408
Views
27
CrossRef citations to date
0
Altmetric
Reviews

T cell receptor (TCR) gene therapy to treat melanoma: lessons from clinical and preclinical studies

, , , , &
Pages 547-562 | Published online: 10 Feb 2010

Bibliography

  • Balch CM, Soong SJ, Gershenwald JE, Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 2001;19(16):3622-34
  • Yee C, Thompson JA, Byrd D, Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 2002;99(25):16168-73
  • Dudley ME, Wunderlich JR, Robbins PF, Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002;298(5594):850-4
  • Dudley ME, Wunderlich JR, Yang JC, Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005;23(10):2346-57
  • Dudley ME, Yang JC, Sherry R, Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008;26(32):5233-9
  • Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 2009;21(2):233-40
  • Boon T, Coulie PG, Van Den Eynde BJ, Van Der Bruggen P. Human T cell responses against melanoma. Annu Rev Immunol 2006;24:175-208
  • Dembic Z, Haas W, Weiss S, Transfer of specificity by murine alpha and beta T-cell receptor genes. Nature 1986;320(6059):232-8
  • Kessels HW, Wolkers MC, Van Den Boom MD, Immunotherapy through TCR gene transfer. Nat Immunol 2001;2(10):957-61
  • Calogero A, Hospers GA, Kruse KM, Retargeting of a T cell line by anti MAGE-3/HLA-A2 alpha beta TCR gene transfer. Anticancer Res 2000;20(3A):1793-9
  • Schaft N, Willemsen RA, De Vries J, Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCRalphabeta genes into primary human T lymphocytes. J Immunol 2003;170(4):2186-94
  • Morgan RA, Dudley ME, Wunderlich JR, Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006;314(5796):126-9
  • Johnson LA, Morgan RA, Dudley ME, Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009;114(3):535-46
  • Lamers CH, Sleijfer S, Vulto AG, Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006;24(13):e20-2
  • Kershaw MH, Westwood JA, Parker LL, A Phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006;12(20 Pt 1):6106-15
  • Pule MA, Savoldo B, Myers GD, Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008;14(11):1264-70
  • Till BG, Jensen MC, Wang J, Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008;112(6):2261-71
  • Overwijk WW, Theoret MR, Finkelstein SE, Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 2003;198(4):569-80
  • Bos R, Van Duikeren S, Morreau H, Balancing between antitumor efficacy and autoimmune pathology in T-cell-mediated targeting of carcinoembryonic antigen. Cancer Res 2008;68(20):8446-55
  • Ugel S, Scarselli E, Iezzi M, Autoimmune B cell lymphopenia following successful adoptive therapy with telomerase-specific T lymphocytes. Blood 2009: published online 10 November 2009; doi 10.1182/blood-2009-07-233270
  • Palmer DC, Chan CC, Gattinoni L, Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity. Proc Natl Acad Sci USA 2008;105(23):8061-6
  • Offringa R. Antigen choice in adoptive T-cell therapy of cancer. Curr Opin Immunol 2009;21(2):190-9
  • Lucas S, Coulie PG. About human tumor antigens to be used in immunotherapy. Semin Immunol 2008;20(5):301-7
  • Parmiani G, De Filippo A, Novellino L, Castelli C. Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol 2007;178(4):1975-9
  • Chomez P, De Backer O, Bertrand M, An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res 2001;61(14):5544-51
  • Gotter J, Brors B, Hergenhahn M, Kyewski B. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 2004;199(2):155-66
  • Willemsen RA, Weijtens ME, Ronteltap C, Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther 2000;7(16):1369-77
  • Zhao Y, Zheng Z, Robbins PF, Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J Immunol 2005;174(7):4415-23
  • Zhao Y, Zheng Z, Khong HT, Transduction of an HLA-DP4-restricted NY-ESO-1-specific TCR into primary human CD4+ lymphocytes. J Immunother 2006;29(4):398-406
