30
Views
7
CrossRef citations to date
0
Altmetric
Review

Current status of viral gene therapy for brain tumours

Pages 713-726 | Published online: 24 Feb 2005

Bibliography

  • ARAQUE A, PARPURA V, SANZGIRI RP, HAYDON PG: Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. (1999) 22(5)208–215.
  • GONZALES MF: Classification and pathogenesis of brain tumors. In: Brain Tumours. AH Kaye, ER Laws, (Eds.), Churchill Livingstone, New York, USA (1995):31–45.
  • HOSHINO T, AHN D, PRADOS MD, LAMBORN K, WILSON CB: Prognostic significance of the proliferative potential of intracranial gliomas measured by bromodeoxyuridine labeling. Int. J. Cancer (1993) 53(4)550–555.
  • LEGLER JM, RIES LA, SMITH MA et al.: Cancer surveillance series: brain and other central nervous system cancers: recent trends in incidence and mortality. J. Natl. Cancer Inst. (1999) 91(16):1382–1390.
  • GILES GG, GONZALES MF: Epidemiology of brain tumors and factors in prognosis. In: Brain Tumours. Kaye AH, Laws ER (Eds.) Churchill Livingstone, New York (1995):47–67.
  • LANG FF, MILLER DC, KOSLOW M, NEWCOMB EW: Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J. Neurosurg (1994) 81(3):427–436.
  • WATANABE K, TACHIBANA O, SATA K et al: Overexpres-sion of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol. (1996) 6 (3) :217–223.
  • TOHMA Y, GRATAS C, BIERNAT W et al. PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J. Neuropa-thol. Exp. Neurol. (1998) 57(7):684–689.
  • BIERNAT W, KLEIHUES P, YONEKAWA Y, OHGAKI H: Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J. Neuropathol. Exp. Neurol. (1997) 56(2):180–185.
  • FRIEDLANDER DR, ZAGZAG D, SHIFF B et al.: Migration of brain tumor cells on extracellular matrix proteins in vitro correlates with tumor type and grade and involves alphaV and beta! integrins. Cancer Res. (1996) 56(8):1939–1947.
  • COLLINS VP: Progression as exemplified by human astrocytic tumors. Semin. Cancer Biol. (1999) 9(4):267–276.
  • •A summary of multistep changes in astrocytic by the scientist who contributed the most to this area.
  • HERMENS WT, VERHAAGEN J: Viral vectors, tools for gene transfer in the nervous system. Prog. Neurobiol (1998) 55 (4):399–432.
  • SPAETE RR, FRENKEL N: The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell (1982) 30(1):295–304.
  • ••A landmark paper describing how a human virus could bemodified to carry DNA of interest.
  • ROIZMAN B, SEARS AE, Herpes simplex viruses and their replication.. In: The Human Herpesviruses. Roizman B, Whitley RJ, Lopez C (Eds.) Raven Press, New York, USA (1993):11–61.
  • KWONG AD, KRUPER JA, FRENKEL N: Herpes simplex virus virion host shutoff function. J. Virology (1988) 62 (3) :912–921.
  • MACKEM S, ROIZMAN B: Differentiation between alpha promoter and regulator regions of herpes simplex virus 1: the functional domains and sequence of a movable alpha regulator. Proc. Natl. Acad. Sci. USA (1982) 79(16):4917–4921.
  • DOBSON AT, MARGOLIS TP, SEDARATI F, STEVENS JG, FELDMAN LT: A latent, nonpathogenic HSV-1-derived vector stably expresses beta-galactosidase in mouse neurons. Neuron (1990) 5(3):353–360.
  • JOHNSON PA, MIYANOHARA A, LEVINE F, CAHILL T, FRIEDMANN T: Cytotoxicity of a replication-defective mutant of herpes simplex virus Type 1. J. Vim]. (1992) 66(5)2952–2965.
  • CHOU J, KERN ER, WHITLEY RJ, ROIZMAN B: Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science (1990) 250(4985):1262–1266.
  • ••Molecular dissection of various genes leads to a gene thatmay be responsible for the neurotropism of herpes virus.
  • CHOU J, ROIZMAN B: The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc. Nad Acad. Sci. USA (1992) 89(8):3266–3270.
  • CHOU J, ROIZMAN B: Herpes simplex virus 1gamma(1)34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proc. Nati Acad. Sci. USA (1994) 91 (12):5247–5251.
  • CHAMBERS R, GILLESPIE GY, SOROCEANU L et al: Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc. Natl. Acad. Sci. USA (1995) 92(5):1411–1415.
  • KESARI S, LEE VM, BROWN SM, TROJANOWSKI JQ, FRASER NW: Selective vulnerability of mouse CNS neurons to latent infection with a neuroattenuated herpes simplex virus-1. J. Neurosci. (1 9 9 6) 16(18)5644–5653.
