171
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Prospects for antisense peptide nucleic acid (PNA) therapies for HIV

, &
Pages 975-989 | Published online: 17 Jun 2009

Bibliography

  • Kress KD. HIV update: emerging clinical evidence and a review of recommendations for the use of highly active antiretroviral therapy. Am J Health Syst Pharm 2004;61;(Suppl 3):S3-14; quiz S5-6
  • Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991;254(5037):1497-500
  • Demidov VV, Potaman VN, Frank-Kamenetskii MD, et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 1994;48(6):1310-3
  • Wakefield JK, Kang SM, Morrow CD. Construction of a type 1 human immunodeficiency virus that maintains a primer binding site complementary to tRNA(His). J Virol 1996;70(2):966-75
  • Kang SM, Zhang Z, Morrow CD. Identification of a sequence within U5 required for human immunodeficiency virus type 1 to stably maintain a primer binding site complementary to tRNA(Met). J Virol 1997;71(1):207-17
  • Paillart JC, Berthoux L, Ottmann M, et al. A dual role of the putative RNA dimerization initiation site of human immunodeficiency virus type 1 in genomic RNA packaging and proviral DNA synthesis. J Virol 1996;70(12):8348-54
  • Gaynor R. Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS 1992;6(4):347-63
  • Harrich D, Ulich C, Gaynor RB. A critical role for the TAR element in promoting efficient human immunodeficiency virus type 1 reverse transcription. J Virol 1996;70(6):4017-27
  • Harrich D, Ulich C, Garcia-Martinez LF, Gaynor RB. Tat is required for efficient HIV-1 reverse transcription. EMBO J 1997;16(6):1224-35
  • Crabtree GR. Contingent genetic regulatory events in T lymphocyte activation. Science 1989;243(4889):355-61
  • Peterlin BM. Transcriptional regulation of hIV. In: Haseltine WA, Wong-Staal F, editors, Genetic structure and regulation of HIV. New York: Raven Press, 1991. p. 237-50
  • Waterman ML, Sheridan PL, Milocco LH, et al. Nuclear protein implicated in HIV-1 transcriptional control. In: Haseltine WA, Wong-Staal F, editors, Genetic structure and regulation of HIV. New York: Raven Press, 1991. p. 391-403
  • Sodroski J, Patarca R, Rosen C, et al. Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. Science 1985;229(4708):74-7
  • Arya SK, Gallo RC. Three novel genes of human T-lymphotropic virus type III: immune reactivity of their products with sera from acquired immune deficiency syndrome patients. Proc Natl Acad Sci USA 1986;83(7):2209-13
  • Arya SK, Gallo RC. Human T-cell growth factor (interleukin 2) and γ-interferon genes: expression in human T-lymphotropic virus type III- and type I-infected cells. Proc Natl Acad Sci USA 1985;82(24):8691-5
  • Feinberg MB, Baltimore D, Frankel AD. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc Natl Acad Sci USA 1991;88(9):4045-9
  • Marciniak RA, Sharp PA. HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO J 1991;10(13):4189-96
  • Cherrington J, Ganem D. Regulation of polyadenylation in human immunodeficiency virus (HIV): contributions of promoter proximity and upstream sequences. EMBO J 1992;11(4):1513-24
  • Eggermont J, Proudfoot NJ. Poly(A) signals and transcriptional pause sites combine to prevent interference between RNA polymerase II promoters. EMBO J 1993;12(6):2539-48
  • Weichs an der Glon C, Ashe M, Eggermont J, Proudfoot NJ. Tat-dependent occlusion of the HIV poly(A) site. EMBO J 1993;12(5):2119-28
  • Vink C, Plasterk RH. The human immunodeficiency virus integrase protein. Trends Genet 1993;9(12):433-8
  • Goff SP. Genetics of retroviral integration. Annu Rev Genet 1992;26:527-44
  • Cannon PM, Wilson W, Byles E, et al. Human immunodeficiency virus type 1 integrase: effect on viral replication of mutations at highly conserved residues. J Virol 1994;68(8):4768-75