  • Yang B, O'Herrin SM, Wu J, MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res 2007;67(20):9954-62
  • Liu W, Cheng S, Asa SL, Ezzat S. The melanoma-associated antigen A3 mediates fibronectin-controlled cancer progression and metastasis. Cancer Res 2008;68(19):8104-12
  • Sigalotti L, Covre A, Zabierowski S, Cancer testis antigens in human melanoma stem cells: expression, distribution, and methylation status. J Cell Physiol 2008;215(2):287-91
  • Condomines M, Hose D, Raynaud P, Cancer/testis genes in multiple myeloma: expression patterns and prognosis value determined by microarray analysis. J Immunol 2007;178(5):3307-15
  • Gure AO, Chua R, Williamson B, Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. Clin Cancer Res 2005;11(22):8055-62
  • Lucas S, De Plaen E, Boon T. MAGE-B5, MAGE-B6, MAGE-C2, and MAGE-C3: four new members of the MAGE family with tumor-specific expression. Int J Cancer 2000;87(1):55-60
  • Van Den Eynde BJ, Van Der Bruggen P. T cell defined tumor antigens. Curr Opin Immunol 1997;9(5):684-93
  • Jang SJ, Soria JC, Wang L, Activation of melanoma antigen tumor antigens occurs early in lung carcinogenesis. Cancer Res 2001;61(21):7959-63
  • Alves PM, Levy N, Bouzourene H, Molecular and immunological evaluation of the expression of cancer/testis gene products in human colorectal cancer. Cancer Immunol Immunother 2007;56(6):839-47
  • Peng JR, Chen HS, Mou DC, Expression of cancer/testis (CT) antigens in Chinese hepatocellular carcinoma and its correlation with clinical parameters. Cancer Lett 2005;219(2):223-32
  • Hudolin T, Juretic A, Spagnoli GC, Immunohistochemical expression of tumor antigens MAGE-A1, MAGE-A3/4, and NY-ESO-1 in cancerous and benign prostatic tissue. Prostate 2006;66(1):13-8
  • Schuler-Thurner B, Schultz ES, Berger TG, Rapid induction of tumor-specific Type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 2002;195(10):1279-88
  • Schultz ES, Schuler-Thurner B, Stroobant V, Functional analysis of tumor-specific Th cell responses detected in melanoma patients after dendritic cell-based immunotherapy. J Immunol 2004;172(2):1304-10
  • Lurquin C, Lethe B, De Plaen E, Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med 2005;201(2):249-57
  • Pouw NM, Westerlaken EJ, Willemsen RA, Debets R. Gene transfer of human TCR in primary murine T cells is improved by pseudo-typing with amphotropic and ecotropic envelopes. J Gene Med 2007;9(7):561-70
  • Lamers CH, Willemsen RA, Van Elzakker P, Phoenix-ampho outperforms PG13 as retroviral packaging cells to transduce human T cells with tumor-specific receptors: implications for clinical immunogene therapy of cancer. Cancer Gene Ther 2006;13(5):503-9
  • Jones S, Peng PD, Yang S, Lentiviral vector design for optimal T cell receptor gene expression in the transduction of peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Hum Gene Ther 2009;20(6):630-40
  • Schambach A, Wodrich H, Hildinger M, Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol Ther 2000;2(5):435-45
  • Engels B, Cam H, Schuler T, Retroviral vectors for high-level transgene expression in T lymphocytes. Hum Gene Ther 2003;14(12):1155-68
  • Mizuguchi H, Xu Z, Ishii-Watabe A, IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 2000;1(4):376-82
  • De Felipe P, Martin V, Cortes ML, Use of the 2A sequence from foot-and-mouth disease virus in the generation of retroviral vectors for gene therapy. Gene Ther 1999;6(2):198-208
  • Klump H, Schiedlmeier B, Vogt B, Retroviral vector-mediated expression of HoxB4 in hematopoietic cells using a novel coexpression strategy. Gene Ther 2001;8(10):811-7
  • Leisegang M, Engels B, Meyerhuber P, Enhanced functionality of T cell receptor-redirected T cells is defined by the transgene cassette. J Mol Med 2008;86(5):573-83
