177
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Structural biology of carbohydrate xenoantigens

, , , , &
Pages 1017-1029 | Published online: 11 Jul 2009

Bibliography

  • Galili U. Xenotransplantation and ABO incompatible transplantation: the similarities they share. Transfus Apher Sci 2006;35:45-58
  • Holgersson J, Gustafsson A, Breimer ME. Characteristics of protein–carbohydrate interactions as a basis for developing novel carbohydrate-based antirejection therapies. Immunol Cell Biol 2005;83:694-708
  • Ramsland P. Blood brothers: carbohydrates in xenotransplantation and cancer immunotherapy. Immunol Cell Biol 2005;83:315-7
  • Roux FA, Sai P, Deschamps JY. Xenotransfusions, past and present. Xenotransplantation 2007;14:208-16
  • Cooper DK, Ezzelarab M, Hara H, Ayares D. Recent advances in pig-to-human organ and cell transplantation. Expert Opin Biol Ther 2008;8:1-4
  • Cooper DK, Good AH, Koren E, et al. Identification of α-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl Immunol 1993;1:198-205
  • Sandrin MS, McKenzie IF. Galα(1,3)Gal, the major xenoantigen(s) recognised in pigs by human natural antibodies. Immunol Rev 1994;141:169-90
  • Nydegger U, Mohacsi P, Koestner S, et al. ABO histo-blood group system-incompatible allografting. Int Immunopharmacol 2005;5:147-53
  • Baldwin WM 3rd, Paul LC, Claas FH, Daha MR. Destructive and protective effects of antibody on transplants in humans: practical and theoretical considerations. Prog Clin Biol Res 1986;224:41-67
  • Porter KA. The effects of antibodies on human renal allografts. Transplant Proc 1976;8:189-97
  • Baumann BC, Stussi G, Huggel K, et al. Reactivity of human natural antibodies to endothelial cells from Galα(1,3)Gal-deficient pigs. Transplantation 2007;83:193-201
  • Galili U, Macher BA, Buehler J, Shohet SB. Human natural anti-α-galactosyl IgG. II. The specific recognition of α(1-3)-linked galactose residues. J Exp Med 1985;162:573-82
  • Good AH, Cooper DK, Malcolm AJ, et al. Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in humans. Transplant Proc 1992;24:559-62
  • Sandrin MS, Vaughan HA, Dabkowski PL, Mckenzie IF. Anti-pig IgM antibodies in human serum react predominantly with Gal(α 1–3)Gal epitopes. Proc Natl Acad Sci USA 1993;90:11391-5
  • Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the α1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 2002;20:251-5
  • Lai L, Kolber-Simonds D, Park KW, et al. Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002;295:1089-92
  • Phelps CJ, Koike C, Vaught TD, et al. Production of α1,3-galactosyltransferase-deficient pigs. Science 2003;299:411-4
  • Nottle MB, Beebe LF, Harrison SJ, et al. Production of homozygous α-1,3-galactosyltransferase knockout pigs by breeding and somatic cell nuclear transfer. Xenotransplantation 2007;14:339-44
  • Milland J, Christiansen D, Lazarus BD, et al. The molecular basis for Galα(1,3)Gal expression in animals with a deletion of the α1,3galactosyltransferase gene. J Immunol 2006;176:2448-54
  • Sharma A, Naziruddin B, Cui C, et al. Pig cells that lack the gene for α1-3 galactosyltransferase express low levels of the gal antigen. Transplantation 2003;75:430-6
  • Milland J, Christiansen D, Sandrin MS. α1,3-galactosyltransferase knockout pigs are available for xenotransplantation: are glycosyltransferases still relevant? Immunol Cell Biol 2005;83:687-93
  • Larsen RD, Rajan VP, Ruff MM, et al. Isolation of a cDNA encoding a murine UDPgalactose:β-D-galactosyl-1, 4-N-acetyl-D-glucosaminide α-1, 3-galactosyltransferase: expression cloning by gene transfer. Proc Natl Acad Sci USA 1989;86:8227-31
  • Lazarus BD, Milland J, Ramsland PA, et al. Histidine 271 has a functional role in pig α-1,3galactosyltransferase enzyme activity. Glycobiology 2002;12:793-802
  • Galili U, Shohet SB, Kobrin E, et al. Man, apes, and Old World monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J Biol Chem 1988;263:17755-62
  • Larsen RD, Rivera-Marrero CA, Ernst LK, et al. Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:β-D-Gal(1,4)-D-GlcNAc α(1,3)-galactosyltransferase cDNA. J Biol Chem 1990;265:7055-61
  • Keusch JJ, Manzella SM, Nyame KA, et al. Expression cloning of a new member of the ABO blood group glycosyltransferases, iGb3 synthase, that directs the synthesis of isoglobo-glycosphingolipids. J Biol Chem 2000;275:25308-14
