107
Views
14
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics of colorectal cancer

Pages 2607-2616 | Published online: 30 Nov 2005

Bibliography

  • EVANS WE, RELLING MV: Pharmacogenomics: translating functional genomics into rational therapeutics. Science (1999) 286(5439):487–491.
  • SARGENT DJ, NIEDZWIECKI D, O'CONNELL MJ, SCHILSKY RL: Recommendation for caution with irinotecan, fluorouracil, and leucovorin for colorectal cancer. N Engl. J. Med. (2001) 345(2):144–145.
  • EVANS WE, MCLEOD HL: Pharmacogenomics-drug disposition, drug targets, and side effects. N Engl. J. Med. (2003) 348(0:538–549.
  • WATTERS P(1, MCLEOD HL: Recent advances in the pharmacogenetics of cancer chemotherapy. Curr. Opin. Mol. Ther. (2002) 4(6):565–571.
  • MARSH S, KWOK P, MCLEOD HL: SNP databases and pharmacogenetics: great start, but a long way to go. Hum. Mutat. (2002) 20(3):174–179.
  • WHEELER DL, BARRETT T, BENSON DA et al.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. (2005) 33:D39–D45.
  • KWOK PY: Methods for genotyping single nucleotide polymorphisms. Ann. Rev. Genomics Hum. Genet. (2001) 2:235–258.
  • FREIMUTH RR, AMEYAW M-M, PRITCHARD SC, KWOK P-Y, MCLEOD HL: High-throughput genotyping methods for pharmacogenomic studies. Current Pharmacogenomics (2004) 2(1):21–33.
  • SYVANEN AC: Toward genome-wide SNP genotyping. Nat. Genet. (2005) 37(Suppl.):55–510.
  • POON Mk O'CONNELL MJ, MOERTEL CG et al.: Biochemical modulation of fluorouracil: evidence of significant improvement of survival and quality of life in patients with advanced colorectal carcinoma. J. Clin. Oncol. (1989) 7(141407–1418.
  • SALTZ LB, COX JV, BLANKE C et ell.: Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N EngL J. Med. (2000) 343(13):905–914.
  • GOLDBERG RM, SARGENT DJ, MORTON RF et aL: A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J. Clin. Oncol. (2004) 22(1):23–30.
  • ••Randomised trial comparingcombinations of irinotecan, oxaliplatin and 5-fluorouracil, including toxicity data.
  • HOFF PM, PAZDUR R: Progress in the development of novel treatments for colorectal cancer. Oncology (2004) 18(6):705–708.
  • HURWITZ HI, FEHRENBACHER L, HAINSWORTH JD et aL: Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J. Clin. Oncol. (2005) 23(15):3502–3508.
  • CUNNINGHAM D, HUMBLET Y, SIENA S et aL: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N EngL J. Med. (2004) 351(4):337–345.
  • HURWITZ H, FEHRENBACHER L, NOVOTNY W et aL: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N EngL J. Med. (2004) 350(23):2335–2342.
  • SCHRAG D: The price tag on progress-chemotherapy for colorectal cancer. N Engl. J. Med. (2004) 351(4):317–319.
  • HEIDELBERGER C, CHAUDHURI NK, DANNEBERG P et aL: Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature (1957) 179(4561):663–666.
  • MCLEOD HL, KING CR, MARSH S: Application of pharmacogenomics in the individualization of chemotherapy for gastrointestinal malignancies. Clin. Colorectal Cancer (2004) 4\(Suppl. 1):543–47.
  • JOHNSTON PG, FISHER ER, ROCKETTE HE et aL: The role of thymidylate synthase expression in prognosis and outcome of adjuvant chemotherapy in patients with rectal cancer. Clin. Oncol. (1994) 12(12):2640–2647.
  • ••Identifies thymidylate synthase as a markerfor 5-fluorouracil response.
  • JOHNSTON PG, LENZ HJ, LEICHMAN CG et al.: Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res. (1995) 55(7):1407–1412.
  • LEICHMAN CG, LENZ HJ, LEICHMAN L et aL: Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. j Clin. Oncol. (1997) 15(10):3223–3229.
  • SOHN KJ, CROXFORD R, YATES Z, LUCOCK M, KIM YT: Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. NatL Cancer Inst. (2004) 96(2):134–144.
