96
Views
14
CrossRef citations to date
0
Altmetric
Review

Insights into the role of heritable genetic variation in the pharmacokinetics and pharmacodynamics of anticancer drugs

, &
Pages 1197-1210 | Published online: 11 Jun 2007

Bibliography

  • MARSH S, MALLON MA, GOODFELLOW P, MCLEOD HL: Concordance of pharmacogenetic markers in germline and colorectal tumor DNA. Pharmacogenomics (2005) 6(8):873-877.
  • WEINSHILBOUM RM, SLADEK SL: Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. (1980) 32(5):651-662.
  • SCHAEFFELER E, FISCHER C, BROCKMEIER D et al.: Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics (2004) 14(7):407-417.
  • LENNARD L, LILLEYMAN JS, VAN LOON J, WEINSHILBOUM RM: Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet (1990) 336(8709):225-229.
  • MCLEOD HL, RELLING MV, LIU Q, PUI CH, EVANS WE: Polymorphic thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood (1995) 85(7):1897-1902.
  • RELLING MV, HANCOCK ML, RIVERA GK et al.: Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J. Natl. Cancer Inst. (1999) 91(23):2001-2008.
  • EVANS WE, HON YY, BOMGAARS L et al.: Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J. Clin. Oncol. (2001) 19(8):2293-2301.
  • RELLING MV, HANCOCK ML, BOYETT JM, PUI CH, EVANS WE: Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood (1999) 93(9):2817-2823.
  • BROUWER C, DE ABREU RA, KEIZER-GARRITSEN JJ et al.: Thiopurine methyltransferase in acute lymphoblastic leukaemia: biochemical and molecular biological aspects. Eur. J. Cancer (2005) 41(4):613-623.
  • CHEUNG ST, ALLAN RN: Mistaken identity: misclassification of TPMT phenotype following blood transfusion. Eur. J. Gastroenterol. Hepatol. (2003) 15(11):1245-1247.
  • KRYNETSKI EY, SCHUETZ JD, GALPIN AJ et al.: A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc. Natl. Acad. Sci. USA (1995) 92(4):949-953.
  • TAI HL, KRYNETSKI EY, YATES CR et al.: Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am. J. Hum. Genet. (1996) 58(4):694-702.
  • SALAVAGGIONE OE, WANG L, WIEPERT M, YEE VC, WEINSHILBOUM RM: Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics. Pharmacogenet. Genomics (2005) 15(11):801-815.
  • SCHAEFFELER E, EICHELBAUM M, REINISCH W, ZANGER UM, SCHWAB M: Three novel thiopurine S-methyltransferase allelic variants (TPMT*20, *21, *22) - association with decreased enzyme function. Hum. Mutat. (2006) 27(9): 976.
  • YATES CR, KRYNETSKI EY, LOENNECHEN T et al.: Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Intern. Med. (1997) 126(8):608-614.
  • OTTERNESS D, SZUMLANSKI C, LENNARD L et al.: Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin. Pharmacol. Ther. (1997) 62(1):60-73.
  • BROUWER C, MARINAKI AM, LAMBOOY LH et al.: Pitfalls in the determination of mutant alleles of the thiopurine methyltransferase gene. Leukemia (2001) 15(11):1792-1793.
  • AMEYAW MM, COLLIE-DUGUID ES, POWRIE RH, OFORI-ADJEI D, MCLEOD HL: Thiopurine methyltransferase alleles in British and Ghanaian populations. Hum. Mol. Genet. (1999) 8(2):367-370.
  • COLLIE-DUGUID ES, PRITCHARD SC, POWRIE RH et al.: The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics (1999) 9(1):37-42.
  • MCLEOD HL, PRITCHARD SC, GITHANG'A J et al.: Ethnic differences in thiopurine methyltransferase pharmacogenetics: evidence for allele specificity in Caucasian and Kenyan individuals. Pharmacogenetics (1999) 9(6):773-776.
  • CHANG JG, LEE LS, CHEN CM et al.: Molecular analysis of thiopurine S-methyltransferase alleles in South-east Asian populations. Pharmacogenetics (2002) 12(3):191-195.