  • Engelman A, Englund G, Orenstein JM, et al. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 1995;69(5):2729-36
  • Chow SA, Brown PO. Substrate features important for recognition and catalysis by human immunodeficiency virus type 1 integrase identified by using novel DNA substrates. J Virol 1994;68(6):3896-907
  • Lafemina RL, Schneider CL, Robbins HL, et al. Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells. J Virol 1992;66(12):7414-9
  • Sherman PA, Dickson ML, Fyfe JA. Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions. J Virol 1992;66(6):3593-601
  • Ivanova G, Arzumanov AA, Turner JJ, et al. Anti-HIV activity of steric block oligonucleotides. Ann NY Acad Sci 2006;1082:103-15
  • Agrawal S, Tang JY. GEM 91–an antisense oligonucleotide phosphorothioate as a therapeutic agent for AIDS. Antisense Res Dev 1992;2(4):261-6
  • Zheng R. Technology evaluation: GEM-92, Hybridon Inc. Curr Opin Mol Ther 1999;1(4):521-3
  • Gunnery S, Green SR, Mathews MB. Tat-responsive region RNA of human immunodeficiency virus type 1 stimulates protein synthesis in vivo and in vitro: relationship between structure and function. Proc Natl Acad Sci USA 1992;89(23):11557-61
  • Mayhood T, Kaushik N, Pandey PK, et al. Inhibition of Tat-mediated transactivation of HIV-1 LTR transcription by polyamide nucleic acid targeted to TAR hairpin element. Biochemistry 2000;39(38):11532-9
  • Arzumanov A, Walsh AP, Liu X, et al. Oligonucleotide analogue interference with the HIV-1 Tat protein-TAR RNA interaction. Nucleosides Nucleotides Nucleic Acids 2001;20(4-7):471-80
  • Kaushik N, Basu A, Pandey VN. Inhibition of HIV-1 replication by anti-trans-activation responsive polyamide nucleotide analog. Antiviral Res 2002;56(1):13-27
  • Chaubey B, Tripathi S, Ganguly S, et al. A PNA-transportan conjugate targeted to the TAR region of the HIV-1 genome exhibits both antiviral and virucidal properties. Virology 2005;331(2):418-28
  • Riguet E, Tripathi S, Chaubey B, et al. A peptide nucleic acid–neamine conjugate that targets and cleaves HIV-1 TAR RNA inhibits viral replication. J Med Chem 2004;47(20):4806-9
  • Terreux R, Pairot S, Cabrol-Bass D, et al. Interaction of new PNA-based molecules with TAR RNA of HIV-1: molecular modelling and biological evaluation. J Mol Graph Model 2001;19(6):579-85, 614-5
  • Tripathi S, Chaubey B, Ganguly S, et al. Anti-HIV-1 activity of anti-TAR polyamide nucleic acid conjugated with various membrane transducing peptides. Nucleic Acids Res 2005;33(13):4345-56
  • Lee R, Kaushik N, Modak MJ, et al. Polyamide nucleic acid targeted to the primer binding site of the HIV-1 RNA genome blocks in vitro HIV-1 reverse transcription. Biochemistry 1998;37(3):900-10
  • Kaushik N, Pandey VN. PNA targeting the PBS and A-loop sequences of HIV-1 genome destabilizes packaged tRNA3Lys in the virions and inhibits HIV-1 replication. Virology 2002;303(2):297-308
  • Tripathi S, Chaubey B, Barton BE, Pandey VN. Anti HIV-1 virucidal activity of polyamide nucleic acid-membrane transducing peptide conjugates targeted to primer binding site of HIV-1 genome. Virology 2007;363(1):91-103
  • Boutimah-Hamoudi F, Leforestier E, Senamaud-Beaufort C, et al. Cellular antisense activity of peptide nucleic acid (PNAs) targeted to HIV-1 polypurine tract (PPT) containing RNA. Nucleic Acids Res 2007;35(12):3907-17
  • Sei S, Yang QE, O'neill D, et al. Identification of a key target sequence to block human immunodeficiency virus type 1 replication within the gag-pol transframe domain. J Virol 2000;74(10):4621-33
  • Koppelhus U, Zachar V, Nielsen PE, et al. Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA. Nucleic Acids Res 1997;25(11):2167-73