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302(5644):415-9
  • Newrzela S, Cornils K, Li Z, Resistance of mature T cells to oncogene transformation. Blood 2008;112(6):2278-86
  • Mitchell RS, Beitzel BF, Schroder AR, Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2004;2(8):E234. Published online August 17, 2004, doi:10.1371/journal.pbio.0020234
  • Clonal population of cells detected in a clinical human gene transfer trial using lentiviral vector. Office of Biotechnology Activities press release. Bethesda, MD: Office of Biotechnology Activities, National Institutes of Health 2009. Available from: http://oba.od.nih.gov/oba/news_events_oba.html
  • Haas J, Park EC, Seed B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol 1996;6(3):315-24
  • Ross J. mRNA stability in mammalian cells. Microbiol Rev 1995;59(3):423-50
  • Jorritsma A, Gomez-Eerland R, Dokter M, Selecting highly affine and well-expressed TCRs for gene therapy of melanoma. Blood 2007;110(10):3564-72
  • Scholten KB, Kramer D, Kueter EW, Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 2006;119(2):135-45
  • Cohen CJ, Zhao Y, Zheng Z, Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 2006;66(17):8878-86
  • Voss RH, Kuball J, Engel R, Redirection of T cells by delivering a transgenic mouse-derived MDM2 tumor antigen-specific TCR and its humanized derivative is governed by the CD8 coreceptor and affects natural human TCR expression. Immunol Res 2006;34(1):67-87
  • Thomas S, Xue SA, Cesco-Gaspere M, Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells. J Immunol 2007;179(9):5803-10
  • Boulter JM, Glick M, Todorov PT, Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng 2003;16(9):707-11
  • Kuball J, Dossett ML, Wolfl M, Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 2007;109(6):2331-8
  • Voss RH, Willemsen RA, Kuball J, Molecular design of the Calphabeta interface favors specific pairing of introduced TCRalphabeta in human T cells. J Immunol 2008;180(1):391-401
  • Sebestyen Z, Schooten E, Sals T, Human TCR that incorporate CD3ζ induce highly preferred pairing between TCRalpha and beta chains following gene transfer. J Immunol 2008;180(11):7736-46
  • Schaft N, Lankiewicz B, Gratama JW. Flexible and sensitive method to functionally validate tumor-specific receptors via activation of NFAT. J Immunol Methods 2003;280(1-2):13-24
  • Chung S, Wucherpfennig KW, Friedman SM, Functional three-domain single-chain T-cell receptors. Proc Natl Acad Sci USA 1994;91(26):12654-8
  • Van Der Bruggen P, Traversari C, Chomez P, A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991;254(5038):1643-7
  • Gross G, Eshhar Z. Endowing T cells with antibody specificity using chimeric T cell receptors. FASEB J 1992;6(15):3370-8
  • Abken H, Hombach A, Reinhold U, Ferrone S. Can combined T-cell- and antibody-based immunotherapy outsmart tumor cells? Immunol Today 1998;19(1):2-5
  • Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009;21(2):215-23
  • Dotti G, Savoldo B, Brenner M. Fifteen years of gene therapy based on chimeric antigen receptors: “Are We Nearly There Yet?” Hum Gene Ther 2009: published online 26 September 2009, doi:10.1089/hum.2009.142
  • Denkberg G, Reiter Y. Recombinant antibodies with T-cell receptor-like specificity: novel tools to study MHC class I presentation. Autoimmun Rev 2006;5(4):252-7
  • Willemsen R, Chames P, Schooten E, Selection of human antibody fragments directed against tumor T-cell epitopes for adoptive T-cell therapy. Cytometry A 2008;73A(11):1093-9
  • Chames P, Hufton SE, Coulie PG, Direct selection of a human antibody fragment directed against the tumor T-cell epitope HLA-A1-MAGE-A1 from a nonimmunized phage-Fab library. Proc Natl Acad Sci USA 2000;97(14):7969-74