  • KESARI S, RANDAZZO BP, VALYI-NAGY T et al: Therapy of experimental human brain tumors using a neuroat-tenuated herpes simplex virus mutant. Lab. Invest. (1995) 73(5):636–648.
  • GELLER Al, BREAKEFIELD XO: A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science (1 9 88) 241(4873)1667–1669.
  • •A reporter gene is expressed by a HSV-1 vector, thereby demonstrating the principle that a foreign gene can be expressed by a viral vector in infected mammalian cells.
  • FREINKEL N, SINGER O, KWONG RENKEL AD: Minire-view: the herpes simplex virus amplicon-a versatile defective virus vector. Gene Ther. (1994) 1 (Suppl. 1):S40–46.
  • YONISH-ROUACH E, RESNITZKY D, LOTEM J. et al.: Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature (1991) 352(6333)345–347.
  • GRAHAM FL, PREVEC L: Methods for construction of adenovirus vectors. Mol. Biotechnol. (1995) 3 (3):207–220.
  • DAVIDSON BL, ALLEN ED, KOZARSKY KF, WILSON JM, ROESSLER BJ: A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nature Genet. (1993) 3(3):219–223.
  • •This paper describes the possibility of using adenovirus as a vector system in the CNS.
  • AKLI S, CAILLAUD C, VIGNE E et al.: Transfer of a foreigngene into the brain using adenovirus vectors. Nature Genet. (1993) 3(3):224–228.
  • •See reference [29] for annotation.
  • BAJOCCHI G, FELDMAN SH, CRYSTAL RG, MASTRANGELI A: Direct in vivogene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Nature Genet. (1993) 3(3):229–234.
  • •See reference [29] for annotation.
  • LA SALLE G, ROBERT JJ, BERRARD S et al.: An adenovirus vector for gene transfer into neurons and glia in the brain. Science (1993) 259(5097):988–990.
  • •See reference [29] for annotation.
  • ZHANG Y, SCHNEIDER RJ: Adenovirus inhibition of celltranslation facilitates release of virus particles and enhances degradation of the cytokeratin network. J. Vim]: (1994) 68(4):2544–2555.
  • YANG Y, NUNES FA, BERENCSI K et al.: Cellularimmunity to viral antigens limits El-deleted adenovi-ruses for gene therapy. Proc. Nati Acad. Sci. USA (1994) 91 (104407–4411.
  • ENGELHARDT JF, YE X, DORANZ B, WILSON JM: Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc. Natl. Acad. Sci. USA (1994) 91(13)6196–6200.
  • WANG Q, JIA XC, FINER MH: A packaging cell line for propagation of recombinant adenovirus vectors containing two lethal gene-region deletions. Gene Ther. (1995) 2(10775–783.
  • WANG Q, FINER MH: Second-generation adenovirus vectors. Nature Med. (1996) 2(6):714–716.
  • KROUGLIAK V, GRAHAM FL: Development of cell lines capable of complementing El, E4 and protein IX defective adenovirus Type 5 mutants. Hum. Gene Ther. (1995) 6(12):1575–1586.
  • PARKS RJ, CHEN L, ANTON M et al: A helper-dependentadenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA (1996) 93(24):13565–13570.
  • FISHER KJ, CHOI H, BURDA J, CHEN SJ, WILSON JM: Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology (1996) 217(0:11–22.
  • LINDEN RM, BERNS KI: Site-specific integration by adeno-associated virus: a basis for a potential gene therapy vector [editorial]. Gene Ther. (1997) 4(1)4–5.
  • LINDEN RM, WARD P, GIRAUD C, WINOCOUR E, BERNSKI: Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA (1996) 93(20:11288–11294.
  • MUZYCZKA N: Use of adeno-associated virus as ageneral transduction vector for mammalian cells. Curr. Top. Microbiol. Immunol. (1992) 158:97–129.
  • WEITZMAN MD, KYOSTIO SR, KOTIN RM, OWENS RA: Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integra-tion site in human DNA. Proc. Natl. Acad. Sci. USA (1994) 91(13)5808–5812.
  • BERNS KI: Parvovirus replication. Microbiol. Rev. (1990)54 (3):316–329.
  • KEARNS WG, AFIONE SA, FULMER SB etal. Recombinant adeno-associated virus (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line. Gene Ther. (1996) 3 (9) 748–755
  • PONNAZHAGAN S, ERIKSON D, KEARNS WG et al. Lack of site-specific integration of the recombinant adeno-associated virus 2 genomes in human cells. Hum. Gene Ther. (1997) 8(3):275–284.
  • WU P, PHILLIPS MI, BUI J, TERWILLIGER EF: Adeno- associated virus vector-mediated transgene integra-tion into neurons and other nondividing cell targets. J. Virol. (1998) 72(7):5919–5926.
