294
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Treating autoimmune disease by targeting CD8+ T suppressor cells

, &
Pages 951-965 | Published online: 12 Jun 2009

Bibliography

  • Nishizuka Y, Sakakura T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969;166(906):753-5
  • Gershon RK, Cohen P, Hencin R, Liebhaber SA. Suppressor T cells. J Immunol 1972;108(3):586-90
  • Cantor H, Hugenberger J, McVay-Boudreau L, et al. Immunoregulatory circuits among T-cell sets. Identification of a subpopulation of T-helper cells that induces feedback inhibition. J Exp Med 1978;148(4):871-7
  • Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155(3):1151-64
  • Belkaid Y, Piccirillo CA, Mendez S, et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002;420(6915):502-7
  • Kapp JA, Bucy RP. CD8 + suppressor T cells resurrected. Hum Immunol 2008;69(11):715-20
  • Kapp JA, Honjo K, Kapp LM, et al. TCR transgenic CD8+ T cells activated in the presence of TGFβ express FoxP3 and mediate linked suppression of primary immune responses and cardiac allograft rejection. Int Immunol 2006;18(11):1549-62
  • Karlsson I, Malleret B, Brochard P, et al. FoxP3+ CD25+ CD8+ T-cell induction during primary simian immunodeficiency virus infection in cynomolgus macaques correlates with low CD4+ T-cell activation and high viral load. J Virol 2007;81(24):13444-55
  • Shao L, Jacobs AR, Johnson VV, Mayer L. Activation of CD8+ regulatory T cells by human placental trophoblasts. J Immunol 2005;174(12):7539-47
  • Sugita S, Futagami Y, Horie S, Mochizuki M. Transforming growth factor β-producing Foxp3+CD8+CD25+ T cells induced by iris pigment epithelial cells display regulatory phenotype and acquire regulatory functions. Exp Eye Res 2007;85(5):626-36
  • Cosmi L, Liotta F, Lazzeri E, et al. Human CD8+ CD25+ thymocytes share phenotypic and functional features with CD4+ CD25+ regulatory thymocytes. Blood 2003;102(12):4107-14
  • Rifa'i M, Shi Z, Zhang SY, et al. CD8+ CD122+ regulatory T cells recognize activated T cells via conventional MHC class I-αβTCR interaction and become IL-10-producing active regulatory cells. Int Immunol 2008;20(7):937-47
  • Filaci G, Fravega M, Negrini S, et al. Nonantigen specific CD8+ T suppressor lymphocytes originate from CD8+ CD28– T cells and inhibit both T-cell proliferation and CTL function. Hum Immunol 2004;65(2):142-56
  • Groux H, Bigler M, de Vries JE, Roncarolo MG. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 1996;184(1):19-29
  • Fenoglio D, Ferrera F, Fravega M, et al. Advancements on phenotypic and functional characterization of non-antigen-specific CD8+ CD28- regulatory T cells. Hum Immunol 2008;69(11):745-50
  • Mahic M, Henjum K, Yaqub S, et al. Generation of highly suppressive adaptive CD8+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation. Eur J Immunol 2008;38(3):640-6
  • Fan TM, Kranz DM, Flavell RA, Roy EJ. Costimulatory strength influences the differential effects of transforming growth factor β1 for the generation of CD8+ regulatory T cells. Mol Immunol 2008;45(10):2937-50
  • Herold KC, Gitelman SE, Masharani U, et al. A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 2005;54(6):1763-9
  • Bisikirska B, Colgan J, Luban J, et al. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest 2005;115(10):2904-13
  • Joosten SA, van Meijgaarden KE, Savage ND, et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci USA 2007;104(19):8029-34
