236
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Delivery of RNA interference triggers to sensory neurons in vivo using herpes simplex virus

, PhD & , PhD
Pages 89-103 | Published online: 09 Dec 2009

Bibliography

  • Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1995;81(4):611-20
  • Fire A, Xu S, Montgomery MK, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391(6669):806-11
  • Chung K-H, Hart CC, Al-Bassam S, Polycistronic RNA polymerase II expression vectors for RNA interference based on bic/mir-155. Nucleic Acids Res 2006;34(7):e53. Published online 13 April 2006, doi:10.1093/nar/gkl143
  • Czech B, Malone CD, Zhou R, An endogenous small interfering RNA pathway in drosophila. Nature 2008;453(7196):798-802
  • Ghildiyal M, Seitz H, Horwich MD, Endogenous siRNAs derived from transposons and mRNAs in drosophila somatic cells. Science 2008;320(5879):1077-81
  • Kawamura Y, Saito K, Kin T, Drosophila endogenous small RNAs bind to argonaute 2 in somatic cells. Nature 2008;453(7196):793-7
  • Okamura K, Balla S, Martin R, Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in drosophila melanogaster. Nat Struct Mol Biol 2008;15(6):581-90
  • Okamura K, Chung W-J, Ruby JG, The drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 2008;453(7196):803-6
  • Tam W, Dahlberg J. Mir-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer 2006;45(2):211-12
  • Watanabe T, Totoki Y, Toyoda A, Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008;453(7194):539-43
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120(1):15-20
  • Landgraf P, Rusu M, Sheridan R, A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007;129(7):1401-14
  • Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004;10(12):1957-66
  • Denli AM, Tops BBJ, Plasterk RHA, Processing of primary microRNAs by the microprocessor complex. Nature 2004;432(7014):231-5
  • Gregory RI, Yan K-P, Amuthan G, The microprocessor complex mediates the genesis of microRNAs. Nature 2004;432(7014):235-40
  • Han J, Lee Y, Yeom K-H, The drosha–DGCR8 complex in primary microRNA processing. Genes Dev 2004;18(24):3016-27
  • Lund E, Guttinger S, Calado A, Nuclear export of microRNA precursors. Science 2004;303(5654):95-8
  • Bernstein E, Caudy AA, Hammond SM, Hannon G J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409(6818):363-6
  • Hutvagner G, Mclachlan J, Pasquinelli AE, A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 2001;293(5531):834-8
  • Zhang H, Kolb F, Brondani V, Human dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 2002;21(21):5875-85
  • Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003;115(2):209-16
  • Liu J, Carmell MA, Rivas FV, Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004;305(5689):1437-41
  • Rand TA, Ginalski K, Grishin NV, Wang X. Biochemical identification of argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci USA 2004;101(40):14385-9
  • Meister G, Landthaler M, Patkaniowska A, Human argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004;15(2):185-97
  • Pillai R, Artus C, Filipowicz W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 2004;10(10):1518-25
  • Yekta S, Shih I-H, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004;304(5670):594-6
  • Llave C, Xie Z, Kasschau KD, Carrington JC. Cleavage of scarecrow-like mRNA targets directed by a class of arabidopsis miRNA. Science 2002;297(5589):2053-6
  • Tang G, Reinhart BJ, Bartel DP, Zamore PD. A biochemical framework for RNA silencing in plants. Genes Dev 2003;17(1):49-63
  • Davis E, Caiment F, Tordoir X, RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 2005;15(8):743-9
  • Pfeffer S, Zavolan M, Grasser FA, Identification of virus-encoded microRNAs. Science 2004;304(5671):734-6
  • Stark A, Brennecke J, Bushati N, Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 2005;123(6):1133-46
  • Bao N, Lye K-W, Barton MK. MicroRNA binding sites in arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 2004;7(5):653-62
  • Gonzalez S, Pisano D, Serrano M. Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell cycle 2008;7(16):2601-8
  • Kim DH, Sætrom PL, Snøve O, Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 2008;105(42):16230-5