  • ANDO M, ANDO Y, HASEGAWA Y et al.: Genetic polymorphisms of thiopurine S-methyltransferase and 6-mercaptopurine toxicity in Japanese children with acute lymphoblastic leukaemia. Pharmacogenetics (2001) 11(3):269-273.
  • VAN DEN AKKER-VAN MARLE ME, GURWITZ D, DETMAR SB et al.: Cost-effectiveness of pharmacogenomics in clinical practice: a case study of thiopurine methyltransferase genotyping in acute lymphoblastic leukemia in Europe. Pharmacogenomics (2006) 7(5):783-792.
  • WOELDERINK A, IBARRETA D, HOPKINS MM, RODRIGUEZ-CEREZO E: The current clinical practice of pharmacogenetic testing in Europe: TPMT and HER2 as case studies. Pharmacogenomics J. (2006) 6(1):3-7.
  • STANULLA M, SCHAEFFELER E, FLOHR T et al.: Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA (2005) 293(12):1485-1489.
  • DIASIO RB, BEAVERS TL, CARPENTER JT: Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. J. Clin. Invest. (1988) 81(1):47-51.
  • VAN KUILENBURG AB, MULLER EW, HAASJES J et al.: Lethal outcome of a patient with a complete dihydropyrimidine dehydrogenase (DPD) deficiency after administration of 5-fluorouracil: frequency of the common IVS14+1G>A mutation causing DPD deficiency. Clin. Cancer Res. (2001) 7(5):1149-1153.
  • RAIDA M, SCHWABE W, HAUSLER P et al.: Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5'-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)- related toxicity compared with controls. Clin. Cancer Res. (2001) 7(9):2832-2839.
  • VAN KUILENBURG AB, HAASJES J, RICHEL DJ et al.: Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin. Cancer Res. (2000) 6(12):4705-4712.
  • VAN KUILENBURG AB, MEINSMA R, ZOETEKOUW L, VAN GENNIP AH: High prevalence of the IVS14 + 1G>A mutation in the dihydropyrimidine dehydrogenase gene of patients with severe 5-fluorouracil-associated toxicity. Pharmacogenetics (2002) 12(7):555-558.
  • VAN KUILENBURG AB, MEINSMA R, ZOETEKOUW L, VAN GENNIP AH: Increased risk of grade IV neutropenia after administration of 5-fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1g>a mutation. Int. J. Cancer (2002) 101(3):253-258.
  • WEI X, ELIZONDO G, SAPONE A et al.: Characterization of the human dihydropyrimidine dehydrogenase gene. Genomics (1998) 51(3):391-400.
  • HSIAO HH, YANG MY, CHANG JG et al.: Dihydropyrimidine dehydrogenase pharmacogenetics in the Taiwanese population. Cancer Chemother. Pharmacol. (2004) 53(5):445-451.
  • KOUWAKI M, HAMAJIMA N, SUMI S et al.: Identification of novel mutations in the dihydropyrimidine dehydrogenase gene in a Japanese patient with 5-fluorouracil toxicity. Clin. Cancer Res. (1998) 4(12):2999-3004.
  • COLLIE-DUGUID ES, ETIENNE MC, MILANO G, MCLEOD HL: Known variant DPYD alleles do not explain DPD deficiency in cancer patients. Pharmacogenetics (2000) 10(3):217-223.
  • EZZELDIN HH, LEE AM, MATTISON LK, DIASIO RB: Methylation of the DPYD promoter: an alternative mechanism for dihydropyrimidine dehydrogenase deficiency in cancer patients. Clin. Cancer Res. (2005) 11(24 Pt 1):8699-8705.
  • GAGNE JF, MONTMINY V, BELANGER P et al.: Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol. Pharmacol. (2002) 62(3):608-617.
  • MONAGHAN G, RYAN M, SEDDON R, HUME R, BURCHELL B: Genetic variation in bilirubin UPD-glucuronosyltransferase gene promoter and Gilbert's syndrome. Lancet (1996) 347(9001):578-581.
  • INNOCENTI F, GRIMSLEY C, DAS S et al.: Haplotype structure of the UDP-glucuronosyltransferase 1A1 promoter in different ethnic groups. Pharmacogenetics (2002) 12(9):725-733.