  • Uss E, Rowshani AT, Hooibrink B, et al. CD103 is a marker for alloantigen-induced regulatory CD8+ T cells. J Immunol 2006;177(5):2775-83
  • Uss E, Yong SL, Hooibrink B, et al. Rapamycin enhances the number of alloantigen-induced human CD103+ CD8+ regulatory T cells in vitro. Transplantation 2007;83(8):1098-106
  • Allez M, Brimnes J, Dotan I, Mayer L. Expansion of CD8+ T cells with regulatory function after interaction with intestinal epithelial cells. Gastroenterology 2002;123(5):1516-26
  • Yio XY, Mayer L. Characterization of a 180-kDa intestinal epithelial cell membrane glycoprotein, gp180. A candidate molecule mediating T cell–epithelial cell interactions. J Biol Chem 1997;272(19):12786-92
  • Jarvis LB, Matyszak MK, Duggleby RC, et al. Autoreactive human peripheral blood CD8+ T cells with a regulatory phenotype and function. Eur J Immunol 2005;35(10):2896-908
  • Gilliet M, Liu YJ. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 2002;195(6):695-704
  • Wei S, Kryczek I, Zou L, et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 2005;65(12):5020-6
  • Ciubotariu R, Colovai AI, Pennesi G, et al. Specific suppression of human CD4+ Th cell responses to pig MHC antigens by CD8+ CD28– regulatory T cells. J Immunol 1998;161(10):5193-202
  • Li J, Liu Z, Jiang S, et al. T suppressor lymphocytes inhibit NF-κB-mediated transcription of CD86 gene in APC. J Immunol 1999;163(12):6386-92
  • Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 2002;3(3):237-43
  • Vlad G, Cortesini R, Suciu-Foca N. CD8+ T suppressor cells and the ILT3 master switch. Hum Immunol 2008;69(11):681-6
  • Vlad G, D'Agati VD, Zhang QY, et al. Immunoglobulin-like transcript 3-Fc suppresses T-cell responses to allogeneic human islet transplants in hu-NOD/SCID mice. Diabetes 2008;57(7):1878-86
  • Chess L, Jiang H. Resurrecting CD8+ suppressor T cells. Nat Immunol 2004;5(5):469-71
  • Lu L, Werneck MB, Cantor H. The immunoregulatory effects of Qa-1. Immunol Rev 2006;212:51-9
  • Sarantopoulos S, Lu L, Cantor H. Qa-1 restriction of CD8+ suppressor T cells. J Clin Invest 2004;114(9):1218-21
  • Czesnikiewicz-Guzik M, Lee WW, et al. T cell subset-specific susceptibility to aging. Clin Immunol 2008;127(1):107-18
  • Chung CP, Avalos I, Raggi P, Stein CM. Atherosclerosis and inflammation: insights from rheumatoid arthritis. Clin Rheumatol 2007;26(8):1228-33
  • Kaplan MJ. Cardiovascular disease in rheumatoid arthritis. Curr Opin Rheumatol 2006;18(3):289-97
  • Weyand CM. Immunopathologic aspects of rheumatoid arthritis: who is the conductor and who plays the immunologic instrument? J Rheumatol Suppl 2007;79:9-14
  • Weyand CM, Goronzy JJ. Ectopic germinal center formation in rheumatoid synovitis. Ann NY Acad Sci 2003;987:140-9
  • Knedla A, Neumann E, Muller-Ladner U. Developments in the synovial biology field 2006. Arthritis Res Ther 2007;9(2):209
  • Goronzy JJ, Weyand CM. Rheumatoid arthritis. Immunol Rev 2005;204:55-73
  • Weyand CM, Goronzy JJ. T-cell-targeted therapies in rheumatoid arthritis. Nat Clin Pract Rheumatol 2006;2(4):201-10
  • Colmegna I, Diaz-Borjon A, Fujii H, et al. Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis Rheum 2008;58(4):990-1000
  • Davila E, Kang YM, Park YW, et al. Cell-based immunotherapy with suppressor CD8 + T cells in rheumatoid arthritis. J Immunol 2005;174(11):7292-301
  • Klimiuk PA, Goronzy JJ, Weyand CM. IL-16 as an anti-inflammatory cytokine in rheumatoid synovitis. J Immunol 1999;162(7):4293-9