  • Taylor SG, Mckenzie IF, Sandrin MS. Characterization of the rat α(1,3)galactosyltransferase: evidence for two independent genes encoding glycosyltransferases that synthesize Galα(1,3)Gal by two separate glycosylation pathways. Glycobiology 2003;13:327-37
  • Kiernan K, Harnden I, Gunthart M, et al. The anti-non-gal xenoantibody response to xenoantigens on gal knockout pig cells is encoded by a restricted number of germline progenitors. Am J Transplant 2008;8:1829-39
  • Diswall M, Angstrom J, Schuurman HJ, et al. Studies on glycolipid antigens in small intestine and pancreas from α1,3-galactosyltransferase knockout miniature swine. Transplantation 2007;84:1348-56
  • Puga Yung G, Schneider MK, Seebach JD. Immune responses to α1,3 galactosyltransferase knockout pigs. Curr Opin Organ Transplant 2009;14:154-60
  • Christiansen D, Milland J, Mouhtouris E, et al. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol 2008;6:e172. Published online 15 July 2008, doi:10.1371/journal.pbio.0060172
  • Speak AO, Cerundolo V, Platt FM. CD1d presentation of glycolipids. Immunol Cell Biol 2008;86:588-97
  • Grahn E, Askarieh G, Holmner A, et al. Crystal structure of the Marasmius oreades mushroom lectin in complex with a xenotransplantation epitope. J Mol Biol 2007;369:710-21
  • Greco A, Ho JG, Lin SJ, et al. Carbohydrate recognition by Clostridium difficile toxin A. Nat Struct Mol Biol 2006;13:460-1
  • Walser PJ, Haebel PW, Kunzler M, et al. Structure and functional analysis of the fungal galectin CGL2. Structure 2004;12:689-702
  • Teneberg S, Lonnroth I, Torres Lopez JF, et al. Molecular mimicry in the recognition of glycosphingolipids by Galα3Galβ4GlcNAcβ-binding Clostridium difficile toxin A, human natural anti α-galactosyl IgG and the monoclonal antibody Gal-13: characterization of a binding-active human glycosphingolipid, non-identical with the animal receptor. Glycobiology 1996;6:599-609
  • Kirkeby S, Winter HC, Goldstein IJ. Comparison of the binding properties of the mushroom Marasmius oreades lectin and Griffonia simplicifolia I-B4 isolectin to αgalactosyl carbohydrate antigens in the surface phase. Xenotransplantation 2004;11:254-61
  • Blanchard B, Nurisso A, Hollville E, et al. Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I. J Mol Biol 2008;383:837-53
  • Natchiar SK, Srinivas O, Mitra N, et al. Structural studies on peanut lectin complexed with disaccharides involving different linkages: further insights into the structure and interactions of the lectin. Acta Crystallogr D Biol Crystallogr 2006;62:1413-21
  • Tempel W, Tschampel S, Woods RJ. The xenograft antigen bound to Griffonia simplicifolia lectin 1-B4. X-ray crystal structure of the complex and molecular dynamics characterization of the binding site. J Biol Chem 2002;277:6615-21
  • Lescar J, Loris R, Mitchell E, et al. Isolectins I-A and I-B of Griffonia (Bandeiraea) simplicifolia. Crystal structure of metal-free GS I-B4 and molecular basis for metal binding and monosaccharide specificity. J Biol Chem 2002;277:6608-14
  • Milland J, Yuriev E, Xing PX, et al. Carbohydrate residues downstream of the terminal Galα(1,3)Gal epitope modulate the specificity of xenoreactive antibodies. Immunol Cell Biol 2007;85:623-32
  • Kirkeby S, Moe D. Lectin interactions with α-galactosylated xenoantigens. Xenotransplantation 2002;9:260-7
  • Imberty A, Mikros E, Koca J, et al. Computer simulation of histo-blood group oligosaccharides: energy maps of all constituting disaccharides and potential energy surfaces of 14 ABH and Lewis carbohydrate antigens. Glycoconj J 1995;12:331-49
  • Strotz CA, Cerezo AS. Use of a general purpose force-field (MM2) for the conformational analysis of the disaccharide α-D-galactopyranosyl-(1-3)-β-D-galactopyranose. J Carb Chem 1994;13:235-47
  • Corzana F, Bettler E, Herve DU, et al. Solution structure of two xenoantigens: αGal-LacNAc and αGal-Lewis X. Glycobiology 2002;12:241-50
  • Li J, Ksebati MB, Zhang W, et al. Conformational analysis of an α-galactosyl trisaccharide epitope involved in hyperacute rejection upon xenotransplantation. Carbohydr Res 1999;315:76-88
  • Otter A, Lemieux RU, Ball RG, et al. Crystal state and solution conformation of the B blood group trisaccharide α-L-Fucp-(1→2)- [α-D-Galp]-(1→3)]-β-D-Galp-OCH3. Eur J Biochem 1999;259:295-303
