115
Views
8
CrossRef citations to date
0
Altmetric
Review

Clinical application of pharmacogenetics in gastrointestinal diseases

&
Pages 1857-1869 | Published online: 04 Oct 2006

Bibliography

  • LOFTUS EV Jr: Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology (2004) 126(6):1504-1517.
  • AHMAD T, SATSANGI J, MCGOVERN D, BUNCE M, JEWELL DP: Review article: the genetics of inflammatory bowel disease. Aliment. Pharmacol. Ther. (2001) 15(6):731-748.
  • COLOMBEL JF: The CARD15 (also known as NOD2) gene in Crohn’s disease: are there implications for current clinical practice? Clin. Gastroenterol. Hepatol. (2003) 1(1):5-9.
  • MUNKHOLM P, LANGHOLZ E, DAVIDSEN M, BINDER V: Frequency of glucocorticoid resistance and dependency in Crohn’s disease. Gut (1994) 35(3):360-362.
  • FAUBION WA Jr, LOFTUS EV Jr, HARMSEN WS, ZINSMEISTER AR, SANDBORN WJ: The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology (2001) 121(2):255-260.
  • DUBINSKY MC: Azathioprine, 6-mercaptopurine in inflammatory bowel disease: pharmacology, efficacy, and safety. Clin Gastroenterol. Hepatol. (2004) 2(9):731-743.
  • SU C, LICHTENSTEIN GR: Treatment of inflammatory bowel disease with azathioprine and 6-mercaptopurine. Gastroenterol. Clin. North Am. (2004) 33(2):209-234, viii.
  • TAI HL, KRYNETSKI EY, SCHUETZ EG, YANISHEVSKI Y, EVANS WE: Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc. Natl Acad. Sci. USA (1997) 94(12):6444-6449.
  • ROBERTS RL, BARCLAY ML, GEARRY RB, KENNEDY MA: A multiplexed allele-specific polymerase chain reaction assay for the detection of common thiopurine S-methyltransferase (TPMT) mutations. Clin. Chim. Acta (2004) 341(1-2):49-53.
  • WEINSHILBOUM RM, SLADEK SL: Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. (1980) 32(5):651-662.
  • WINTER J, WALKER A, SHAPIRO D et al.: Cost-effectiveness of thiopurine methyltransferase genotype screening in patients about to commence azathioprine therapy for treatment of inflammatory bowel disease. Aliment. Pharmacol. Ther. (2004) 20(6):593-599.
  • COLOMBEL JF, FERRARI N, DEBUYSERE H et al.: Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology (2000) 118(6):1025-1030.
  • LICHTENSTEIN GR, ABREU MT, COHEN R, TREMAINE W: American Gastroenterological Association Institute medical position statement on corticosteroids, immunomodulators, and infliximab in inflammatory bowel disease. Gastroenterology (2006) 130(3):935-939.
  • Azathioprine. In: Physicians Desk Reference. Thomson MICROMEDEX® Healthcare Series, Vol 129(2006).
  • ULRICH CM, YASUI Y, STORB R et al.: Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood (2001) 98(1):231-234.
  • URANO W, TANIGUCHI A, YAMANAKA H et al.: Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics (2002) 12(3):183-190.
  • SUMI S, MARINAKI AM, ARENAS M et al.: Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum. Genet. (2002) 111(4-5):360-367.
  • MARINAKI AM, ANSARI A, DULEY JA et al.: Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics (2004) 14(3):181-187.
  • GEARRY RB, ROBERTS RL, BARCLAY ML, KENNEDY MA: Lack of association between the ITPA 94C > A polymorphism and adverse effects from azathioprine. Pharmacogenetics (2004) 14(11):779-781.
  • ALLORGE D, HAMDAN R, BROLY F, LIBERSA C, COLOMBEL JF: ITPA genotyping test does not improve detection of Crohn’s disease patients at risk of azathioprine/6-mercaptopurine induced myelosuppression. Gut (2005) 54(4):565-568.
  • VAN DIEREN JM, VAN VUUREN AJ, KUSTERS JG et al.: ITPA genotyping is not predictive for the development of side effects in AZA treated inflammatory bowel disease patients. Gut (2005) 54(11):1664.