  • Willemsen RA, Debets R, Hart E, A phage display selected fab fragment with MHC class I-restricted specificity for MAGE-A1 allows for retargeting of primary human T lymphocytes. Gene Ther 2001;8(21):1601-8
  • Bonini C, Ferrari G, Verzeletti S, HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997;276(5319):1719-24
  • De Witte MA, Jorritsma A, Swart E, An inducible caspase 9 safety switch can halt cell therapy-induced autoimmune disease. J Immunol 2008;180(9):6365-73
  • Straathof KC, Pule MA, Yotnda P, An inducible caspase 9 safety switch for T-cell therapy. Blood 2005;105(11):4247-54
  • Serafini M, Manganini M, Borleri G, Characterization of CD20-transduced T lymphocytes as an alternative suicide gene therapy approach for the treatment of graft-versus-host disease. Hum Gene Ther 2004;15(1):63-76
  • Kieback E, Charo J, Sommermeyer D, A safeguard eliminates T cell receptor gene-modified autoreactive T cells after adoptive transfer. Proc Natl Acad Sci USA 2008;105(2):623-8
  • Kessels HW, Van Den Boom MD, Spits H, Changing T cell specificity by retroviral T cell receptor display. Proc Natl Acad Sci USA 2000;97(26):14578-83
  • Holler PD, Holman PO, Shusta EV, In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc Natl Acad Sci USA 2000;97(10):5387-92
  • Shusta EV, Holler PD, Kieke MC, Directed evolution of a stable scaffold for T-cell receptor engineering. Nat Biotechnol 2000;18(7):754-9
  • Varela-Rohena A, Molloy PE, Dunn SM, Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 2008;14(12):1390-5
  • Chames P, Willemsen RA, Rojas G, TCR-like human antibodies expressed on human CTLs mediate antibody affinity-dependent cytolytic activity. J Immunol 2002;169(2):1110-8
  • Robbins PF, Li YF, El-Gamil M, Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol 2008;180(9):6116-31
  • Kuball J, Hauptrock B, Malina V, Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain. J Exp Med 2009;206(2):463-75
  • Geiger TL, Nguyen P, Leitenberg D, Flavell RA. Integrated src kinase and costimulatory activity enhances signal transduction through single-chain chimeric receptors in T lymphocytes. Blood 2001;98(8):2364-71
  • Zhang T, He X, Tsang TC, Harris DT. Transgenic TCR expression: comparison of single chain with full-length receptor constructs for T-cell function. Cancer Gene Ther 2004;11(7):487-96
  • Schaft N, Lankiewicz B, Drexhage J, T cell re-targeting to EBV antigens following TCR gene transfer: CD28-containing receptors mediate enhanced antigen-specific IFNgamma production. Int Immunol 2006;18(4):591-601
  • Willemsen RA, Ronteltap C, Chames P. T cell retargeting with MHC class I-restricted antibodies: the CD28 costimulatory domain enhances antigen-specific cytotoxicity and cytokine production. J Immunol 2005;174(12):7853-8
  • Hombach A, Abken H. Costimulation tunes tumor-specific activation of redirected T cells in adoptive immunotherapy. Cancer Immunol Immunother 2007;56(5):731-7
  • Carpenito C, Milone MC, Hassan R, Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009;106(9):3360-5
  • Ciceri F, Bonini C, Marktel S, Antitumor effects of HSV-TK-engineered donor lymphocytes after allogeneic stem-cell transplantation. Blood 2007;109(11):4698-707
  • Robbins PF, Dudley ME, Wunderlich J, Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 2004;173(12):7125-30
  • Huang J, Khong HT, Dudley ME, Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother 2005;28(3):258-67
  • Wherry EJ, Teichgraber V, Becker TC, Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 2003;4(3):225-34
  • Gattinoni L, Klebanoff CA, Palmer DC, Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 2005;115(6):1616-26
  • Hinrichs CS, Spolski R, Paulos CM, IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 2008;111(11):5326-33
  • Goldrath AW, Sivakumar PV, Glaccum M, Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med 2002;195(12):1515-22