  • Nielsen PE. Peptide nucleic acid (PNA) from DNA recognition to antisense and DNA structure. Biophys Chem 1997;68(1-3):103-8
  • Knudsen H, Nielsen PE. Antisense properties of duplex- and triplex-forming PNAs. Nucleic Acids Res 1996;24(3):494-500
  • Koppelhus U, Nielsen PE. Cellular delivery of peptide nucleic acid (PNA). Adv Drug Deliv Rev 2003;55(2):267-80
  • Shiraishi T, Nielsen PE. Photochemically enhanced cellular delivery of cell penetrating peptide-PNA conjugates. FEBS Lett 2006;580(5):1451-6
  • Abes S, Ivanova GD, Abes R, et al. Peptide-based delivery of steric-block PNA oligonucleotides. Methods Mol Biol 2009;480:85-99
  • Wagstaff KM, Jans DA. Protein transduction: cell penetrating peptides and their therapeutic applications. Curr Med Chem 2006;13(12):1371-87
  • Futaki S. Membrane permeable peptide vectors: chemistry and functional design for the therapeutic applications. Adv Drug Deliv Rev 2008;60(4-5):447
  • Gait MJ. Peptide-mediated cellular delivery of antisense oligonucleotides and their analogues. Cell Mol Life Sci 2003;60(5):844-53
  • Mehiri M, Upert G, Tripathi S, et al. An efficient biodelivery system for antisense polyamide nucleic acid (PNA). Oligonucleotides 2008;18(3):245-56
  • Chaubey B, Tripathi S, Desire J, et al. Mechanism of RNA cleavage catalyzed by sequence specific polyamide nucleic acid–neamine conjugate. Oligonucleotides 2007;17(3):302-13
  • El-Sayed A, Futaki S, Harashima H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 2009;11(1):13-22
  • Koppelhus U, Awasthi SK, Zachar V, et al. Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev 2002;12(2):51-63
  • Kaushik N, Basu A, Palumbo P, et al. Anti-TAR polyamide nucleotide analog conjugated with a membrane-permeating peptide inhibits human immunodeficiency virus type 1 production. J Virol 2002;76(8):3881-91
  • Pooga M, Langel U. Targeting of cancer-related proteins with PNA oligomers. Curr Cancer Drug Targets 2001;1(3):231-9
  • Pooga M, Soomets U, Hallbrink M, et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol 1998;16(9):857-61
  • Pooga M, Soomets U, Bartfai T, Langel U. Synthesis of cell-penetrating peptide-PNA constructs. Methods Mol Biol 2002;208:225-36
  • Thoren PE, Persson D, Isakson P, et al. Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochem Biophys Res Commun 2003;307(1):100-7
  • Wakefield JK, Wolf AG, Morrow CD. Human immunodeficiency virus type 1 can use different tRNAs as primers for reverse transcription but selectively maintains a primer binding site complementary to tRNA3Lys. J Virol 1995;69(10):6021-9
  • Kaushik N, Talele TT, Monel R, et al. Destabilization of tRNA3Lys from the primer-binding site of HIV-1 genome by anti-A loop polyamide nucleotide analog. Nucleic Acids Res 2001;29(24):5099-106
  • Mei HY, Galen AA. Halim NS, et al. Inhibition of an HIV-1 Tat-derived peptide binding to TAR RNA by aminoglycoside antibiotics. Bioorg & Med Chem Lett 1995;5(22):2755-60
  • Zapp ML, Stern S, Green MR. Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production. Cell 1993;74(6):969-78
  • Oivanen M, Kuusela S, Lonnberg H. Kinetics and mechanisms for the cleavage and isomerization of the phosphodiester bonds of RNA by Bronsted acids and bases. Chem Rev 1998;98(3):961-90
  • Botto RE, Coxon B. Nitrogen-15 nuclear magnetic resonance spectroscopy of neomycin B and related aminoglycosides. J Am Chem Soc 1983;105:1021-8
  • Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 1987;327(6121):389-94
  • Kirk SR, Tor Y. Hydrolysis of an RNA dinucleoside mono-phosphate by neomycin B. Chem Commun 1998;1:147-8
  • Filipovska A, Eccles MR, Smith RA, Murphy MP. Delivery of antisense peptide nucleic acids (PNAs) to the cytosol by disulphide conjugation to a lipophilic cation. FEBS Lett 2004;556(1-3):180-6