  • INNOCENTI F, UNDEVIA SD, IYER L et al.: Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol. (2004) 22(8):1382-1388.
  • MATHIJSSEN RH, DE JONG FA, VAN SCHAIK RH et al.: Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J. Natl. Cancer Inst. (2004) 96(21):1585-1592.
  • PAOLUZZI L, SINGH AS, PRICE DK et al.: Influence of genetic variants in UGT1A1 and UGT1A9 on the in vivo glucuronidation of SN-38. J. Clin. Pharmacol. (2004) 44(8):854-860.
  • ROUITS E, BOISDRON-CELLE M, DUMONT A et al.: Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. Clin. Cancer Res. (2004) 10(15):5151-5159.
  • INNOCENTI F, LIU W, CHEN P et al.: Haplotypes of variants in the UDP-glucuronosyltransferase1A9 and 1A1 genes. Pharmacogenet. Genomics (2005) 15(5):295-301.
  • KANIWA N, KUROSE K, JINNO H et al.: Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686C>T (P229L) found in an African-American. Drug Metab. Dispos. (2005) 33(3):458-465.
  • BEUTLER E, GELBART T, DEMINA A: Racial variability in the UDP-glucuronosyltransferase 1(UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc. Natl. Acad. Sci. USA (1998) 95(14):8170-8174.
  • ANDO Y, SAKA H, ANDO M et al.: Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. (2000) 60(24):6921-6926.
  • SAI K, SAEKI M, SAITO Y et al.: UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin. Pharmacol. Ther. (2004) 75(6):501-515.
  • HAN JY, LIM HS, SHIN ES et al.: Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J. Clin. Oncol. (2006) 24(15):2237-2244.
  • WORLD HEALTH ORGANIZATION: WHO handbook for reporting results of cancer treatment. World Health Organization, Geneva (1979).
  • MARCUELLO E, ALTES A, MENOYO A et al.: UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br. J. Cancer (2004) 91(4):678-682.
  • MASSACESI C, TERRAZZINO S, MARCUCCI F et al.: Uridine diphosphate glucuronosyl transferase 1A1 promoter polymorphism predicts the risk of gastrointestinal toxicity and fatigue induced by irinotecan-based chemotherapy. Cancer (2006) 106(5):1007-1016.
  • JAPAN SOCIETY FOR CANCERTHERAPY: Criteria for the evaluation of the clinical effects of solid cancer chemotherapy. J. Jpn Soc. Cancer Ther. (1993) 28:101-130.
  • TOFFOLI G, CECCHIN E, CORONA G et al.: The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J. Clin. Oncol. (2006) 24(19):3061-3068.
  • KITAGAWA C, ANDO M, ANDO Y et al.: Genetic polymorphism in the phenobarbital-responsive enhancer module of the UDP-glucuronosyltransferase 1A1 gene and irinotecan toxicity. Pharmacogenet. Genomics (2005) 15(1):35-41.
  • CARLINI LE, MEROPOL NJ, BEVER J et al.: UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin. Cancer Res. (2005) 11(3):1226-1236.
  • WATSON MA, STEWART RK, SMITH GB, MASSEY TE, BELL DA: Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis (1998) 19(2):275-280.
  • SWEENEY C, MCCLURE GY, FARES MY et al.: Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism. Cancer Res. (2000) 60(20):5621-5624.
  • YANG G, SHU XO, RUAN ZX et al.: Genetic polymorphisms in glutathione-S-transferase genes (GSTM1, GSTT1, GSTP1) and survival after chemotherapy for invasive breast carcinoma. Cancer (2005) 103(1):52-58.
  • LU C, SPITZ MR, ZHAO H et al.: Association between glutathione S-transferase pi polymorphisms and survival in patients with advanced nonsmall cell lung carcinoma. Cancer (2006) 106(2):441-447.
  • STOEHLMACHER J, PARK DJ, ZHANG W et al.: Association between glutathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J. Natl. Cancer Inst. (2002) 94(12):936-942.
  • RUZZO A, GRAZIANO F, KAWAKAMI K et al.: Pharmacogenetic profiling and clinical outcome of patients with advanced gastric cancer treated with palliative chemotherapy. J. Clin. Oncol. (2006) 24(12):1883-1891.