  • Lamba D, Segre AL, Glover S, et al. Molecular structure of 3-O-(3,6-anhydro-α-D-galactopyranosyl)-β-D-galactopyranose (neocarrabiose) in the solid state and in solution: an investigation by X-ray crystallography, n.m.r. spectroscopy, and molecular mechanics calculations. Carbohydr Res 1990;208:215-30
  • Yuriev E, Farrugia W, Scott AM, Ramsland PA. Three-dimensional structures of carbohydrate determinants of Lewis system antigens: implications for effective antibody targeting of cancer. Immunol Cell Biol 2005;83:709-17
  • Ramsland PA, Farrugia W, Yuriev E, et al. Evidence for structurally conserved recognition of the major carbohydrate xenoantigen by natural antibodies. Cell Mol Biol (Noisy-le-grand) 2003;49:307-17
  • Lee M, Lloyd P, Zhang X, et al. Shapes of antibody binding sites: qualitative and quantitative analyses based on a geomorphic classification scheme. J Org Chem 2006;71:5082-92
  • Ramsland PA, Farrugia W, Bradford TM, et al. Structural convergence of antibody binding of carbohydrate determinants in Lewis Y tumor antigens. J Mol Biol 2004;340:809-18
  • Calarese DA, Scanlan CN, Zwick MB, et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 2003;300:2065-71
  • Cygler M, Rose DR, Bundle DR. Recognition of a cell-surface oligosaccharide of pathogenic Salmonella by an antibody Fab fragment. Science 1991;253:442-5
  • Vulliez-Le Normand B, Saul FA, Phalipon A, et al. Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody. Proc Natl Acad Sci USA 2008;105:9976-81
  • McKenzie IF, Li YQ, Patton K, et al. A murine model of antibody-mediated hyperacute rejection by galactose-α(1,3)galactose antibodies in Gal o/o mice. Transplantation 1998;66:754-63
  • Nozawa S, Xing PX, Wu GD, et al. Characteristics of immunoglobulin gene usage of the xenoantibody binding to gal-α(1,3)gal target antigens in the gal knockout mouse. Transplantation 2001;72:147-55
  • Yuriev E, Sandrin MS, Ramsland PA. Antibody-ligand docking: insights into peptide–carbohydrate mimicry. Mol Simulation 2008;34:461-8
  • Ekser B, Rigotti P, Gridelli B, Cooper DK. Xenotransplantation of solid organs in the pig-to-primate model. Transpl Immunol 2009;21:87-92
  • Cowan PJ, d'Apice AJ. Complement activation and coagulation in xenotransplantation. Immunol Cell Biol 2009;87:203-8
  • Sandrin MS. Gal knockout pigs: any more carbohydrates? Transplantation 2007;84:8-9
  • Tangvoranuntakul P, Gagneux P, Diaz S, et al. Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc Natl Acad Sci USA 2003;100:12045-50
  • Cairns T, Lee J, Goldberg LC, et al. Thomsen-Friedenreich and PK antigens in pig-to-human xenotransplantation. Transplant Proc 1996;28:795-6
  • Bouhours D, Liaigre J, Naulet J, et al. A novel pentaglycosylceramide in ostrich liver, IV4-β-Gal-nLc4Cer, with terminal Gal(β1-4)Gal, a xenoepitope recognized by human natural antibodies. Glycobiology 2000;10:857-64
  • Lucq J, Tixier D, Guinault AM, et al. The target antigens of naturally occurring human anti-β-galactose IgG are cryptic on porcine aortic endothelial cells. Xenotransplantation 2000;7:3-13
  • Christiansen D, Mouhtouris E, Milland J, et al. Recognition of a carbohydrate xenoepitope by human NKRP1A (CD161). Xenotransplantation 2006;13:440-6
  • Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 2007;446:1023-9
  • Zhu A, Hurst R. Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation 2002;9:376-81
  • Miwa Y, Kobayashi T, Nagasaka T, et al. Are N-glycolylneuraminic acid (Hanganutziu-Deicher) antigens important in pig-to-human xenotransplantation? Xenotransplantation 2004;11:247-53
  • Padler-Karavani V, Yu H, Cao H, et al. Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 2008;18:818-30
  • Higashi H, Naiki M, Matuo S, Okouchi K. Antigen of “serum sickness” type of heterophile antibodies in human sera: indentification as gangliosides with N-glycolylneuraminic acid. Biochem Biophys Res Commun 1977;79:388-95
  • Chou HH, Takematsu H, Diaz S, et al. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci USA 1998;95:11751-6
  • Byres E, Paton AW, Paton JC, et al. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature 2008;456:648-52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.