50:937–945.
  • LUKIW WJ, BAZAN NG: Strong nuclear factor-kappaB-DNA binding parallels cyclooxygenase-2 gene transcription in aging and in sporadic Alzheimer's disease superior temporal lobe neocortex. J. Neurosci. Res. (1998) 53:583–592.
  • KALTSCHMIDT B, UHEREK M, VOLK B, BAEUERLE PA, KALTSCHMIDT C: Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer's disease. Proc. Natl. Acad. Sci. USA (1997) 94:2642–2647.
  • LIEB K, KALTSCHMIDT C, KALTSCHMIDT B et al.: Interleukin-1 beta uses common and distinct signaling pathways for induction of the interleukin-6 and tumor necrosis factor alpha genes in the human astrocytoma cell line U373. J. Neurochem. (1996) 66:1496–1503.
  • LIEB K, FIEBICH BL, SCHALLER H, BERGER M, BAUER J: Interleukin-1 beta and tumor necrosis factor-alpha induce expression of alpha 1-antichymotrypsin in human astrocytoma cells by activation of nuclear factor-kappa B. J. Neurochem. (1996) 67:2039–2044.
  • BAUER MKA, LIEB K, SCHULZE-OSTHOFF K etal.: Expres-sion and regulation of cyclooxygenase-2 in rat microglia. Eur. j Biochem. (1997) 243:726–731.
  • O'BANION MK, CHANG JW, COLEMAN PD: Decreased expression of prostaglandin G/H synthase-2 (PGHS-2) in Alzheimer's disease brain. Adv. Exp. Med. Biol. (1996) 407:171–177.
  • HO L, PIERONI C, WINGER D eta].: Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer's disease. J. Neurosci. Res. (1999) 57:295–303.
  • OKA A,TAKASHIMA S: Induction of cyclo-oxygenase 2 in brains of patients with Down's syndrome and dementia of Alzheimer type: specific localization in affected neurones and axons. Neuroreport (1997) 8:1161–1164.
  • BANION MK, MILLER JC, CHANG JW, KAPLAN MD, COLEMAN PD: Interleukin-la induces prostaglandin G/H synthase-2 (cyclooxygenase-2) in primary murine astrocyte cultures. J. Neurochem. (1996) 66:2532–2540.
  • BAUER MK, LIEB K, SCHULZE-OSTHOFF K et al: Expres-sion and regulation of cyclooxygenase-2 in rat microglia. Eur. j Biochem. (1997) 243:726–731.
  • MINGHETTI L, POLAZZI E, NICOLINI A, CRÉMINON C, LEVI G: Up-regulation of cyclooxygenase-2 expression in cultured microglia by prostaglandin E2, cyclic AMP and non-steroidal anti-inflammatory drugs. Eur. J. Neurosci. (1997) 9:934–940.
  • SANZ 0, ESTRADA A, FERRER I, PLANAS AM: Differential cellular distribution and dynamics of HSP70, cyclooxygenase-2, and c-Fos in the rat brain after transient focal ischemia or kainic acid. Neuroscience (1997) 80:221–232.
  • SAIRANEN T, RISTIMAKI A, KARJALAINEN-LINDSBERG ML et al.: Cyclooxygenase-2 is induced globally in infarcted human brain. Ann. Neurol. (1998) 43:738–747.
  • MACKENZIE IR, MUNOZ DG: Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging. Neurology (1998) 50:986–990.
  • •This report show evidence that NSAIDs reduce microglial activation in humans.
  • KELLEY KA, HO L, WINGER D et al.: Potentiation ofexcitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am. J. Pathol. (1999) 155:995–1004.
  • KITAMURA Y, SHIMOHAMA S, KOIKE H eta].: Increasedexpression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer's disease brains. Biochem. Biophys. Res. Corn. (1999) 254:582–586.
  • YASOJIMA K, SCHWAB C, MCGEER EG, MCGEER PL: Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res. (1999) 830:226–236.