  • LECOMTE T, LANDI B, BEAUNE P, LAURENT-PUIG P, LORIOT MA: Glutathione S-transferase P1 polymorphism (Ile105Val) predicts cumulative neuropathy in patients receiving oxaliplatin-based chemotherapy. Clin. Cancer Res. (2006) 12(10):3050-3056.
  • AMBROSONE CB, SWEENEY C, COLES BF et al.: Polymorphisms in glutathione S-transferases (GSTM1 and GSTT1) and survival after treatment for breast cancer. Cancer Res. (2001) 61(19):7130-7135.
  • MEDEIROS R, PEREIRA D, AFONSO N et al.: Platinum/paclitaxel-based chemotherapy in advanced ovarian carcinoma: glutathione S-transferase genetic polymorphisms as predictive biomarkers of disease outcome. Int. J. Clin. Oncol. (2003) 8(3):156-161.
  • BEEGHLY A, KATSAROS D, CHEN H et al.: Glutathione S-transferase polymorphisms and ovarian cancer treatment and survival. Gynecol. Oncol. (2006) 100(2):330-337.
  • KIM RB, LEAKE BF, CHOO EF et al.: Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin. Pharmacol. Ther. (2001) 70(2):189-199.
  • TANG K, NGOI SM, GWEE PC et al.: Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics (2002) 12(6):437-450.
  • SAI K, KANIWA N, ITODA M et al.: Haplotype analysis of ABCB1/MDR1 blocks in a Japanese population reveals genotype-dependent renal clearance of irinotecan. Pharmacogenetics (2003) 13(12):741-757.
  • ZHOU Q, SPARREBOOM A, TAN EH et al.: Pharmacogenetic profiling across the irinotecan pathway in Asian patients with cancer. Br. J. Clin. Pharmacol. (2005) 59(4):415-424.
  • WONG M, EVANS S, RIVORY LP et al.: Hepatic technetium Tc 99m-labeled sestamibi elimination rate and ABCB1 (MDR1) genotype as indicators of ABCB1 (P-glycoprotein) activity in patients with cancer. Clin. Pharmacol. Ther. (2005) 77(1):33-42.
  • MICHAEL M, THOMPSON M, HICKS RJ et al.: Relationship of hepatic functional imaging to irinotecan pharmacokinetics and genetic parameters of drug elimination. J. Clin. Oncol. (2006) 24(26):1-8.
  • MATHIJSSEN RH, MARSH S, KARLSSON MO et al.: Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin. Cancer Res. (2003) 9(9):3246-3253.
  • TRAN A, JULLIEN V, ALEXANDRE J et al.: Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin. Pharmacol. Ther. (2006) 79(6):570-580.
  • ROBEY RW, HONJO Y, MORISAKI K et al.: Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br. J. Cancer (2003) 89(10):1971-1978.
  • DE JONG FA, MARSH S, MATHIJSSEN RH et al.: ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin. Cancer Res. (2004) 10(17):5889-5894.
  • IMAI Y, NAKANE M, KAGE K et al.: C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol. Cancer Ther. (2002) 1(8):611-616.
  • LARMINAT F, BOHR VA: Role of the human ERCC-1 gene in gene-specific repair of cisplatin-induced DNA damage. Nucleic Acids Res. (1994) 22(15):3005-3010.
  • KWEEKEL DM, GELDERBLOM H, GUCHELAAR HJ: Pharmacology of oxaliplatin and the use of pharmacogenomics to individualize therapy. Cancer Treat. Rev. (2005) 31(2):90-105.
  • FERRY KV, HAMILTON TC, JOHNSON SW: Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochem. Pharmacol. (2000) 60(9):1305-1313.
  • BELLMUNT J, PAZ-ARES L, CUELLO M et al.: Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann. Oncol. (2007) 18(3):522-528.
  • ROSELL R, COBO M, ISLA D et al.: ERCC1 mRNA-based randomized phase III trial of docetaxel (doc) doublets with cisplatin (cis) or gemcitabine (gem) in stage IV non-small-cell lung cancer (NSCLC) patients (p). Proc. Am. Assoc. Clin. Oncol. (2005) Abstr. 7002.