  • Berard M, Brandt K, Bulfone-Paus S, Tough DF. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol 2003;170(10):5018-26
  • Moroz A, Eppolito C, Li Q, IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J Immunol 2004;173(2):900-9
  • Hsu C, Hughes MS, Zheng Z, Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 2005;175(11):7226-34
  • Peluso I, Fantini MC, Fina D, IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol 2007;178(2):732-9
  • Brentjens RJ, Latouche JB, Santos E, Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003;9(3):279-86
  • Klebanoff CA, Finkelstein SE, Surman DR, IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 2004;101(7):1969-74
  • Teague RM, Sather BD, Sacks JA, Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat Med 2006;12(3):335-41
  • Søndergaard H, Frederiksen KS, Thygesen P, Interleukin 21 therapy increases the density of tumor infiltrating CD8+ T cells and inhibits the growth of syngeneic tumors. Cancer Immunol Immunother 2007;56(9):1417-28
  • Berger C, Berger M, Hackman RC, Safety and immunologic effects of IL-15 administration in nonhuman primates. Blood 2009;114(12):2417-26
  • Epardaud M, Elpek KG, Rubinstein MP, Interleukin-15/interleukin-15Ralpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells. Cancer Res 2008;68(8):2972-83
  • Zeng R, Spolski R, Finkelstein SE, Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 2005;201(1):139-48
  • Huarte E, Fisher J, Turk MJ, Ex vivo expansion of tumor specific lymphocytes with IL-15 and IL-21 for adoptive immunotherapy in melanoma. Cancer Lett 2009;285(1):80-8
  • Pouw N, Treffers-Westerlaken E, Kraan J, Combination of IL-21 and IL-15 enhances tumour-specific cytotoxicity and cytokine production of TCR-transduced primary T cells. Cancer Immunol Immunother (In Press)
  • Sereti I, Dunham RM, Spritzler J, IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood 2009;113(25):6304-14
  • Kaneko S, Mastaglio S, Bondanza A, IL-7 and IL-15 allow the generation of suicide gene-modified alloreactive self-renewing central memory human T lymphocytes. Blood 2009;113(5):1006-15
  • Berger C, Jensen MC, Lansdorp PM, Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 2008;118(1):294-305
  • Yang L, Baltimore D. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells. Proc Natl Acad Sci USA 2005;102(12):4518-23
  • Van Lent AU, Nagasawa M, Van Loenen MM, Functional human antigen-specific T cells produced in vitro using retroviral T cell receptor transfer into hematopoietic progenitors. J Immunol 2007;179(8):4959-68
  • Zhao Y, Parkhurst MR, Zheng Z, Extrathymic generation of tumor-specific T cells from genetically engineered human hematopoietic stem cells via Notch signaling. Cancer Res 2007;67(6):2425-9
  • Hunziker L, Klenerman P, Zinkernagel RM, Ehl S. Exhaustion of cytotoxic T cells during adoptive immunotherapy of virus carrier mice can be prevented by B cells or CD4+ T cells. Eur J Immunol 2002;32(2):374-82
  • Marzo AL, Kinnear BF, Lake RA, Tumor-specific CD4+ T cells have a major "post-licensing" role in CTL mediated anti-tumor immunity. J Immunol 2000;165(11):6047-55
  • Antony PA, Piccirillo CA, Akpinarli A, CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 2005;174(5):2591-601
  • Schoenberger SP, Toes RE, Van Der Voort EI, T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 1998;393(6684):480-3
  • Surman DR, Dudley ME, Overwijk WW, Restifo NP. Cutting edge: CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen. J Immunol 2000;164(2):562-5
  • Ibe S, Qin Z, Schuler T, Tumor rejection by disturbing tumor stroma cell interactions. J Exp Med 2001;194(11):1549-59
  • Gyobu H, Tsuji T, Suzuki Y, Generation and targeting of human tumor-specific Tc1 and Th1 cells transduced with a lentivirus containing a chimeric immunoglobulin T-cell receptor. Cancer Res 2004;64(4):1490-5