  • VAN KUILENBURG AB, MEINSMA R, ZOETEKOUW L, VAN GENNIP AH: High prevalence of the IV514 + 1G A mutation in the dihydropyrimidine dehydrogenase gene of patients with severe 5-fluorouracil-associated toxicity. Pharmacogenetics (2002) 12(7):555–558.
  • WEI X, ELIZONDO G, SAPONE A et al.: Characterization of the human dihydropyrimidine dehydrogenase gene. Genomics (1998) 51(3):391–400.
  • EZZELDIN H, JOHNSON MR, OKAMOTO Y, DIASIO R: Denaturing high performance liquid chromatography analysis of the DPYD gene in patients with lethal 5-fluorouracil toxicity. Clin. Cancer Res. (2003) 9(8):3021–3028.
  • SECK K, RIEMER S, KATES R et al.: Analysis of the DPYD gene implicated in 5-fluorouracil catabolism in a cohort of Caucasian individuals. Clin. Cancer Res. (2005) 11(161:5886–5892.
  • ZHU AX, PUCHALSKI TA, STANTON VP JR et aL: Dihydropyrimidine dehydrogenase and thymidylate synthase polymorphisms and their association with 5-fluorouracil/ leucovorin chemotherapy in colorectal cancer. Clin. Colorectal Cancer (2004) 3(4):225–234.
  • MARSH S, COLLIE-DUGUID ES, LIT, LIU X, MCLEOD HL: Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasian and Asian populations. Genomics (1999) 58(3):310–312.
  • MARSH S, AMEYAW MM, GITHANG'A J et al.: Novel thymidylate synthase enhancer region alleles in African populations. Hum. Mutat. (2000) 16(6):528.
  • HORIE N, MBA H, OGURO K, HOJO H, TAKEISHI K: Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5'-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct. Funct. (1995) 20(3):191–197.
  • KAWAKAMI K, SALONGA D, PARK JM et al.: Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression. Clin. Cancer Res. (2001) 7(12) :4096–4101.
  • MARSH S, MCKAY JA, CASSIDY J, MCLEOD HL: Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int. J. Oncol. (2001) 19(2):383–386.
  • VILLAFRANCA E, OKRUZHNOV Y, DOMINGUEZ MA et al.: Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer. J. Clin. Oncol. (2001) 19(6):1779–1786.
  • ••Identifies the thymidylate synthasepromoter enhancer as a genetic marker for the prediction of 5-fluorouracil response.
  • MCLEOD HL, TAN B, MALYAPA R et aL: Genotype-guided neoadjuvant therapy for rectal cancer. Proc. Am. Soc. Clin. OncoL (2005) 23:197.
  • MANDOLA MV STOEHLMACHER J, MULLER-WEEKS S et al.: A novel single nucleotide polymorphism within the 5' tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res. (2003) 63(11):2898–2904. Discovery of a single nucleotide polymorphism within the thymidylate synthase promoter enhancer region that stratifies thymidylate synthase expression levels for the TSER*3 allele.
  • KAWAKAMI K, WATANABE G: Identification and functional analysis of single nucleotide polymorphism in the tandem repeat sequence of thymidylate synthase gene. Cancer Res. (2003) 63(106004–6007.
  • MARCUELLO E, ALTES A, DEL RIO E et al.: Single nucleotide polymorphism in the 5' tandem repeat sequences of thymidylate synthase gene predicts for response to fluorouracil-based chemotherapy in advanced colorectal cancer patients. Int. J. Cancer (2004) 112(5):733–737.
  • ULRICH CM, BIGLER J, VELICER CM et al.: Searching expressed sequence tag databases: discovery and confirmation of a common polymorphism in the thymidylate synthase gene. Cancer Epidemiol. Biomarkers Prev. (2000) 9(12):1381–1385.
  • MANDOLA MV STOEHLMACHER J, ZHANG W et al.: A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics (2004) 14(5):319–327.
  • ETIENNE MC, ILC K, FORMENTO JL et al.: Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms: relationships with 5-fluorouracil sensitivity. Br. J. Cancer (2004) 90(2):526–534.
  • ETIENNE MC, FORMENTO JL, CHAZAL M et al.: Methylenetetrahydrofolate reductase gene polymorphisms and response to fluorouracil-based treatment in advanced colorectal cancer patients. Pharmacogenetics (2004) 14(12):785–792.