  • STOEHLMACHER J, PARK DJ, ZHANG W et al.: A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br. J. Cancer (2004) 91(2):344-354.
  • KANG S, JU W, KIM JW et al.: Association between excision repair cross-complementation group 1 polymorphism and clinical outcome of platinum-based chemotherapy in patients with epithelial ovarian cancer. Exp. Mol. Med. (2006) 38(3):320-324.
  • YU JJ, MU C, LEE KB et al.: A nucleotide polymorphism in ERCC1 in human ovarian cancer cell lines and tumor tissues. Mutat. Res. (1997) 382(1-2):13-20.
  • LATHE R: Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J. Mol. Biol. (1985) 183(1):1-12.
  • RYU JS, HONG YC, HAN HS et al.: Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer (2004) 44(3):311-316.
  • ISLA D, SARRIES C, ROSELL R et al.: Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann. Oncol. (2004) 15(8):1194-1203.
  • VIGUIER J, BOIGE V, MIQUEL C et al.: ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer. Clin. Cancer Res. (2005) 11(17):6212-6217.
  • LIU D, O'DAY SJ, YANG D et al.: Impact of gene polymorphisms on clinical outcome for stage IV melanoma patients treated with biochemotherapy: an exploratory study. Clin. Cancer Res. (2005) 11(3):1237-1246.
  • SPITZ MR, WU X, WANG Y et al.: Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res. (2001) 61(4):1354-1357.
  • GURUBHAGAVATULA S, LIU G, PARK S et al.: XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J. Clin. Oncol. (2004) 22(13):2594-2601.
  • PARK DJ, STOEHLMACHER J, ZHANG W et al.: A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res. (2001) 61(24):8654-8658.
  • STOEHLMACHER J, GHADERI V, IOBAL S et al.: A polymorphism of the XRCC1 gene predicts for response to platinum based treatment in advanced colorectal cancer. Anticancer Res. (2001) 21(4B):3075-3079.
  • QUINTELA-FANDINO M, HITT R, MEDINA PP et al.: DNA-repair gene polymorphisms predict favorable clinical outcome among patients with advanced squamous cell carcinoma of the head and neck treated with cisplatin-based induction chemotherapy. J. Clin. Oncol. (2006) 24(26):4333-4339.
  • SAKANO S, WADA T, MATSUMOTO H et al.: Single nucleotide polymorphisms in DNA repair genes might be prognostic factors in muscle-invasive bladder cancer patients treated with chemoradiotherapy. Br. J. Cancer (2006) 95(5):561-570.
  • DEHAL SS, KUPFER D: CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res. (1997) 57(16):3402-3406.
  • BOOCOCK DJ, BROWN K, GIBBS AH et al.: Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis (2002) 23(11):1897-1901.
  • STEARNS V, JOHNSON MD, RAE JM et al.: Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J. Natl. Cancer Inst. (2003) 95(23):1758-1764.
  • WEGMAN P, VAINIKKA L, STAL O et al.: Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res. (2005) 7(3): R284-R290.
  • NOWELL SA, AHN J, RAE JM et al.: Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res. Treat. (2005) 91(3):249-258.
  • GOETZ MP, RAE JM, SUMAN VJ et al.: Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J. Clin. Oncol. (2005) 23(36):9312-9318.
  • JIN Y, DESTA Z, STEARNS V et al.: CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J. Natl. Cancer Inst. (2005) 97(1):30-39.
  • BORGES S, DESTA Z, LI L et al.: Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin. Pharmacol. Ther. (2006) 80(1):61-74.
  • SACHSE C, BROCKMOLLER J, BAUER S, ROOTS I: Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am. J. Hum. Genet. (1997) 60(2):284-295.
  • COLLER JK, KREBSFAENGER N, KLEIN K et al.: The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver. Br. J. Clin. Pharmacol. (2002) 54(2):157-167.
  • BONANNI B, MACIS D, MAISONNEUVE P et al.: Polymorphism in the CYP2D6 tamoxifen-metabolizing gene influences clinical effect but not hot flashes: data from the Italian Tamoxifen Trial. J. Clin. Oncol. (2006) 24(22):3708-3709.