  • RICART E, TAYLOR WR, LOFTUS EV et al.: N-acetyltransferase 1 and 2 genotypes do not predict response or toxicity to treatment with mesalamine and sulfasalazine in patients with ulcerative colitis. Am. J. Gastroenterol. (2002) 97(7):1763-1768.
  • SHETTY A, FORBES A: Pharmacogenomics of response to anti-tumor necrosis factor therapy in patients with Crohn’s disease. Am. J. Pharmacogenomics (2002) 2(4):215-221.
  • LOUIS E, VERMEIRE S, RUTGEERTS P et al.: A positive response to infliximab in Crohn disease: association with a higher systemic inflammation before treatment but not with -308 TNF gene polymorphism. Scand J. Gastroenterol. (2002) 37(7):818-824.
  • MASCHERETTI S, HAMPE J, KUHBACHER T et al.: Pharmacogenetic investigation of the TNF/TNF-receptor system in patients with chronic active Crohn’s disease treated with infliximab. Pharmacogenomics J. (2002) 2(2):127-136.
  • MASCHERETTI S, HAMPE J, CROUCHER PJ et al.: Response to infliximab treatment in Crohn’s disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials NOD2/CARD15 does not influence response to infliximab in Crohn’s disease. Pharmacogenetics (2002) 12(7):509-515.
  • VERMEIRE S, LOUIS E, RUTGEERTS P et al.: NOD2/CARD15 does not influence response to infliximab in Crohn’s disease. Gastroenterology (2002) 123(1):106-111.
  • LOCKE GR III, TALLEY NJ, FETT SL, ZINSMEISTER AR, MELTON LJ III: Prevalence and clinical spectrum of gastroesophageal reflux: a population-based study in Olmsted County, Minnesota. Gastroenterology (1997) 112(5):1448-1456.
  • KURATA JH, NOGAWA AN: Meta-analysis of risk factors for peptic ulcer. Nonsteroidal antiinflammatory drugs, Helicobacter pylori, and smoking. J. Clin. Gastroenterol. (1997) 24(1):2-17.
  • POUNDER RE, NG D: The prevalence of Helicobacter pylori infection in different countries. Aliment. Pharmacol. Ther. (1995) 9(Suppl. 2):33-39.
  • MARSHALL BJ, GOODWIN CS, WARREN JR et al.: Prospective double-blind trial of duodenal ulcer relapse after eradication of Campylobacter pylori. Lancet (1988) 2(8626-8627):1437-1442.
  • RAUWS EA, TYTGAT GN: Cure of duodenal ulcer associated with eradication of Helicobacter pylori. Lancet (1990) 335(8700):1233-1235.
  • HOWDEN CW, HENNING JM, HUANG B, LUKASIK N, FRESTON JW: Management of heartburn in a large, randomized, community-based study: comparison of four therapeutic strategies. Am. J. Gastroenterol. (2001) 96(6):1704-1710.
  • VAN ZYL J, VAN RENSBURG C, VIEWEG W, FISCHER R: Efficacy and safety of pantoprazole versus ranitidine in the treatment of patients with symptomatic gastroesophageal reflux disease. Digestion (2004) 70(1):61-69.
  • FARLEY A, WRUBLE LD, HUMPHRIES TJ: Rabeprazole versus ranitidine for the treatment of erosive gastroesophageal reflux disease: a double-blind, randomized clinical trial. Raberprazole Study Group. Am. J. Gastroenterol. (2000) 95(8):1894-1899.
  • RICHTER JE, CAMPBELL DR, KAHRILAS PJ, HUANG B, FLUDAS C: Lansoprazole compared with ranitidine for the treatment of nonerosive gastroesophageal reflux disease. Arch. Intern. Med. (2000) 160(12):1803-1809.
  • KLOTZ U, SCHWAB M, TREIBER G: CYP2C19 polymorphism and proton pump inhibitors. Basic Clin Pharmacol. Toxicol. (2004) 95(1):2-8.
  • KITA T, SAKAEDA T, BABA T et al.: Different contribution of CYP2C19 in the in vitro metabolism of three proton pump inhibitors. Biol. Pharm. Bull. (2003) 26(3):386-390.