  • WINKLER J, CONNOR DJ, FRAUTSCHY SA et al: Lack oflong-term effects after 0-amyloid protein injections in rat brain. Neurobiol. Aging (1994) 15:601–607.
  • NETLAND EE, NEWTON JL, MAJOCHA RE, TATE BA: Indomethacin reverses the microglial response to amyloid beta-protein. Neurobiol. Aging (1998) 19:201–204.
  • GAMES D, ADAMS D, ALESSANDRINI R eta].:Alzheimer- type neuropathology in transgenic mice overexpressing V717F 0-amyloid precursor protein. Nature (1995) 373:523–527.
  • HSIAO K, CHAPMAN P, NILSEN S et al.: Correlativememory deficits, A0 elevation, and amyloid plaques in transgenic mice. Science (1996) 274:99–102.
  • IRIZARRY MC, SORIANO F, MCNAMARA M et al.: Abetadeposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J. Neurosci. (1997) 17:7053–7059.
  • SCHENK D, BARBOUR R, DUNN W et al: Immunizationwith amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature (1999) 400:173–177.
  • HYMAN BT, MARZLOFF K, ARRIAGADA PV: The lack ofaccumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution. J. Neuropathol. Exp. Neurol. (1993) 52:594–600.
  • FRAUTSCHY SA, YANG F, IRRIZARRY M et al.: Microglialresponse to amyloid plaques in APPsw transgenic mice. Am. J. Pathol (1998) 152:307–317.
  • PAPPOLLA MA, CHYAN YJ, OMAR RA eta].: Evidence ofoxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer's disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am. J. Pathol (1998) 152:871–877.
  • PAPPOLLA MA, OMAR RA, KIM KS, ROBAKIS NK: Immunohistochemical evidence of oxidative stress in Alzheimer's disease. Am. J. Pathol. (1992) 140:621–628.
  • CALHOUN ME, WIEDERHOLD KH, ABRAMOWSKI D et al.:Neuron loss in APP transgenic mice. Nature (1998) 395:755–756.
  • BREITNER JCS: Inflammatory processes and antiin-flammatory drugs in Alzheimer's disease: a current appraisal. Neurobiol. Aging (1996) 17:789–794.
  • STEWART WF, KAWAS C, CORRADA M, METTER EJ: Risk of Alzheimer's disease and duration of NSAID use. Neurology (1997) 48:626–632.
  • ROGERS J, KIRBY LC, HEMPELMAN SR. et al.: Clinical trial of indomethacin in Alzheimer's disease. Neurology (1993) 43:1609–1611.
  • SCHARF S, MANDER A, UGONI A, VAJDA F, CHRISTO-PHIDIS N: A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer's disease. Neurology (1999) 53:197–201.
  • PENNING TD, TALLEY JJ, BERTENSHAW SR et al.: Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibi-tors: identification of 445-(4-methylpheny0-3-(trifluoromethy0-1H-pyrazol-1-yllbenze nesulfonamide (SC-58635, celecoxibT). J. Med. Chem. (1997) 40:1347–1365.
  • GETS GS: Update on clinical developments with celecoxib, a new specific COX-2 inhibitor: what can we expect?j Rheumatol. (1999) 26 (Suppl. 56):31–36.
  • CHAN CC, BOYCE S, BRIDEAU C eta].: Rofecoxib [Vioxx, MK-0966; 4-(4'-methylsulfonylphenyl)- 3-phenyl -2-(51)-furanone]: a potent and orally active cyclooxygenase-2 inhibitor. Pharmacological and biochemical profiles. J. Pharmacol. Exp. Ther. (1999) 290:551–560.
  • PETROVA TV, AKAMA KT, VAN ELDIK LJ: Cyclopente-none prostaglandins suppress activation of microglia: down- regulation of inducible nitric-oxide synthase by 15-deoxy-Delta12,14- prostaglandin J2. Proc. Natl. Acad. ScL USA (13-4-1999) 96:4668–4673.