  • RAE JM, GOETZ MP, HAYES DF et al.: CYP2D6 genotype and tamoxifen response. Breast Cancer Res. (2005) 7(5): E6.
  • FROSST P, BLOM HJ, MILOS R et al.: A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. (1995) 10(1):111-113.
  • HAAGSMA CJ, BLOM HJ, VAN RIEL PL et al.: Influence of sulphasalazine, methotrexate, and the combination of both on plasma homocysteine concentrations in patients with rheumatoid arthritis. Ann. Rheum. Dis. (1999) 58(2):79-84.
  • ULRICH CM, YASUI Y, STORB R et al.: Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood (2001) 98(1):231-234.
  • TOFFOLI G, RUSSO A, INNOCENTI F et al.: Effect of methylenetetrahydrofolate reductase 677C-->T polymorphism on toxicity and homocysteine plasma level after chronic methotrexate treatment of ovarian cancer patients. Int. J. Cancer (2003) 103(3):294-299.
  • KUMAGAI K, HIYAMA K, OYAMA T, MAEDA H, KOHNO N: Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int. J. Mol. Med. (2003) 11(5):593-600.
  • SHRUBSOLE MJ, SHU XO, RUAN ZX et al.: MTHFR genotypes and breast cancer survival after surgery and chemotherapy: a report from the Shanghai Breast Cancer Study. Breast Cancer Res. Treat. (2005) 91(1):73-79.
  • SOHN KJ, CROXFORD R, YATES Z, LUCOCK M, KIM YI: Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. J. Natl. Cancer Inst. (2004) 96(2):134-144.
  • TOFFOLI G, VERONESI A, BOIOCCHI M, CRIVELLARI D: MTHFR gene polymorphism and severe toxicity during adjuvant treatment of early breast cancer with cyclophosphamide, methotrexate, and fluorouracil (CMF). Ann. Oncol. (2000) 11(3):373-374.
  • STEVENSON JP, REDLINGER M, KLUIJTMANS LA et al.: Phase I clinical and pharmacogenetic trial of irinotecan and raltitrexed administered every 21 days to patients with cancer. J. Clin. Oncol. (2001) 19(20):4081-4087.
  • CHIUSOLO P, REDDICONTO G, CASORELLI I et al.: Preponderance of methylenetetrahydrofolate reductase C677T homozygosity among leukemia patients intolerant to methotrexate. Ann. Oncol. (2002) 13(12):1915-1918.
  • COHEN V, PANET-RAYMOND V, SABBAGHIAN N et al.: Methylenetetrahydrofolate reductase polymorphism in advanced colorectal cancer: a novel genomic predictor of clinical response to fluoropyrimidine-based chemotherapy. Clin. Cancer Res. (2003) 9(5):1611-1615.
  • ETIENNE MC, FORMENTO JL, CHAZAL M et al.: Methylenetetrahydrofolate reductase gene polymorphisms and response to fluorouracil-based treatment in advanced colorectal cancer patients. Pharmacogenetics (2004) 14(12):785-792.
  • JAKOBSEN A, NIELSEN JN, GYLDENKERNE N, LINDEBERG J: Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphism in normal tissue as predictors of fluorouracil sensitivity. J. Clin. Oncol. (2005) 23(7):1365-1369.
  • MARCUELLO E, ALTES A, MENOYO A, RIO ED, BAIGET M: Methylenetetrahydrofolate reductase gene polymorphisms: genomic predictors of clinical response to fluoropyrimidine-based chemotherapy? Cancer Chemother. Pharmacol. (2006) 57(6):835-840.
  • COPUR S, AIBA K, DRAKE JC, ALLEGRA CJ, CHU E: Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil. Biochem. Pharmacol. (1995) 49(10):1419-1426.
  • PULLARKAT ST, STOEHLMACHER J, GHADERI V et al.: Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J. (2001) 1(1):65-70.
  • KAWAKAMI K, SALONGA D, PARK JM et al.: Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression. Clin. Cancer Res. (2001) 7(12):4096-4101.
  • MARSH S, COLLIE-DUGUID ES, LI T, LIU X, MCLEOD HL: Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasian and Asian populations. Genomics (1999) 58(3):310-312.