  • ISHIZAKI T, HORAI Y: Review article: cytochrome P450 and the metabolism of proton pump inhibitors-emphasis on rabeprazole. Aliment. Pharmacol. Ther. (1999) 13(Suppl. 3):27-36.
  • DE MORAIS SM, WILKINSON GR, BLAISDELL J et al.: The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. (1994) 269(22):15419-15422.
  • DE MORAIS SM, WILKINSON GR, BLAISDELL J et al.: Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol. Pharmacol. (1994) 46(4):594-598.
  • FERGUSON RJ, DE MORAIS SM, BENHAMOU S et al.: A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J. Pharmacol. Exp. Ther. (1998) 284(1):356-361.
  • IBEANU GC, BLAISDELL J, GHANAYEM BI et al.: An additional defective allele, CYP2C19*5, contributes to the S-mephenytoin poor metabolizer phenotype in Caucasians. Pharmacogenetics (1998) 8(2):129-135.
  • BLAISDELL J, MOHRENWEISER H, JACKSON J et al.: Identification and functional characterization of new potentially defective alleles of human CYP2C19. Pharmacogenetics (2002) 12(9):703-711.
  • FURUTA T, SHIRAI N, WATANABE F et al.: Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin. Pharmacol. Ther. (2002) 72(4):453-460.
  • KAWAMURA M, OHARA S, KOIKE T et al.: The effects of lansoprazole on erosive reflux oesophagitis are influenced by CYP2C19 polymorphism. Aliment. Pharmacol. Ther. (2003) 17(7):965-973.
  • CHONG E, ENSOM MH: Pharmacogenetics of the proton pump inhibitors: a systematic review. Pharmacotherapy (2003) 23(4):460-471.
  • SCHWAB M, SCHAEFFELER E, KLOTZ U, TREIBER G: CYP2C19 polymorphism is a major predictor of treatment failure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicobacter pylori. Clin. Pharmacol. Ther. (2004) 76(3):201-209.
  • JURAN B, EGAN L, LAZARIDIS K: The AmpliChip CYP450 test: principles, challenges, and future clinical utility in digestive disease. Clin Gastroenterol. Hepatol. (2006) 4(7):822-830.
  • SAITO YA, SCHOENFELD P, LOCKE GR III: The epidemiology of irritable bowel syndrome in North America: a systematic review. Am. J. Gastroenterol. (2002) 97(8):1910-1915.
  • KOZMA CM, BARGHOUT V, SLATON T, FRECH F, REEDER CE: A comparison of office-based physician visits for irritable bowel syndrome and for migraine and asthma. Manag. Care Interface (2002) 15(9):40-43, 49.
  • DROSSMAN DA, CAMILLERI M, MAYER EA, WHITEHEAD WE: AGA technical review on irritable bowel syndrome. Gastroenterology (2002) 123(6):2108-2131.
  • GERSHON MD: Review article: serotonin receptors and transporters – roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther. (2004) 20(Suppl. 7):3-14.
  • VIRAMONTES BE, CAMILLERI M, MCKINZIE S et al.: Gender-related differences in slowing colonic transit by a 5-HT3 antagonist in subjects with diarrhea-predominant irritable bowel syndrome. Am. J. Gastroenterol. (2001) 96(9):2671-2676.
  • CHEN JJ, LI Z, PAN H et al.: Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J. Neurosci. (2001) 21(16):6348-6361.
  • LESCH KP, BALLING U, GROSS J et al.: Organization of the human serotonin transporter gene. J. Neural Transm. Gen. Sect. (1994) 95(2):157-162.
  • LESCH KP, BENGEL D, HEILS A et al.: Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science (1996) 274(5292):1527-1531.
  • KIM HJ, CAMILLERI M, CARLSON PJ et al.: Association of distinct alpha(2) adrenoceptor and serotonin transporter polymorphisms with constipation and somatic symptoms in functional gastrointestinal disorders. Gut (2004) 53(6):829-837.
  • YEO A, BOYD P, LUMSDEN S et al.: Association between a functional polymorphism in the serotonin transporter gene and diarrhoea predominant irritable bowel syndrome in women. Gut (2004) 53(10):1452-1458.