  • FIEBICH BL, LIEB K, HULL M, BERGER M, BAUER J: Effects of NSAIDs on IL-1 beta-induced IL-6 mRNA and protein synthesis in human astrocytoma cells. Neuroreport (1996) 7:1209–1213.
  • FIEBICH BL, HOFER TJ, LIEB K et al: The non-steroidal anti-inflammatory drug tepoxalin inhibits interleukin- 6 and alphal-anti-chymotrypsin synthesis in astrocytes by preventing degradation of IkappaB-alpha. Neuropharmacology (1999) 38:1325–1333.
  • GRUOL DL, NELSON TE: Physiological and pathological roles of interleukin-6 in the central nervous system. Mol Neurobiol. (1997) 15:307–339.
  • AISEN PS,PASINETTI GM: Glucocorticoids in Alzheimer's disease. The story so far. Drugs Aging (1998) 12:1–6.
  • LUPIEN SJ, GAUDREAU S, TCHITEYA BM et al.: Stress-induced declarative memory impairment healthy elderly subjects: relationship to cortisol reactivity. J. Endocrinol. Metabol. (1997) 82:2070–2075.
  • DE LEON MJ, MCRAE T, RUSINEK H et al.: Cortisol reduces hippocampal glucose metabolism in normal elderly, but not in Alzheimer's disease. J. Clin. Endocrinol. Metabol. (1997) 82:3251–3259.
  • GOODMAN Y, BRUCE AJ, CHENG B, MATTSON MP: Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J. Neurochem. (1996) 66:1836–1844.
  • SCHUBERT P, OGATA T, MARCHINI C, FERRONI S, RUDOLPHI K: Protective mechanisms of adenosine in neurons and glial cells. Ann. NY Acad. Sci. (1997) 825:1–10.
  • SI QS, NAKAMURA Y, SCHUBERT P, RUDOLPHI K, KATAOKA K: Adenosine and propentofylline inhibit the proliferation of cultured microglial cells. Exp. Neurology (1996) 137:345–349.
  • KITTNER B, ROSSNER M, ROTHER M: Clinical trials in dementia with propentofylline. Ann. NY Acad. ScL (1997) 826:307–316.
  • DEAN JL, BROOK M, CLARK AR, SAKLATVALA J: p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J. Biol. Chem. (1999) 274:264–269.
  • GUAN Z, BAIER LD, MORRISON AR: p38 mitogen-activated protein kinase down-regulates nitric oxide and up-regulates prostaglandin E2 biosynthesis stimulated by interleukin-113. J. Biol. Chem. (1997) 272:8083–8089.
  • GUAN Z, BUCKMAN SY, MILLER BW, SPRINGER LD, MORRISONAR:Interleukin-10-inducedcyclooxygenase-2 expression requires activation of both c-Jun N112-terminal kinase and p38 MAPK signal pathways in rat renal mesangial cells. J. Biol. Chem. (1998) 273:28670–28676.
  • COOGAN AN, O'NEILL LA, O'CONNOR JJ: The P38 mitogen-activated protein kinase inhibitor SB203580 antagonizes the inhibitory effects of interleukin-lbeta on long-term potentiation in the rat dentate gyrus in vitro. Neuroscience (1999) 93:57–69.
  • LIVERTON NJ, BUTCHER JW, CLAIBORNE CF etal.: Design and synthesis of potent, selective, and orally bioavail-able tetrasubstituted imidazole inhibitors of p38 mitogen-activated protein kinase. J. Med. Chem. (1999) 42:2180–2190.
  • POULIOT M, BAILLARGEON J, LEE JC, CLELAND LG, JAMES MJ: Inhibition of prostaglandin endoperoxide synthase-2 expression in stimulated human monocytes by inhibitors of p38 mitogen-activated protein kinase. j Immunol (1997) 158:4930–4937.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.