  • Elbashir SM, Harborth J, Lendeckel W, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494-8
  • Myers JW, Ferrell JE. Silencing gene expression with dicer-generated siRNA pools. Methods Mol Biol 2005;309:93-196
  • Kim D-H, Behlke MA, Synthetic dsRNA dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 2005;23(2):222-6
  • Reynolds A, Anderson EM, Vermeulen A, Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 2006;12(6):988-93
  • Jackson AL, Bartz SR, Schelter J, Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003;21(6):635-7
  • Jackson AL, Burchard J, Schelter J, Widespread siRNA off-target transcript silencing mediated by seed region sequence complementarity. RNA 2006;12(7):1179-87
  • Birmingham A, Anderson EM, Reynolds A, 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006;3(3):199-204
  • Jackson AL, Burchard J, Leake D, Position-specific chemical modification of siRNAs reduces off-target transcript silencing. RNA 2006;12(7):1197-205
  • Holen T, Moe SE, Sorbo JG, Tolerated wobble mutations in siRNAs decrease specificity, but can enhance activity in vivo. Nucl. Acids Res 2005;33(15):4704–4710
  • Miyagishi M, Sumimoto H, Miyoshi H, Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells. J Gene Med 2004;6(7):715-23
  • Boden D, Pusch O, Silbermann R, Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res 2004;32(3):1154-8
  • Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells. RNA 2003;9(1);112-23
  • Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 2002;9(6):1327-33
  • Mcmanus MT, Petersen CP, Haines BB, Gene silencing using micro-RNA designed hairpins. RNA 2002;8(6):842-50
  • Boudreau RL, Martins I, Davidson BL. Artificial microRNAs as siRNA shuttles: Improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 2008;17(1):169-75
  • Silva JM, Li MZ, Chang K, Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 2005;37(11):1281-8
  • Alvarez VA, Ridenour DA, Sabatini BL. Retraction of synapses and dendritic spines induced by off-target effects of RNA interference. J Neurosci 2006;26(30):7820-5
  • Cao W, Hunter R, Strnatka D, DNA constructs designed to produce short hairpin, interfering RNAs in transgenic mice sometimes show early lethality and an interferon response. J Appl Genet 2005;46(2):217-25
  • Pebernard S, Iggo R. Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 2004;72:103-11
  • Bauer M, Kinkl N, Meixner A, Prevention of interferon-stimulated gene expression using microRNA-designed hairpins. Gene Ther 2008;16(1):142-7
  • Mcbride JL, Boudreau RL, Harper SQ, Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 2008;105(15):5868-73
  • Castanotto D, Sakurai K, Lingeman R, Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res 2007;35(15):5154-64
  • Grimm D, Kern A, Rittner K, Kleinschmidt JRA. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 1998;9(18):2745-60
  • John M, Constien R, Akinc A, Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 2007;449(7163):745-7
  • Bertrand J, Pottier M, Vekris A, Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun 2002;296(4):1000-4
  • Grunweller A, Wyszko E, Bieber B, Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 2003;31(12):3185-93
  • Kretschmer-Kazemi Far R, Sczakiel G. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 2003;31(15):4417-24
  • Yokota T, Miyagishi, M., Hino T, SiRNA-based inhibition specific for mutant SOD1 with single nucleotide alternation in familial ALS, compared with ribozyme and DNA enzyme. Biochem Biophys Res Commun 2004;314(1):283-91
  • Hollins AJ, Omidi Y, Benter IF, Akhtar S. Toxicogenomics of drug delivery systems: exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J Drug Target 2007;15(1):83-8
  • Omidi Y, Hollins AJ, Benboubetra M, Toxicogenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J Drug Target 2003;11(6):311-23
  • Song E, Lee S-K, Wang J, RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003;9(3):347-51
  • Lingor P, Koeberle P, Kugler S, Bahr M. Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. Brain 2005;128(3):550-8
  • Kumar P, Lee SK, Shankar P, Manjunath N. A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med 2006;3(4):e96. Published online 14 February 2006, doi:10.1371/journal.pmed.0030096