  • KAPLITT MG, LEONE P, SAMULSKI RJ et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genet. (1994) 8(2):148–154.
  • LIEBER A, STEINWAERDER DS, CARLSON CA, KAY MA: Integrating adenovirus-adeno-associated virus hybrid vectors devoid of all viral genes. J. Virol. (1999) 73(10:9314–9324.
  • FISHER KJ, KELLEY WM, BURDA JF, WILSON JM: A novel adenovirus-adeno-associated virus hybrid vector that displays efficient rescue and delivery of the AAV genome. Hum. Gene Ther. (1996) 7(17):2079–2087.
  • JOHNSTON KM, JACOBY D, PECHAN PA et al.: HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum. Gene Ther. (1997) 8(3)359–370.
  • ROBBINS PD, TAHARA H, MUELLER G et al: Retroviralvectors for use in human gene therapy for cancer, Gaucher disease and arthritis. Ann. NY Acad. Sci. (1994) 716:72–89.
  • MILLER AD, MILLER DG, GARCIA JV, LYNCH CM: Use of retroviral vectors for gene transfer and expression. Methods Enzymol. (1993) 217:581–599.
  • MILLER AD: Retrovirus packaging cells. Hum. Gene Ther. (1990) 1(0:5–14.
  • RAINOV NG, KRAMM CM, ABOODY-GUTERMAN K et al.:Retrovirus-mediated gene therapy of experimental brain neoplasms using the herpes simplex virus-thymidine kinase/ganciclovir paradigm. Cancer Gene Ther. (1996) 3(2):99–106.
  • KAFRI T, BLOMER U, PETERSON DA, GAGE FH, VERMAIM: Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nature Genet. (1997) 17(3):314–317.
  • MIYOSHI H, TAKAHASHI M, GAGE FH, VERMA IM: Stableand efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc. Nati Acad. Sci. USA (1997) 94(19):10319–10323.
  • REISER J, HARMISON G, KLUEPFEL-STAHL S et al.: Transduction of nondividing cells using pseudotyped defective high-titer HIV Type 1 particles. Proc. Natl. Acad. Sci. USA (1996) 93(26):15266–15271.
  • NALDINI L, BLOMER U, GALLAY P et al: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science (1996) 272(5259):263–267.
  • PAULUS W, BAUR I, BOYCE FM, BREAKEFIELD XO, REEVES SA: Self-contained, tetracycline-regulated retroviral vector system for gene delivery to mammalian cells. J. Vim]. (1996) 70(1):62–67.
  • MOOLTEN FL, WELLS JM, HEYMAN RA, EVANS RM: Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene. Hum. Gene Ther. (1990) 1 (2): 125–134.
  • MOOLTEN FL, WELLS JM: Curability of tumors bearingherpes thymidine kinase genes transferred by retroviral vectors. J. Natl. Cancer Inst. (1990) 82 (4):297–300.
  • EZZEDDINE ZD, MARTUZA RL, PLATIKA D et al.: Selectivekilling of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biol. (1991) 3(6):608–614.
  • •One of the first papers to illustrate the use of the HSV-tk system to kill glioma cells.
  • TAKAMIYA Y, SHORT MP, EZZEDDINE ZD et al.: Gene therapy of malignant brain tumors: a rat glioma line bearing the herpes simplex virus Type 1-thymidine kinase gene and wild type retrovirus kills oTher. tumor cells. J. Neuroscience Res. (1992) 33(3):493–503.
  • TAKAMIYA Y, SHORT MP, MOOLTEN FL et al.: An experi-mental model of retrovirus gene therapy for malignant brain tumors. J. Neurosurg. (1993) 79 (1):104–110.
  • CULVER KW, RAM Z, WALLBRIDGE S et al.: In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science (1992) 256(5063):1550–1552.
  • ••Regression of brain tumours in a murine model occurs afteruse of retroviruses.
  • VINCENT AJ, VOGELS R, SOMEREN GV et al: Herpessimplex virus thymidine kinase gene therapy for rat malignant brain tumors. Hum. Gene Ther. (1996) 7(2):197–205.
  • ECK SL, ALAVI JB, ALAVI A et al.: Treatment of advancedCNS malignancies with the recombinant adenovirus 115.01ORSVTK: a Phase I trial. Hum. Gene Ther. (1996) 7(12):1465–1482.
  • •This Phase I trial and others (see Kun et al. [92]) demonstrated the safety of viral vectors to treat malignant tumors. The effectiveness of these first vectors is unclear and awaits future Phase III trials.
  • KLATZMANN D, VALERY CA, BENSIMON G et al: A PhaseI/II study of herpes simplex virus Type 1 thymidine kinase 'suicide' gene therapy for recurrent glioblas-toma. Study Group on Gene Therapy for Glioblastoma. Hum. Gene Ther. (1998) 9(17):2595–2604.
