474
Views
28
CrossRef citations to date
0
Altmetric
Drug Evaluations

Alemtuzumab and multiple sclerosis: therapeutic application

, MD, , PhD, , MD & , MD PhD
Pages 421-429 | Published online: 22 Jan 2010

Bibliography

  • Frohman EM, Racke MK, Raine CS. Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 2006;354:942-55
  • Bar-Or A. Immunology of multiple sclerosis. Neurol Clin 2005;23(1):149-75
  • Trapp BD, Peterson J, Ransohoff RM, Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278-85
  • Minagar A, Alexander JS. Blood–brain barrier disruption in multiple sclerosis. Mult Scler 2003;9(6):540-9
  • Minagar A, Alexander JS, Schwendimann RN, Combination therapy with interferon beta-1a and doxycycline in multiple sclerosis: an open-label trial. Arch Neurol 2008;65(2):199-204
  • Frohman EM, Eagar T, Monson N, Immunologic mechanisms of multiple sclerosis. Neuroimaging Clin N Am 2008;18:577-88
  • Severson C, Hafler DA. T-cells in multiple sclerosis. Results Probl Cell Differ 2010: published online 7 July 2009, doi: 10.1007/400_2009_12
  • Harrington LE, Hatton RD, Mangan PR, Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005;6:1123-32
  • Balashov KE, Smith DR, Khoury SJ, Increased interleukin 12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci USA 1997;94:599-603
  • Mosmann TR, Cherwinski H, Bond MW, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. 1986. J Immunol 2005;175:5-14
  • Sharief MK, Hentges R. Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N Engl J Med 1991;325:467-72
  • Hohlfeld R, Wekerle H. Immunological update on multiple sclerosis. Curr Opin Neurol 2001;14:299-304
  • McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 2007;8:913-9
  • Langrish CL, Chen Y, Blumenschein WM, IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233-40
  • Durelli L, Conti L, Clerico M, T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol 2009;65:499-509
  • Weaver CT, Hatton RD, Mangan PR, IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007;25:821-52
  • Matusevicius D, Kivisäkk P, He B, Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 1999;5:101-4
  • Lock C, Hermans G, Pedotti R, Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 2002;8:500-8
  • Tzartos JS, Friese MA, Craner MJ, Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008;172:146-55
  • Bowman EP, Chackerian AA, Cua DJ. Rationale and safety of anti-interleukin-23 and anti-interleukin-17A therapy. Curr Opin Infect Dis 2006;19:245-52
  • Qin S, Cobbold SP, Pope H, “Infectious” transplantation tolerance. Science 1993;259:974-7
  • Qin Y, Duquette P, Zhang Y, Clonal expansion and somatic hypermutation of VH genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest 1998;102:1045-50
  • Serafini B, Rosicarelli B, Magliozzi R, Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 2004;14:164-74
  • Hale C, Bartholomew M, Taylor V, Recognition of CD52 allelic gene products by CAMPATH-1H antibodies. Immunology 1996;88:183-90
  • Hale G, Xia MQ, Tighe HP, The CAMPATH-1 antigen (CDw52). Tissue Antigens 1990;35:118-27
  • Elsner J, Höchstetter R, Spiekermann K, Surface and mRNA expression of the CD52 antigen by human eosinophils but not by neutrophils. Blood 1996;88:4684-93
  • Rodig SJ, Abramson JS, Pinkus GS, Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res 2006;12:7174-9
  • Hale G. The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy 2001;3:137-43
  • Gilleece MH, Dexter TM. Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood 1993;82:807-12
  • Yamaguchi R, Yamagata K, Hasuwa H, Cd52, known as a major maturation-associated sperm membrane antigen secreted from the epididymis, is not required for fertilization in the mouse. Genes Cells 2008;13:851-61
  • Klabusay M, Sukova V, Coupek P, Different levels of CD52 antigen expression evaluated by quantitative fluorescence cytometry are detected on B-lymphocytes, CD 34+ cells and tumor cells of patients with chronic B-cell lymphoproliferative diseases. Cytometry B Clin Cytom 2007;72:363-70
  • Hale G. CD52 (CAMPATH1). J Biol Regul Homeost Agents 2001;15:386-91
  • Hu Y, Turner MJ, Shields J, Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology 2009;128(2):260-70
  • Rowan W, Tite J, Topley P, Brett SJ. Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Int Immunol 1995;7:69-77