  • Muratovska A, Lightowlers RN, Taylor RW, et al. Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res 2001;29(9):1852-63
  • Lefebvre I, Perigaud C, Pompon A, et al. Mononucleoside phosphotriester derivatives with S-acyl-2-thioethyl bioreversible phosphate-protecting groups: intracellular delivery of 3′-azido-2′,3′-dideoxythymidine 5′-monophosphate. J Med Chem 1995;38(20):3941-50
  • Ganguly S, Chaubey B, Tripathi S, et al. Pharmacokinetic analysis of polyamide nucleic-acid-cell penetrating peptide conjugates targeted against HIV-1 transactivation response element. Oligonucleotides 2008;18(3):277-86
  • Chaubey B, Tripathi S, Pandey VN. Single acute-dose and repeat-doses toxicity of anti-HIV-1 PNA TAR-penetratin conjugate after intraperitoneal administration to mice. Oligonucleotides 2008;18(1):9-20
  • Upadhyay A, Ponzio NM, Pandey VN. Immunological response to peptide nucleic acid and its peptide conjugate targeted to transactivation response (TAR) region of HIV-1 RNA genome. Oligonucleotides 2008;18(4):329-35
  • Kremer IB, Hilkens CM, Sylva-Steenland RM, et al. Reduced IL-12 production by monocytes upon ultraviolet-B irradiation selectively limits activation of T helper-1 cells. J Immunol 1996;157(5):1913-8
  • Lenardo M, Chan KM, Hornung F, et al. Mature T lymphocyte apoptosis–immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 1999;17:221-53
  • Wang KS, Frank DA, Ritz J. Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood 2000;95(10):3183-90
  • Snijders A, Kalinski P, Hilkens CM, Kapsenberg ML. High-level IL-12 production by human dendritic cells requires two signals. Int Immunol 1998;10(11):1593-8
  • Conrad A. Interleukin-2–where are we going? J Assoc Nurses AIDS Care 2003;14(6):83-8
  • Abrams DI, Bebchuk JD, Denning ET, et al. Randomized, open-label study of the impact of two doses of subcutaneous recombinant interleukin-2 on viral burden in patients with HIV-1 infection and CD4+ cell counts of ≥ 300/mm3: CPCRA 059. J Acquir Immune Defic Syndr 2002;29(3):221-31
  • Arno A, Ruiz L, Juan M, et al. Efficacy of low-dose subcutaneous interleukin-2 to treat advanced human immunodeficiency virus type 1 in persons with ≤ 250/μl CD4 T cells and undetectable plasma virus load. J Infect Dis 1999;180(1):56-60
  • Davey RT Jr, Murphy RL, Graziano FM, et al. Immunologic and virologic effects of subcutaneous interleukin 2 in combination with antiretroviral therapy: a randomized controlled trial. JAMA 2000;284(2):183-9
  • Emery S, Capra WB, Cooper DA, et al. Pooled analysis of 3 randomized, controlled trials of interleukin-2 therapy in adult human immunodeficiency virus type 1 disease. J Infect Dis 2000;182(2):428-34
  • Kovacs JA, Vogel S, Albert JM, et al. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med 1996;335(18):1350-6
  • Levy Y, Capitant C, Houhou S, et al. Comparison of subcutaneous and intravenous interleukin-2 in asymptomatic HIV-1 infection: a randomised controlled trial. ANRS 048 study group. Lancet 1999;353(9168):1923-9
  • Losso MH, Belloso WH, Emery S, et al. A randomized, controlled, phase II trial comparing escalating doses of subcutaneous interleukin-2 plus antiretrovirals versus antiretrovirals alone in human immunodeficiency virus-infected patients with CD4+ cell counts ≥350/mm3. J Infect Dis 2000;181(5):1614-21
  • Ruxrungtham K, Suwanagool S, Tavel JA, et al. A randomized, controlled 24-week study of intermittent subcutaneous interleukin-2 in HIV-1 infected patients in Thailand. AIDS 2000;14(16):2509-13
  • Hsieh CS, Macatonia SE, Tripp CS, et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993;260(5107):547-9
  • Chirgwin KD, Feldman J, Dehovitz JA, et al. Incidence and risk factors for heterosexually acquired HIV in an inner-city cohort of women: temporal association with pregnancy. J Acquir Immune Defic Syndr Hum Retrovirol 1999;20(3):295-9
