115
Views
21
CrossRef citations to date
0
Altmetric
Review

Defining the genetic aetiology of monogenic diabetes can improve treatment

&
Pages 1759-1767 | Published online: 23 Aug 2006

Bibliography

  • TATTERSALL RB: Mild familial diabetes with dominant inheritance. QJ Med. (1974) 43:339-357.
  • FROGUEL P, VAXILLAIRE M, SUN F et al.: Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature (1992) 356:162-164.
  • HATTERSLEY AT, TURNER RC, PERMUTT MA et al.: Linkage of type 2 diabetes to the glucokinase gene. Lancet (1992) 339:1307-1310.
  • GLOYN AL: Glucokinase (GCK) mutations in hyper- and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinaemia of infancy. Hum. Mutat. (2003) 22(5):353-362.
  • FRAYLING TM, EVANS JC, BULMAN MP et al.: Beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes (2001) 50(Suppl. 1):S94-S100.
  • STRIDE A, VAXILLAIRE M, TUOMI T et al.: The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia (2002) 45(3):427-435.
  • VAXILLAIRE M, BOCCIO V, PHILIPPI A et al.: A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q. Nat. Genet. (1995) 9(4):418-423.
  • YAMAGATA K, ODA N, KAISAKI PJ et al.: Mutations in the hepatic nuclear factor 1 alpha gene in maturity-onset diabetes of the young (MODY3). Nature (1996) 384:455-458.
  • BELL GI, XIANG KS, NEWMAN MV: Gene for non-insulin dependent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q. Proc. Natl Acad. Sci. USA (1991) 88:1484-1488.
  • YAMAGATA K, FURUTA H, ODA N et al.: Mutations in the hepatocyte nuclear factor 4 alpha gene in maturity-onset diabetes of the young (MODY1). Nature (1996) 384:458-460.
  • ELLARD S, COLCLOUGH K: Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF-1) and 4 alpha (HNF-4) in maturity-onset diabetes of the young. Hum. Mutat. (2006) 27:854-869.
  • NISHIGORI H, YAMADA S, KOHAMA T et al.: Frameshift mutation, A263fsinsGG, in the hepatocyte nuclear factor-1 beta gene associated with diabetes and renal dysfunction. Diabetes (1998) 47(8):1354-1355.
  • BEARDS F, FRAYLING T, BULMAN M et al.: Mutations in hepatocyte nuclear factor 1 beta are not a common cause of maturity-onset diabetes of the young in the U.K. Diabetes (1998) 47:1152-1154.
  • BINGHAM C, BULMAN M, ELLARD S et al.: Mutations in the HNF1-beta gene are associated with familial hypoplastic glomerulocystic kidney disease. Am. J. Hum. Genet. (2001) 68:219-224.
  • BINGHAM C, ELLARD S, ALLEN L et al.: Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1 beta. Kidney Int. (2000) 57(3):898-907.
  • EDGHILL EL, BINGHAM C, ELLARD S, HATTERSLEY AT: Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J. Med. Genet. (2006) 43(1):84-90.
  • BRACKENRIDGE A, PEARSON ER, SHOJAEE-MORADIE F et al.: Contrasting insulin sensitivity of endogenous glucose production rate in subjects with hepatocyte nuclear factor-1beta and -1alpha mutations. Diabetes (2006) 55(2):405-411.
  • STOFFERS DA, FERRER J, CLARKE WL, HABENER JF: Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat. Genet. (1997) 17:138-139.
  • STOFFERS DA, ZINKIN NT, STANOJEVIC V, CLARKE WL, HABENER JF: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. (1997) 15:106-110.
  • CHÈVRE JC, HANI EH, STOFFERS A, HABENER JF, FROGUEL P: Insulin Promoter Factor 1 gene (IPF1) is not a major cause of maturity-onset diabetes of the young in French Caucasians. Diabetes (1998) 47:843-844.
  • HARA M, LINDNER TH, PAZ VP et al.: Mutations in the coding region of the insulin promoter factor 1 gene are not a common cause of maturity-onset diabetes of the young in Japanese subjects. Diabetes (1998) 47:845-846.