  • CHARASSON V, BELLOTT R, MEYNARD D et al.: Pharmacogenetics of human carboxylesterase 2, an enzyme involved in the activation of irinotecan into SN-38. Clin. Pharmacol Ther. (2004) 76(6):528–535.
  • WU MH, CHEN P, WU X et ell.: Determination and analysis of single nucleotide polymorphisms and haplotype structure of the human carboxylesterase 2 gene. Pharmacogenetics (2004) 14(9):595–605.
  • MARSH S, XIAO M, YU J et al.: Pharmacogenomic assessment of carboxylesterases 1 and 2. Genomics (2004) 84(4):661–668.
  • SANTOS A, ZANETTA S, CRESTEIL T et al.: Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin. Cancer Res. (2000) 6(5):2012–2020.
  • HUSTERT E, ZIBAT A, PRESECAN-SIEDEL E et al.: Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab. Dispos. (2001) 29(11):1454–1459.
  • MARCUELLO E, ALTES A, MENOYO A et al.: UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br. J. Cancer (2004) 91(4):678–682.
  • INNOCENTI F, UNDEVIA SD, IYER L et al.: Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. j Clin. Oncol. (2004) 22(8):1382–1388.
  • ••Prospective study defining UGT1A1*28 asa genetic marker for irinotecan toxicity.
  • SPARREBOOM A, DANESI R, ANDO Y, CT-JAN J, FIGG WD: Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist. Updat. (2003) 6(2):71–84.
  • STRASSBURG CP, NGUYEN N, MANNS MP, TUKEY RH: UDP-glucuronosyltransferase activity in human liver and colon. Gastroenterology (1999) 116(1):149–160.
  • BOSMA PJ, CHOWDHURY JR, BAKKER C et al.: The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Engl. J. Med. (1995) 333(18):1171–1175.
  • BEUTLER E, GELBART T, DEMINA A: Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc. Natl. Acad. Sci. USA (1998) 95(108170–8174.
  • CECCHIN E, RUSSO A. CORONA G et al.: UGT1A1*28 polymorphism in ovarian cancer patients. Oncol. Rep. (2004) 12(2):457–462.
  • IYER L, HALL D, DAS S et ell.: Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin. PharmacoL Ther. (1999) 65(5):576–582.
  • ZHOU Q, SPARREBOOM A, TAN EH et al.: Pharmacogenetic profiling across the irinotecan pathway in Asian patients with cancer. Br. J. Clin. Pharmacol (2005) 59(4):415–424.
  • HORIKAWA M, KATO Y, TYSON CA, SUGIYAMA Y: The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents: probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Drug Metab. Pharmacokinet. (2002) 17(1):23–33.
  • SCHELLENS JH, MALIEPAARD M, SCHEPER RJ et al.: Transport of topoisomerase I inhibitors by the breast cancer resistance protein. Potential clinical implications. Ann. NY Acad. Sci. (2000) 922:188–194.
  • CANDEIL L, GOURDIER I, PEYRON D et al.: ABCG2 overexpression in colon cancer cells resistant to 5N38 and in irinotecan-treated metastases. Int. J. Cancer (2004) 109(6):848–854.
  • DEAN M, HAMON Y, CHIMINI G: The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. (2001) 42(7):1007–1017.
  • MATHIJSSEN RH, MARSH S, KARLSSON MO et al.: Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin. Cancer Res. (2003) 9(9):3246–3253.
  • SAI K, KANIWA N, ITODA M et al.: Haplotype analysis of ABCB1/MDR1 blocks in a Japanese population reveals genotype-dependent renal clearance of irinotecan. Pharmacogenetics (2003) 13(12):741–757.
  • HORIKAWA M, KATO Y, SUGIYAMA Y: Reduced gastrointestinal toxicity following inhibition of the biliary excretion of irinotecan and its metabolites by probenecid in rats. Pharm. Res. (2002) 19(9):1345–1353.
  • INNOCENTI F, UNDEVIA SD, CHEN PX et al.: Pharmacogenetic analysis of interindividual irinotecan (CPT-11) pharmacokinetic (PK) variability: evidence for a functional variant of ABCC2. Proc. Am. Assoc. Clin. Oncol. (2004) 23:129.
  • INNOCENTI F, UNDEVIA SD, ROSNER GL et al.: Irinotecan (CPT-11) pharmacokinetics (PK) and neutropenia: interaction among UGT1A1 and transporter genes. Proc. Am. Soc. Clin. Oncol. (2005) 23:136s.