  • Vittinghoff E, Douglas J, Judson F, et al. Per-contact risk of human immunodeficiency virus transmission between male sexual partners. Am J Epidemiol 1999;150(3):306-11
  • Vernazza PL, Eron JJ, Fiscus SA. Sensitive method for the detection of infectious HIV in semen of seropositive individuals. J Virol Methods 1996;56(1):33-40
  • Tachet A, Dulioust E, Salmon D, et al. Detection and quantification of HIV-1 in semen: identification of a subpopulation of men at high potential risk of viral sexual transmission. AIDS 1999;13(7):823-31
  • Hart CE, Lennox JL, Pratt-Palmore M, et al. Correlation of human immunodeficiency virus type 1 RNA levels in blood and the female genital tract. J Infect Dis 1999;179(4):871-82
  • East L, Isacke CM. The mannose receptor family. Biochim Biophys Acta 2002;1572(2-3):364-86
  • Linehan SA, Martinez-Pomares L, Gordon S. Mannose receptor and scavenger receptor: two macrophage pattern recognition receptors with diverse functions in tissue homeostasis and host defense. Adv Exp Med Biol 2000;479:1-14
  • Snyderman RPM, Altman LC. Abnormalities of leukocyte chemotaxis in human disease. Ann N Y Acad Sci 1975;256:386-401
  • Niedel JE, Kahane I, Cuatrecasas P. Receptor-mediated internalization of fluorescent chemotactic peptide by human neutrophils. Science 1979;205(4413):1412-4
  • Niedel J, Wilkinson S, Cuatrecasas P. Receptor-mediated uptake and degradation of 125I-chemotactic peptide by human neutrophils. J Biol Chem 1979;254(21):10700-6
  • Hammache D, Yahi N, Maresca M, et al. Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3). J Virol 1999;73(6):5244-8
  • Puri A, Hug P, Jernigan K, et al. The neutral glycosphingolipid globotriaosylceramide promotes fusion mediated by a CD4-dependent CXCR4-utilizing HIV type 1 envelope glycoprotein. Proc Natl Acad Sci USA 1998;95(24):14435-40
  • Yahi N, Baghdiguian S, Moreau H, Fantini J. Galactosyl ceramide (or a closely related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT29 cells. J Virol 1992;66(8):4848-54
  • Nehete PN, Vela EM, Hossain MM, et al. A post-CD4-binding step involving interaction of the V3 region of viral gp120 with host cell surface glycosphingolipids is common to entry and infection by diverse HIV-1 strains. Antiviral Res 2002;56(3):233-51
  • Leahy DJ. A structural view of CD4 and CD8. FASEB J 1995;9(1):17-25
  • Arthos J, Deen KC, Chaikin MA, et al. Identification of the residues in human CD4 critical for the binding of HIV. Cell 1989;57(3):469-81
  • Clayton LK, Sieh M, Pious DA, Reinherz EL. Identification of human CD4 residues affecting class II MHC versus HIV-1 gp120 binding. Nature 1989;339(6225):548-51
  • Mizukami T, Fuerst TR, Berger EA, Moss B. Binding region for human immunodeficiency virus (HIV) and epitopes for HIV-blocking monoclonal antibodies of the CD4 molecule defined by site-directed mutagenesis. Proc Natl Acad Sci USA 1988;85(23):9273-7
  • Monnet C, Laune D, Laroche-Traineau J, et al. Synthetic peptides derived from the variable regions of an anti-CD4 monoclonal antibody bind to CD4 and inhibit HIV-1 promoter activation in virus-infected cells. J Biol Chem 1999;274(6):3789-96
  • Bast RC, Kufe DW, Pollock RE. Cancer medicine. 5th edition, Philadelphia: BC Decker, 2000
  • Mordenti J. Man versus beast: pharmacokinetic scaling in mammals. J Pharm Sci 1986;75(11):1028-40
  • Annan KA. In Africa, AIDS has a woman's face. The New York Times. 29 December 2002; Section 9
  • Pilcher CD, Tien HC, Eron JJ, et al. Brief but efficient: acute HIV infection and the sexual transmission of HIV. J Infect Dis 2004;189(10):1785-92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.