  • Nishimura T, Iwakabe K, Sekimoto M, Distinct role of antigen-specific T helper Type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 1999;190(5):617-27
  • Muranski P, Boni A, Antony PA, Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 2008;112(2):362-73
  • Kuball J, Schmitz FW, Voss RH, Cooperation of human tumor-reactive CD4+ and CD8+ T cells after redirection of their specificity by a high-affinity p53A2.1-specific TCR. Immunity 2005;22(1):117-29
  • Willemsen R, Ronteltap C, Heuveling M, Redirecting human CD4+ T lymphocytes to the MHC class I-restricted melanoma antigen MAGE-A1 by TCR alphabeta gene transfer requires CD8alpha. Gene Ther 2005;12(2):140-6
  • Willemsen RA, Sebestyen Z, Ronteltap C, CD8alpha coreceptor to improve TCR gene transfer to treat melanoma: down-regulation of tumor-specific production of IL-4, IL-5, and IL-10. J Immunol 2006;177(2):991-8
  • Morris EC, Tsallios A, Bendle GM, A critical role of T cell antigen receptor-transduced MHC class I-restricted helper T cells in tumor protection. Proc Natl Acad Sci USA 2005;102(22):7934-9
  • Rossig C, Bollard CM, Nuchtern JG, Epstein–Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood 2002;99(6):2009-16
  • Heemskerk MH, Hoogeboom M, Hagedoorn R, Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J Exp Med 2004;199(7):885-94
  • Van Der Veken LT, Hagedoorn RS, Van Loenen MM, alphabeta T-cell receptor engineered gammaδ T cells mediate effective antileukemic reactivity. Cancer Res 2006;66(6):3331-7
  • Van Der Veken LT, Coccoris M, Swart E, alphabeta T cell receptor transfer to gammaδ T cells generates functional effector cells without mixed TCR dimers in vivo. J Immunol 2009;182(1):164-70
  • Riddell SR, Elliott M, Lewinsohn DA, T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med 1996;2(2):216-23
  • Berger C, Huang ML, Gough M, Nonmyeloablative immunosuppressive regimen prolongs in vivo persistence of gene-modified autologous T cells in a nonhuman primate model. J Virol 2001;75(2):799-808
  • Klebanoff CA, Khong HT, Antony PA, Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 2005;26(2):111-7
  • Kohlmeyer J, Cron M, Landsberg J, Complete regression of advanced primary and metastatic mouse melanomas following combination chemoimmunotherapy. Cancer Res 2009;69(15):6265-74
  • Thistlethwaite FC, Elkord E, Griffiths RW, Adoptive transfer of Treg depleted autologous T cells in advanced renal cell carcinoma. Cancer Immunol Immunother 2008;57(5):623-34
  • Cui Y, Zhang H, Meadors J, Harnessing the physiology of lymphopenia to support adoptive immunotherapy in lymphoreplete hosts. Blood 2009;114(18):3831-40
  • Beq S, Rozlan S, Gautier D, Injection of glycosylated recombinant simian IL-7 provokes rapid and massive T-cell homing in rhesus macaques. Blood 2009;114(4):816-25
  • Qian F, Villella J, Wallace PK, Efficacy of levo-1-methyl tryptophan and dextro-1-methyl tryptophan in reversing indoleamine-2,3-dioxygenase-mediated arrest of T-cell proliferation in human epithelial ovarian cancer. Cancer Res 2009;69(13):5498-504
  • Sharma MD, Hou DY, Liu Y, Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 2009;113(24):6102-11
  • De Witte MA, Bendle GM, Van Den Boom MD, TCR gene therapy of spontaneous prostate carcinoma requires in vivo T cell activation. J Immunol 2008;181(4):2563-71
  • Jiang HR, Gilham DE, Mulryan K, Combination of vaccination and chimeric receptor expressing T cells provides improved active therapy of tumors. J Immunol 2006;177(7):4288-98
  • Smith FO, Klapper JA, Wunderlich JR, Impact of a recombinant fowlpox vaccine on the efficacy of adoptive cell therapy with tumor infiltrating lymphocytes in a patient with metastatic melanoma. J Immunother 2009;32(8):870-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.