  • IMAI Y, NAKANE M, KAGE K et ell.: C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. MoL Cancer Ther. (2002) 1(8):611–616.
  • DE JONG FA, MARSH S, MATHIJSSEN RH et aL: ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin. Cancer Res. (2004) 10(17):5889–5894.
  • SPARREBOOM A. GELDERBLOM H, MARSH S et al.: Diflomotecan Pharmacokinetics in relation to ABCG2 421C A genotype. Clin. PharmacoL Ther. (2004) 76(1):38–44.
  • SAMIMI G, SAFAEI R, KATANO K et ell.: Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin. Cancer Res. (2004) 10(14):4661–4669.
  • NAKAYAMA K, KANZAKI A. TERADA K et al.: Prognostic value of the Cu-transporting ATPase in ovarian carcinoma patients receiving cisplatin-based chemotherapy. Clin. Cancer Res. (2004) 10(8):2804–2811.
  • SAFAEI R, HOWELL SB: Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit. Rev. Oncol. HematoL (2005) 53(1):13–23.
  • STOEHLMACHER J, PARK DJ, ZHANG W et al.: Association between glutathione S-transferase P1, Ti, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J. Natl. Cancer Inst. (2002) 94(12):936–942.
  • GROTHEY A, MCLEOD HL, GREEN EM et al.: Glutathione S-transferase P1 1105V (GSTP1 I105V) polymorphism is associated with early onset of oxaliplatin-induced neurotoxicity. Proc. Am. Assoc. Clin. Oncol. (2005) 23:248.
  • RYU JS, HONG YC, HAN HS et aL: Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer (2004) 44(3):311–316.
  • ISLA D, SARRIES C, ROSELL R et al.: Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann. Oncol. (2004) 15(8):1194–1203.
  • STOEHLMACHER J, PARK DJ, ZHANG W et al.: A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br. J. Cancer (2004) 91(2):344–354. Polygenic approach to colorectal cancer pharmacogenetics.
  • VIGUIER J, BOIGE V, MIQUEL C et al.: ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer. Clin. Cancer Res. (2005) 11(17):6212–6217.
  • PARK DJ, STOEHLMACHER J, ZHANG W et al.: A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res. (2001) 61(24):8654–8658.
  • SEKER H, BUTKIEWICZ D, BOWMAN ED et al.: Functional significance of XPD polymorphic variants: attenuated apoptosis in human lymphoblastoid cells with the XPD 312 Asp/Asp genotype. Cancer Res. (2001) 61(20):7430–7434.
  • GURUBHAGAVATULA S, LIU G, PARK S et al.: XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J. Clin. Oncol. (2004) 22(13):2594–2601.
  • MORONI M, VERONESE S, BEN VENUTI S et al.: Gene copy number for epidermal growth factor receptor (EGER) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. (2005) 6(5):279–286.
  • VALLBOHMER D, ZHANG W, GORDON M et al.: Molecular determinants of cetuximab efficacy. Clin. Oncol. (2005) 23(15):3536–3544.
  • MCLEOD HL: Drug pathways: movingbeyond single gene pharmacogenetics. Pharmacogenomics (2004) 5(2):139–141.
  • MCLEOD HL, MARSH S: Pharmacogenetics goes 3D. Nat. Genet. (2005) 37(8):794–795. Websites

Websites

  • http://cancerresearchuk.org/aboutcancer/ statistics/ Cancer Research UK. Accessed 8 November, 2005.
  • http://www.cancer.org/docroot/PRO/ content/ PRO 1 1 Cancer_Statistics_2005_Present ation.asp American Cancer Society. Accessed 8 November, 2005.
  • http://www.jr2.ox.ac.uk/bandolier/ Extraforbando/ADRPM.pdf WIFFEN P, GILL M, EDWARDS J, MOORE A: Adverse drug reactions in hospital patients: a systematic review of the prospective and retrospective studies. Bandolier Extra (2002). Accessed 8 November, 2005.
  • http://www.fda.gov/bbs/topics/NEWS/ 192005/NEW01220.html FDA press release 22 August, 2005. Accessed 31 October, 2005.
  • http://pharmacogenetics.wustl.edu CREATE Pharmacogenetics Research Network. Accessed 31 October, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.