  • MALECKI MT, JHALA US, ANTONELLIS A et al.: Mutations in NEUROD1 are associated with the development of Type 2 diabetes mellitus. Nat. Genet. (1999) 23(3):323-328.
  • KRISTINSSON SY, THOROLFSDOTTIR ET, TALSETH B et al.: MODY in Iceland is associated with mutations in HNF-1alpha and a novel mutation in NeuroD1. Diabetologia (2001) 44(11):2098-2103.
  • RAEDER H, JOHANSSON S, HOLM PI et al.: Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat. Genet. (2006) 38(1):54-62.
  • SCHNYDER S, MULLIS PE, ELLARD S, HATTERSLEY AT, FLUCK CE: Genetic testing for glucokinase mutations in clinically selected patients with MODY: a worthwhile investment. Swiss Med. Wkly (2005) 135(23-24):352-356.
  • SPYER G, HATTERSLEY AT, SYKES JE, STURLEY RH, MACLEOD KM: Influence of maternal and fetal glucokinase mutations in gestational diabetes. Am. J. Obstet. Gynecol. (2001) 185(1):240-241.
  • PEARSON ER, LIDDELL WG, SHEPHERD M, CORRALL RJ, HATTERSLEY AT: Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor 1 alpha gene mutations: evidence for pharmacogenetics in diabetes. Diab Med (2000) 17:543-545.
  • PEARSON ER, STARKEY BJ, POWELL RJ et al.: Genetic aetiology of hyperglycaemia determines response to treatment in diabetes. Lancet (2003) 362(9392):1275-1281.
  • PEARSON ER, PRUHOVA S, TACK CJ et al.: Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. Diabetologia (2005) 48(5):878-885.
  • SHEPHERD M, PEARSON ER, HOUGHTON J et al.: No deterioration in glycaemic control in HNF-1alpha maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas. Diabetes Care (2003) 26(11):3191-3192.
  • SHEPHERD M, HATTERSLEY AT: 'I don't feel like a diabetic any more': the impact of stopping insulin in patients with maturity onset diabetes of the young following genetic testing. Clin. Med. (2004) 4(2):144-147.
  • MASSA O, IAFUSCO D, D'AMATO E et al.: KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes. Hum. Mutat. (2004) 25(1):22-27.
  • IAFUSCO D, STAZI MA, COTICHINI R et al.: Permanent diabetes mellitus in the first year of life. Diabetologia (2002) 45(6):798-804.
  • EDGHILL EL, DIX R, FLANAGAN SE et al.: HLA genotyping supports a non-autoimmune aetiology in patients diagnosed with diabetes under the age of 6 months. Diabetes (2006) 55(6):1895-1890.
  • TEMPLE IK, GARDNER RJ, MACKAY DJ et al.: Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes (2000) 49(8):1359-1366.
  • DELEPINE M, NICOLINO M, BARRETT T et al.: EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat. Genet. (2000) 25(4):406-409.
  • WILDIN RS, RAMSDELL F, PEAKE J et al.: X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. (2001) 27(1):18-20.
  • SELLICK GS, BARKER KT, STOLTE-DIJKSTRA I et al.: Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat. Genet. (2004) 36(12):1301-1305.
  • NJOLSTAD P, SOVIK O, CUESTA-MUNOZ A et al.: Neonatal diabetes mellitus due to complete glucokinase deficiency. New Engl. J. Med. (2001) 344:1588-1592.
  • NJOLSTAD PR, SAGEN JV, BJORKHAUG L et al.: Permanent neonatal diabetes mellitus due to glucokinase deficiency- an inborn error of glucose-insulin signalling pathway. Diabetes (2003) 52(11):2854-2860.
  • PORTER JR, SHAW NJ, BARRETT TG et al.: Permanent neonatal diabetes in an Asian infant. J. Pediatr. (2005) 146(1):131-133.
  • GLOYN AL, ELLARD S, SHIELD JP et al.: Complete glucokinase deficiency is not a common cause of permanent neonatal diabetes. Diabetologia (2002) 45(2):290.
  • VAXILLAIRE M, SAMSON C, CAVE H et al.: Glucokinase gene mutations are not a common cause of permanent neonatal diabetes in France. Diabetologia (2002) 45(3):454-455.