  • CULVER KW: Gene therapy for malignant neoplasms ofthe CNS. Bone Marrow Transplant. (1996) 18(3):S6–9.
  • MESNIL M, PICCOLI C, TIRABY G, WILLECKE K, YAMASAKI H: Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc. Natl. Acad. Sci. USA (1996) 93 (5): 1831–1835.
  • DILBER MS, ABEDI MR, CHRISTENSSON B et al.: Gap junctions promote the bystander effect of herpes simplex virus thymidine kinase in vivo. Cancer Res. (1997) 57(8):1523–1528.
  • ESTIN D, LI M, SPRAY D, WU JK: Connexins are expressed in primary brain tumors and enhance the bystander effect in gene therapy. Neurosurgery (1999) 44 (2):361–369.
  • CAIRNCROSS JG, UEKI K, ZLATESCU MC et al.: Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendro-gliomas. J. Natl. Cancer Inst. (1998) 90(19):1473–1479.
  • FULCI G, ISHII N, VAN MEIR EG: p53 and brain tumors: from gene mutations to gene therapy. Brain Pathol. (1998) 8(4):599–613.
  • SANTARIUS T, KIRSCH M, ROSSI ML, BLACK PM: Molecular aspects of neuro-oncology. Clin. Neurol. Neurosurg. (1997) 99(3):184–195.
  • HAHN WC, COUNTER CM, LUNDBERG AS et al.: Creation of human tumour cells with defined genetic elements. Nature (1999) 400(6743):464–468.
  • BADIE B, DRAZAN KE, KRAMAR MH, SHAKED A, BLACK KL: Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats. Neurol. Res. (1995) 17(3) :209–216.
  • ROSENFELD MR, MENESES P, DALMAU J. et al.: Gene transfer of wild-type p53 results in restoration of tumor-suppressor function in a medulloblastoma cell line. Neurology (1995) 45(8):1533–1539.
  • WEN DY, HALL WA, CONRAD J. et al.: Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats. Neurol. Res. (1995) 17(3):209–216.
  • BADIE B, KRAMAR MH, LAU R et al.: Adenovirus-mediated p53 gene delivery potentiates the radiation-induced growth inhibition of experimental brain tumors. J. Neurooncol. (1998) 37(3):217–222.
  • LANG FF, YUNG WK, RAJU U et al.: Enhancement of radiosensitivity of wild-type p53 human glioma cells by adenovirus-mediated delivery of the p53 gene. J. Neurosurg. (1998) 89(0:125–132.
  • SWISHER SG, ROTH JA, NEMUNAITIS J et al.: Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J. Natl. Cancer Inst. (1999) 91(9)763–771.
  • RILEY DJ, NIKITIN AY, LEE WH: Adenovirus-mediated retinoblastoma gene therapy suppresses spontaneous pituitary melanotroph tumors in Rb+/- mice. Nature Med. (1996) 2(12):1316–1321.
  • NISHIKAWA R, CHENG SY, NAGASHIMA R et al.: Expres-sion of vascular endothelial growth factor in human brain tumors. Acta Neuropathol. (Berl) (1998) 96(5)453–462.
  • HOLASH J, WIEGAND SJ, YANCOPOULOS GD: New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene (1999) 18(38)5356–5362.
  • VEIKKOLA T, ALITALO K: VEGFs, receptors and angiogenesis. Semin. Cancer Biol. (1999) 9 (3):211–220.
  • NEUFELD G, COHEN T, GENGRINOVITCH S, POLTORAKZ: Vascular endothelial growth factor (VEGF) and its receptors. Faseb. J. (1999) 13(0:9–22.
  • MILLAUER B, SHAWVER LK, PLATE KH, RISAU W, ULLRICH A: Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature (1994) 367(6463)576–579.
  • MACHEIN MR, RISAU W, PLATE KH: Antiangiogenic gene therapy in a rat glioma model using a dominant-negative vascular endothelial growth factor receptor 2. Hum. Gene Ther. (1999) 10(7):1117–1128.
  • KUN LE, GAJJAR A, MUHLBAUER M et al.: Stereotacticinjection of herpes simplex thymidine kinase vector producer cells (PA317-G1Tk1SvNa.7) and intravenous ganciclovir for the treatment of progressive or recurrent primary supratentorial pediatric malignant brain tumors. Hum. Gene Ther. (1995) 6(9):1231–55.
  • PACKER RJ, RAFFEL C, VILLABLANCA JG et al. Treatment of progressive or recurrent pediatric malignant supratentorial brain tumors with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration. J. Neurosurg. (2000) 92 (2) 249–54
  • RAM Z, CULVER KW, OSHIRO EM et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nature Med. (1997) 3 (12) 1354–1361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.