  • Seo SK, Choi JH, Kim YH, et al. 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat Med 2004;10(10):1088-94
  • Filaci G, Bacilieri S, Fravega M, et al. Impairment of CD8+ T suppressor cell function in patients with active systemic lupus erythematosus. J Immunol 2001;166(10):6452-7
  • Singh RR, Ebling FM, Sercarz EE, Hahn BH. Immune tolerance to autoantibody-derived peptides delays development of autoimmunity in murine lupus. J Clin Invest 1995;96(6):2990-6
  • Hahn BH, Singh RR, Wong WK, et al. Treatment with a consensus peptide based on amino acid sequences in autoantibodies prevents T cell activation by autoantigens and delays disease onset in murine lupus. Arthritis Rheum 2001;44(2):432-41
  • Hahn BH, Singh RP, La Cava A, Ebling FM. Tolerogenic treatment of lupus mice with consensus peptide induces Foxp3-expressing, apoptosis-resistant, TGFβ-secreting CD8+ T cell suppressors. J Immunol 2005;175(11):7728-37
  • Singh RP, La Cava A, Wong M, et al. CD8+ T cell-mediated suppression of autoimmunity in a murine lupus model of peptide-induced immune tolerance depends on Foxp3 expression. J Immunol 2007;178(12):7649-57
  • Ferrera F, Hahn BH, Rizzi M, et al. Protection against renal disease in (NZB × NZW)F1 lupus-prone mice after somatic B cell gene vaccination with anti-DNA immunoglobulin consensus peptide. Arthritis Rheum 2007;56(6):1945-53
  • Kang HK, Michaels MA, Berner BR, Datta SK. Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol 2005;174(6):3247-55
  • Kang HK, Liu M, Datta SK. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J Immunol 2007;178(12):7849-58
  • Weber MS, Hohlfeld R, Zamvil SS. Mechanism of action of glatiramer acetate in treatment of multiple sclerosis. Neurotherapeutics 2007;4(4):647-53
  • Tennakoon DK, Mehta RS, Ortega SB, et al. Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol 2006;176(11):7119-29
  • Correale J, Villa A. Isolation and characterization of CD8+ regulatory T cells in multiple sclerosis. J Neuroimmunol 2008;195(1-2):121-34
  • Menager-Marcq I, Pomie C, Romagnoli P, van Meerwijk JP. CD8+ CD28– regulatory T lymphocytes prevent experimental inflammatory bowel disease in mice. Gastroenterology 2006;131(6):1775-85
  • Ho J, Kurtz CC, Naganuma M, et al. A CD8+/CD103high T cell subset regulates TNF-mediated chronic murine ileitis. J Immunol 2008;180(4):2573-80
  • Brimnes J, Allez M, Dotan I, et al. Defects in CD8+ regulatory T cells in the lamina propria of patients with inflammatory bowel disease. J Immunol 2005;174(9):5814-22
  • James EA, Kwok WW. CD8+ suppressor-mediated regulation of human CD4+ T cell responses to glutamic acid decarboxylase 65. Eur J Immunol 2007;37(1):78-86
  • Chatenoud L. OKT3-induced cytokine-release syndrome: prevention effect of anti-tumor necrosis factor monoclonal antibody. Transplant Proc 1993;25(2 Suppl 1):47-51
  • Chatenoud L. Humoral immune response against OKT3. Transplant Proc 1993;25(2 Suppl 1):68-73
  • Alegre ML, Peterson LJ, Xu D, et al. A non-activating “humanized” anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation 1994;57(11):1537-43
  • Xu D, Alegre ML, Varga SS, et al. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell Immunol 2000;200(1):16-26
  • Ablamunits V, Bisikirska BC, Herold KC. Human regulatory CD8 T cells. Ann NY Acad Sci 2008;1150:234-8
  • Wang R, Han G, Song L, et al. CD8+ regulatory T cells are responsible for GAD-IgG gene-transferred tolerance induction in NOD mice. Immunology 2009;126(1):123-31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.