  • GLOYN A, ODILI S, BUETTGER C et al.: Glucokinase and the regulation of blood sugar: a mathematical model predicts the threshold for glucose stimulated insulin release for GCK gene mutations that cause hyper- and hypoglycaemia. In Glucokinase and Glycaemic Diseases: From the Basics to Novel Therapeutics. Matschinsky FM, Magnuson MA (Eds) Karger (2004):92-109.
  • THOMAS PM, COTE GJ, WOHILK N et al.: Mutations in the sulphonylurea receptor and familial persistent hyperinsulinaemic hypoglycemia of infancy. Science (1995) 268:426-429.
  • THOMAS PM, YUYANG Y, LIGHTNER E: Mutation of the pancreatic islet inward rectifier, Kir6.2 also leads to familial persistent hyperinsulinaemic hypoglycemia of infancy. Hum. Mol. Genet. (1996) 5:1809-1812.
  • KOSTER JC, MARSHALL BA, ENSOR N, CORBETT JA, NICHOLS CG: Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. Cell (2000) 100(6):645-654.
  • GLOYN AL, PEARSON ER, ANTCLIFF JF et al.: Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. (2004) 350(18):1838-1849.
  • SAGEN JV, RAEDER H, HATHOUT E et al.: Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes (2004) 53:2713-2718.
  • VAXILLAIRE M, POPULAIRE C, BUISIAH K et al.: Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes (2004) 53:2719-2722.
  • FLANAGAN SE, EDGHILL EL, GLOYN AL, ELLARD S, HATTERSLEY AT: Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype. Diabetologia (2006) 49(6):1190-1197.
  • HATTERSLEY AT, ASHCROFT FM: Activating mutations in kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes (2005) 54(9):2503-2513.
  • GLOYN AL, DIATLOFF-ZITO C, EDGHILL EL et al.: KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. Eur. J. Hum. Genet. (2006) 14(7):824-830.
  • SAKURA H, AMMALA C, SMITH PA, GRIBBLE FM, ASHCROFT FM: Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett. (1995) 377:338-344.
  • PROKS P, ANTCLIFF JF, LIPPIAT J et al.: Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. Proc. Natl Acad. Sci. USA (2004) 101(50):17539-17544.
  • PROKS P, GIRARD C, HAIDER S et al.: A gating mutation at the internal mouth of the Kir6.2 pore is associated with DEND syndrome. EMBO Rep. (2005) 6(5):470-475.
  • PROKS P, GIRARD C, ASHCROFT FM: Functional effects of KCNJ11 mutations causing neonatal diabetes: enhanced activation by MgATP. Hum. Mol. Genet. (2005) 14(18):2717-2726.
  • PROKS P, ARNOLD A, BRUINING J et al.: A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum. Mol. Genet. (2006) 15(11):1793-1800.
  • GLOYN AL, REIMANN F, GIRARD C et al.: Relapsing diabetes can result from moderately activating mutations in KCNJ11. Hum. Mol. Genet. (2005) 14(7):925-934.
  • SEINO S, IWANAGA T, NAGASHIMA K, MIKI T: Diverse roles of K-ATP channels learned from Kir6.2 genetically engineered mice. Diabetes (2000) 49(3):311-318.
  • ZUNG A, GLASER B, NIMRI R, ZADIK Z: Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. J. Clin. Endocrinol. Metab. (2004) 89(11):5504-5507.
  • CODNER E, FLANAGAN S, ELLARD S, GARCIA H, HATTERSLEY AT: High-dose glibenclamide can replace insulin therapy despite transitory diarrhea in early-onset diabetes caused by a novel R201L Kir6.2 mutation. Diabetes Care (2005) 28(3):758-759.
  • KLUPA T, EDGHILL EL, NAZIM J et al.: The identification of a R201H mutation in KCNJ11, which encodes Kir6.2, and successful transfer to sustained-release sulphonylurea therapy in a subject with neonatal diabetes: evidence for heterogeneity of beta cell function among carriers of the R201H mutation. Diabetologia (2005) 48(5):1029-1031.
  • PEARSON E, R FLECHTNER I, NJØLSTÅD P et al.: The successful transfer of insulin treated patients with diabetes due to Kir6.2 (KCNJ11) mutations to oral sulphonylureas. New Engl. J. Med. (2006) 355(5):467-477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.