  • PATA C, ERDAL ME, DERICI E et al.: Serotonin transporter gene polymorphism in irritable bowel syndrome. Am. J. Gastroenterol. (2002) 97(7):1780-1784.
  • LEE DY, PARK H, KIM WH et al.: [Serotonin transporter gene polymorphism in healthy adults and patients with irritable bowel syndrome]. Korean J. Gastroenterol. (2004) 43(1):18-22.
  • CAMILLERI M, ATANASOVA E, CARLSON PJ et al.: Serotonin-transporter polymorphism pharmacogenetics in diarrhea-predominant irritable bowel syndrome. Gastroenterology (2002) 123(2):425-432.
  • TACK J, BISSCHOPS R, SARNELLI G: Pathophysiology and treatment of functional dyspepsia. Gastroenterology (2004) 127(4):1239-1255.
  • LEE HJ, CHA JH, HAM BJ et al.: Association between a G-protein beta3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J. (2004) 4(1):29-33.
  • SIFFERT W: G-protein beta3 subunit 825T allele and hypertension. Curr. Hypertens. Rep. (2003) 5(1):47-53.
  • SIFFERT W, FORSTER P, JOCKEL KH et al.: Worldwide ethnic distribution of the G protein beta3 subunit 825T allele and its association with obesity in Caucasian, Chinese, and Black African individuals. J. Am. Soc. Nephrol. (1999) 10(9):1921-1930.
  • LINDEMANN M, VIRCHOW S, RAMANN F et al.: The G protein beta3 subunit 825T allele is a genetic marker for enhanced T cell response. FEBS Lett. (2001) 495(1-2):82-86.
  • VIRCHOW S, ANSORGE N, RUBBEN H, SIFFERT G, SIFFERT W: Enhanced fMLP-stimulated chemotaxis in human neutrophils from individuals carrying the G protein beta3 subunit 825 T-allele. FEBS Lett. (1998) 436(2):155-158.
  • HOLTMANN G, SIFFERT W, HAAG S et al.: G-protein beta 3 subunit 825 CC genotype is associated with unexplained (functional) dyspepsia. Gastroenterology (2004) 126(4):971-979.
  • CAMILLERI CE, CARLSON PJ, CAMILLERI M et al.: A study of candidate genotypes associated with dyspepsia in a US community. Am. J. Gastroenterol. (2006) In Press.
  • HOLTMANN G, SIFFERT W, GROTE E et al.: G-protein mediated receptor-cell-coupling as a predictor for the long term response to treatment in patients with functional dyspepsia. Gastroenterology (2003) 124:A80.
  • NEAL DA, GIMSON AE, GIBBS P, ALEXANDER GJ: Beneficial effects of converting liver transplant recipients from cyclosporine to tacrolimus on blood pressure, serum lipids, and weight. Liver Transpl. (2001) 7(6):533-539.
  • REBBECK TR, JAFFE JM, WALKER AH, WEIN AJ, MALKOWICZ SB: Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl Cancer Inst. (1998) 90(16):1225-1229.
  • AMIRIMANI B, NING B, DEITZ AC et al.: Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ. Mol. Mutagen. (2003) 42(4):299-305.
  • HESSELINK DA, VAN SCHAIK RH, VAN DER HEIDEN IP et al.: Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. (2003) 74(3):245-254.
  • HESSELINK DA, VAN GELDER T, VAN SCHAIK RH et al.: Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin. Pharmacol. Ther. (2004) 76(6):545-556.
  • KUEHL P, ZHANG J, LIN Y et al.: Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. (2001) 27(4):383-391.
  • ZHAO Y, SONG M, GUAN D et al.: Genetic polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplant. Proc. (2005) 37(1):178-181.
  • THIEBAUT F, TSURUO T, HAMADA H et al.: Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA (1987) 84(21):7735-7738.
  • HOFFMEYER S, BURK O, VON RICHTER O et al.: Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA (2000) 97(7):3473-3478.
  • BONHOMME-FAIVRE L, DEVOCELLE A, SALIBA F et al.: MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in liver-transplant recipients. Transplantation (2004) 78(1):21-25.
  • MASUDA S, GOTO M, OKUDA M et al.: Initial dosage adjustment for oral administration of tacrolimus using the intestinal MDR1 level in living-donor liver transplant recipients. Transplant. Proc. (2005) 37(4):1728-1729.