  • Difiglia M, Sena-Esteves M, Chase K, Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 2007;104(43):17204-9
  • Kumar P, Wu H, Mcbride JL, Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007;448(7149):39-43
  • Kleinman ME, Yamada K, Takeda A, Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008;452(7187):591-7
  • Mccaffrey AP, Nakai H, Pandey K, Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003;21(6):639-44
  • Kunath T, Gish G, Lickert H, Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat Biotechnol 2003;21(5):559-61
  • Paddison PJ Silva JM, Conklin DS, A resource for large-scale RNA-interference-based screens in mammals. Nature 2004;428(6981):427‐31
  • Harper SQ, Staber PD, He X, RNA interference improves motor and neuropathological abnormalities in a huntington's disease mouse model. Proc Nal Acad Sci USA 2005;102(16):5820-5
  • Xia H, Mao Q, Eliason SL, RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004;10(8):816-20
  • Raoul C, Abbas-Terki T, Bensadoun J-C, Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 2005;11(43):423-8
  • Ralph GS, Radcliffe PA, Day DM, Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 2005;11(43):429-33
  • Miller T, Kaspar BK, Kops GJ, Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann Neurol 2005;57(5):773-6
  • Boudreau RL, Mcbride JL, Martins I, Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in huntington's disease mice. Mol Ther 2009;17(6):1053-63
  • Rubinson DA, Dillon CP, Kwiatkowski AV, A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003;33(3):401-6
  • Wiznerowicz M, Trono D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003;77(16):8957-51
  • Hemann MT, Fridman JS, Zilfou JT, An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 2003;33(3):396-400
  • Berns K, Hijmans EM, Mullenders J, A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004;428(6981):431-7
  • Singer O, Marr RA, Rockenstein E, Targeting BACE1 with siRNAs ameliorates alzheimer disease neuropathology in a transgenic model. Nat Neurosci 2005;8(10):1343-9
  • Li M, Li H, Rossi JJ. RNAi in combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapy. Ann N Y Acad Sci 2006;1082:172-9
  • Dorn G, Patel S, Wotherspoon G, SiRNA relieves chronic neuropathic pain. Nucleic Acids Res 2004;32(5):e49. Published online 16 March 2004, doi:10.1093/nar/gnh044
  • Luo M-C, Zhang D-Q, Ma S-W, An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain 2005;1(1):29. Published online 28 September 2005, doi:10.1186/1744-8069-1-29
  • Tan PH, Yang LC, Shih HC, Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther 2004;12(1):59-66
  • Guo W, Robbins MT, Wei F, Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation. J Neurosci 2006;26(1):126-37
  • Chen Y, Zhang X, Wang C, Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proc Natl Acad Sci USA 2008;105(43):16773-8
  • Christoph T, Gillen C, Mika J, Antinociceptive effect of antisense oligonucleotides against the vanilloid receptor VR1/TRPV1. Neurochem Int 2007;50(1):281-90
  • Christoph T, Grünweller A, Mika J, Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem Biophys Res Commun 2006;350(1):238-43
  • Christoph T, Bahrenberg G, De Vry J, Investigation of trpv1 loss-of-function phenotypes in transgenic shRNA expressing and knockout mice. Mol Cell Neurosci 2008;37(3):579-89
  • Palmer JA, Branston RH, Lilley CE, Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J Virol 2000;74(12):5604-18
  • Lilley CE, Groutsi F, Han Z, Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J Virol 2001;75(9):4343-56
  • Anesti A-M, Peeters PJ, Royaux I, Coffin RS. Efficient delivery of RNA interference to peripheral neurons in vivo using herpes simplex virus. Nucleic Acids Res 2008;36(14):e86. Published online 25 June 2008, doi:10.1093/nar/gkn371
  • Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 2007;6(5):357-72
  • Gibson HE, Edwards JG, Page RS, TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 2008;57(5):746-59
  • Marsch R, Foeller E, Rammes G, Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J. Neurosci 2007;27(4):832-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.