  • Masuyama J, Yoshio T, Suzuki K, Characterization of the 4C8 antigen involved in transendothelial migration of CD26hi T cells after tight adhesion to human umbilical vein endothelial cell monolayers. J Exp Med 1999;189(6):979-90
  • Watanabe T, Masuyama J, Sohma Y, CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin Immunol 2006;120:247-59
  • Xia MQ, Tone M, Packman L, Characterization of the CAMPATH-1 (CDw52) antigen: biochemical analysis and cDNA cloning reveal an unusually small peptide backbone. Eur J Immunol 1991;21:1677-84
  • Xia MQ, Hale G, Lifely MR, Structure of the CAMPATH-1 antigen, a glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally good target for complement lysis. Biochem J 1993;293(Pt 3):633-40
  • Nückel H, Frey UH, Röth A, Alemtuzumab induces enhanced apoptosis in vitro in B-cells from patients with chronic lymphocytic leukemia by antibodydependent cellular cytotoxicity. Eur J Pharmacol 2005;514:217-24
  • Stanglmaier M, Reis S, Hallek M. Rituximab and alemtuzumab induce a nonclassic, caspase-independent apoptotic pathway in B-lymphoid cell lines and in chronic lymphocytic leukemia cells. Ann Hematol 2004;83:634-45
  • Thompson SA, Jones JL, Cox AL, B-cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J Clin Immunol 2009: published online 10 September 2009, doi: 10.1007/s10875-009-9327-3
  • Barth RN, Janus CA, Lillesand CA, Outcomes at 3 years of a prospective pilot study of Campath-1H and sirolimus immunosuppression for renal transplantation. Transpl Int 2006;19:885-92
  • Tan HP, Kaczorowski DJ, Basu A, Living donor renal transplantation using alemtuzumab induction and tacrolimus monotherapy. Am J Transplant 2006;6:2409-17
  • Shapiro R, Basu A, Tan H, Kidney transplantation under minimal immunosuppression after pretransplant lymphoid depletion with thymoglobulin or Campath. J Am Coll Surg 2005;200:505-15
  • Magliocca JF, Knechtle SJ. The evolving role of alemtuzumab (Campath-1H) for immunosuppressive therapy in organ transplantation. Transpl Int 2006;19(9):705-14
  • Benjamin RJ, Waldmann H. Induction of tolerance by monoclonal antibody therapy. Nature 1986;320:449-51
  • Moreau T, Thorpe J, Miller D, Preliminary evidence from magnetic resonance imaging for reduction in disease activity after lymphocyte depletion in multiple sclerosis. Lancet 1994;344:298-301
  • Ashton DS, Beddell CR, Cooper DJ, Mass spectrometry of the humanized monoclonal antibody CAMPATH 1H. Anal Chem 1995;67:835-42
  • Coles AJ, Wing MG, Molyneux P, Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 1999; 46:296-304
  • Paolillo A, Coles AJ, Molyneux PD, Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology 1999;53:751-7
  • Cox AL, Thompson SA, Jones JL, Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol 2005;35:3332-42
  • Hirst CL, Pace A, Pickersgill TP, Campath 1-H treatment in patients with aggressive relapsing remitting multiple sclerosis. J Neurol 2008;255:231-8
  • Coles AJ, Compston DA, Selmaj KW, CAMMS223 Trial Investigators. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 2008;359:1786-801
  • Losseff NA, Wang L, Lai HM, Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 1996;119(Pt 6):2009-19
  • Clatworthy MR, Wallin EF, Jayne DR. Anti-glomerular basement membrane disease after alemtuzumab. N Engl J Med 2008;359:768-9
  • Moreau T, Coles A, Wing M, Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain 1996;119(Pt 1):225-37
  • Jones JL, Phuah CL, Cox AL, IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J Clin Invest 2009;119:2052-61
  • Walsh M, Chaudhry A, Jayne D. Long-term follow-up of relapsing/refractory anti-neutrophil cytoplasm antibody associated vasculitis treated with the lymphocyte depleting antibody alemtuzumab (CAMPATH-1H). Ann Rheum Dis 2008;67:1322-27
  • Sullivan H. The CAMMS223 Study Group. ITP following treatment of multiple sclerosis patients with alemtuzumab in CAMMS223; case reports and risk management plan implementation [AAN abstract S32.004]. Neurology 2007;68(Suppl 1):A206
  • Coles AJ, on behalf of CAMMS223 study group. Alemtuzumab treatment benefit is durable: primary efficacy outcomes of CAMMS223 at 4 Years, ECTRIMS 2009; P890. Mult Scler 2009;15:S277
  • Pace AA, Zajicek JP. Melanoma following treatment with alemtuzumab for multiple sclerosis. Eur J Neurol 2009;16:e70-1
  • Kremenchutzky M, Rice GP, Baskerville J, The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain 2006;129(Pt 3):584-94

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.