  • JIN J, WU LH, WANG WL et al.: Impact of multidrug resistance 1 gene polymorphism on tacrolimus dose and concentration-to-dose ratio in Chinese liver transplantation recipients. Zhonghua Yi Xue Yi Chuan Xue Za Zhi (2005) 22(6):616-620.
  • MACPHEE IA, FREDERICKS S, TAI T et al.: Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome P4503A5 and P-glycoprotein correlate with dose requirement. Transplantation (2002) 74(11):1486-1489.
  • ZHENG H, WEBBER S, ZEEVI A et al.: Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am. J. Transplant. (2003) 3(4):477-483.
  • ANGLICHEAU D, VERSTUYFT C, LAURENT-PUIG P et al.: Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J. Am. Soc. Nephrol. (2003) 14(7):1889-1896.
  • PARKIN DM, PISANI P, FERLAY J: Global cancer statistics. CA Cancer J. Clin. (1999) 49(1):33-64, 31.
  • HAWK ET, LIMBURG PJ, VINER JL: Epidemiology and prevention of colorectal cancer. Surg. Clin. North Am. (2002) 82(5):905-941.
  • BOYLE P, LANGMAN JS: ABC of colorectal cancer: epidemiology. Br. Med. J. (2000) 321(7264):805-808.
  • MOORE HC, HALLER DG: Adjuvant therapy of colon cancer. Semin. Oncol. (1999) 26(5):545-555.
  • STEWART JM, ZALCBERG JR: Update on adjuvant treatment of colorectal cancer. Curr. Opin. Oncol. (1998) 10(4):367-374.
  • SIMMONDS PC: Palliative chemotherapy for advanced colorectal cancer: systematic review and meta-analysis. Colorectal Cancer Collaborative Group. Br. Med. J. (2000) 321(7260):531-535.
  • SALONGA D, DANENBERG KD, JOHNSON M et al.: Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin. Cancer Res. (2000) 6(4):1322-1327.
  • MILANO G, ETIENNE MC, PIERREFITE V et al.: Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br. J. Cancer (1999) 79(3-4):627-630.
  • WEI X, MCLEOD HL, MCMURROUGH J, GONZALEZ FJ, FERNANDEZ-SALGUERO P: Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J. Clin. Invest. (1996) 98(3):610-615.
  • RIDGE SA, SLUDDEN J, BROWN O et al.: Dihydropyrimidine dehydrogenase pharmacogenetics in Caucasian subjects. Br. J. Clin. Pharmacol. (1998) 46(2):151-156.
  • HORIE N, AIBA H, OGURO K, HOJO H, TAKEISHI K: Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5’-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct. Funct. (1995) 20(3):191-197.
  • KAWAKAMI K, OMURA K, KANEHIRA E, WATANABE Y: Polymorphic tandem repeats in the thymidylate synthase gene is associated with its protein expression in human gastrointestinal cancers. Anti-Cancer Res. (1999) 19(4B):3249-3252.
  • POPAT S, MATAKIDOU A, HOULSTON RS: Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J. Clin. Oncol. (2004) 22(3):529-536.
  • ANDO Y, SAKA H, ANDO M et al.: Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. (2000) 60(24):6921-6926.
  • IYER L, DAS S, JANISCH L et al.: UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. (2002) 2(1):43-47.
  • HAN JY, LIM HS, SHIN ES et al.: Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J. Clin. Oncol. (2006) 24(15):2237-2244.
  • EGAN LJ, DERIJKS LJ, HOMMES DW: Pharmacogenomics in inflammatory bowel disease. Clin. Gastroenterol. Hepatol. (2006) 4(1):21-28.
  • STOEHLMACHER J, GHADERI V, IOBAL S et al.: A polymorphism of the XRCC1 gene predicts for response to platinum based treatment in advanced colorectal cancer. Anti-Cancer Res. (2001) 21(4B):3075-3079.
  • PARK DJ, STOEHLMACHER J, ZHANG W et al.: A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res. (2001) 61(24):8654-8658.
  • STOEHLMACHER J, PARK DJ, ZHANG W et al.: Association between glutathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J. Natl Cancer Inst. (2002) 94(12):936-942.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.