  • MARSH S, AMEYAW MM, GITHANG'A J et al.: Novel thymidylate synthase enhancer region alleles in African populations. Hum. Mutat. (2000) 16(6):528.
  • KAWAKAMI K, ISHIDA Y, DANENBERG KD et al.: Functional polymorphism of the thymidylate synthase gene in colorectal cancer accompanied by frequent loss of heterozygosity. Jpn. J. Cancer Res. (2002) 93(11):1221-1229.
  • TSUJI T, HIDAKA S, SAWAI T et al.: Polymorphism in the thymidylate synthase promoter enhancer region is not an efficacious marker for tumor sensitivity to 5-fluorouracil-based oral adjuvant chemotherapy in colorectal cancer. Clin. Cancer Res. (2003) 9(10 Pt 1):3700-3704.
  • HORIE N, AIBA H, OGURO K, HOJO H, TAKEISHI K: Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5'-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct. Funct. (1995) 20(3):191-197.
  • PARK DJ, STOEHLMACHER J, ZHANG W et al.: Thymidylate synthase gene polymorphism predicts response to capecitabine in advanced colorectal cancer. Int. J. Colorectal Dis. (2002) 17(1):46-49.
  • MANDOLA MV, STOEHLMACHER J, MULLER-WEEKS S et al.: A novel single nucleotide polymorphism within the 5' tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res. (2003) 63(11):2898-2904.
  • KAWAKAMI K, WATANABE G: Identification and functional analysis of single nucleotide polymorphism in the tandem repeat sequence of thymidylate synthase gene. Cancer Res. (2003) 63(18):6004-6007.
  • MORGANTI M, CIANTELLI M, GIGLIONI B et al.: Relationships between promoter polymorphisms in the thymidylate synthase gene and mRNA levels in colorectal cancers. Eur. J. Cancer (2005) 41(14):2176-2183.
  • MARCUELLO E, ALTES A, DEL RIO E et al.: Single nucleotide polymorphism in the 5' tandem repeat sequences of thymidylate synthase gene predicts for response to fluorouracil-based chemotherapy in advanced colorectal cancer patients. Int. J. Cancer (2004) 112(5):733-737.
  • MANDOLA MV, STOEHLMACHER J, ZHANG W et al.: A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics (2004) 14(5):319-327.
  • LECOMTE T, FERRAZ JM, ZINZINDOHOUE F et al.: Thymidylate synthase gene polymorphism predicts toxicity in colorectal cancer patients receiving 5-fluorouracil-based chemotherapy. Clin. Cancer Res. (2004) 10(17):5880-5888.
  • LU JW, GAO CM, WU JZ et al.: Polymorphism in the 3'-untranslated region of the thymidylate synthase gene and sensitivity of stomach cancer to fluoropyrimidine-based chemotherapy. J. Hum. Genet. (2006) 51(3):155-160.
  • HITRE E, BUDAI B, ADLEFF V et al.: Influence of thymidylate synthase gene polymorphisms on the survival of colorectal cancer patients receiving adjuvant 5-fluorouracil. Pharmacogenet. Genomics (2005) 15(10):723-730.
  • KAWAKAMI K, GRAZIANO F, WATANABE G et al.: Prognostic role of thymidylate synthase polymorphisms in gastric cancer patients treated with surgery and adjuvant chemotherapy. Clin. Cancer Res. (2005) 11(10):3778-3783.
  • DOTOR E, CUATRECASES M, MARTINEZ-INIESTA M et al.: Tumor thymidylate synthase 1494del6 genotype as a prognostic factor in colorectal cancer patients receiving fluorouracil-based adjuvant treatment. J. Clin. Oncol. (2006) 24(10):1603-1611.
  • KIRCHHEINER J, FUHR U, BROCKMOLLER J: Pharmacogenetics-based therapeutic recommendations--ready for clinical practice? Nat. Rev. Drug Discov. (2005) 4(8):639-647.
  • WESSELS JAM, VAN DER KOOIJ SM, LE CESSIE S et al.: A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis. Arthritis Rheum. (2007) 56(6):1765-1775.
  • HATTERSLEY AT, MCCARTHY MI: What makes a good genetic association study? Lancet (2005) 366(9493):1315-1323.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.