147
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Vaccines as early therapeutic interventions for cancer therapy: neutralising the immunosuppressive tumour environment and increasing T cell avidity may lead to improved responses

, PhD, , &
Pages 735-748 | Published online: 12 Apr 2010

Bibliography

  • Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. New Engl J Med 2007;10(19):1915-27
  • Paavonen J, Jenkins D, Bosch FX, Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 2007;369(9580):2161-70
  • Shankaran V, Ikeda H, Bruce AT, IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001;410(6832):1107-11
  • Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004;21(2):137-48
  • Nausch N, Cerwenka A. NKG2D ligands in tumor immunity. Oncogene 2008;27(45):5944-58
  • Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene 2008;27(45):5932-43
  • Clemente CG, Mihm MC Jr, Bufalino R, Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 1996;77(7):1303-10
  • Schuhmacher J, Kaul S, Klivenyi G, Immunoscintigraphy with positron emission tomography: Gallium-68 chelate imaging of breast cancer pretargeted with bispecific anti-MUC1/anti-Ga chelate antibodies. Cancer Res 2001;61:3712-7
  • Underwood JC. Lymphoreticular infiltration in human tumours: prognostic and biological implications: a review. Brit J Cancer 1974;30(6):538-48
  • Zhang L, Conejo-Garcia JR, Katsaros D, Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. New Engl J Med 2003;348(3):203-13
  • Galon J, Costes A, Sanchez-Cabo F, Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313(5795):1960-4
  • Jordanova ES, Gorter A, Ayachi O, Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients? Clin Cancer Res 2008;14(7):2028-35
  • Watson NF, Spendlove I, Madjd Z, Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer 2006;118(6):1445-52
  • Dunn GP, Bruce AT, Ikeda H, Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3(11):991-8
  • Kim J, Modlin RL, Moy RL, IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response. J Immunol 1995;155(4):2240-7
  • Bollard CM, Rossig C, Calonge MJ, Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 2002;99(9):3179-87
  • Lan YY, Wang Z, Raimondi G, "Alternatively activated" dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol 2006;177(9):5868-77
  • Seo N, Hayakawa S, Takigawa M, Tokura Y. Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4+ T-regulatory cells and systemic collapse of antitumour immunity. Immunol 2001;103(4):449-57
  • Fontana A, Frei K, Bodmer S, Transforming growth factor-beta inhibits the generation of cytotoxic T cells in virus-infected mice. J Immunol 1989;143(10):3230-4
  • Zhang Q, Yang X, Pins M, Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer Res 2005;65(5):1761-9
  • Liu VC, Wong LY, Jang T, Tumor evasion of the immune system by converting CD4+CD25– T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 2007;178(5):2883-92
  • Brandmaier AG, Leitner WW, Ha SP, High-avidity autoreactive CD4+ T cells induce host CTL, overcome Tregs and mediate tumor destruction. J Immunother 2009;32(7):677-88
  • Poznansky MC, Olszak IT, Foxall R, Active movement of T cells away from a chemokine. Nat Med 2000;6(5):543-8
  • Vianello F, Olszak IT, Poznansky MC. Fugetaxis: active movement of leukocytes away from a chemokinetic agent. J Mol Med 2005;83(10):752-63
  • Dannull J, Su Z, Rizzieri D, Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005;115(12):3623-33
  • Lundqvist A, Yokoyama H, Smith A, Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells. Blood 2009;113(24):6120-7
  • Morse MA, Hobeika AC, Osada T, Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 2008;112(3):610-8
  • Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008;8(7):523-32
  • Wang HY, Lee DA, Peng G, Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 2004;20(1):107-18
  • Wing K, Onishi Y, Prieto-Martin P, CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008;322(5899):271-5
  • Bacchetta R, Sartirana C, Levings MK, Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol 2002;32(8):2237-45
  • Cobbold SP, Nolan KF, Graca L, Regulatory T cells and dendritic cells in transplantation tolerance: molecular markers and mechanisms. Immunol Rev 2003;196:109-24
  • Groux H, Fournier N, Cottrez F. Role of dendritic cells in the generation of regulatory T cells. Sem Immunol 2004;16(2):99-106
  • Roncarolo MG, Gregori S, Battaglia M, Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 2006;212:28-50
  • Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 2001;182:207-14
  • Strauss L, Bergmann C, Szczepanski MJ, Expression of ICOS on human melanoma-infiltrating CD4+CD25highFoxp3+ T regulatory cells: implications and impact on tumor-mediated immune suppression. J Immunol 2008;180(5):2967-80
  • Wang QM, Sun SH, Hu ZL, Improved immunogenicity of a tuberculosis DNA vaccine encoding ESAT6 by DNA priming and protein boosting. Vaccine 2004;22(27-28):3622-7
  • Wang HY, Peng G, Guo Z, Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells. J Immunol 2005;174(5):2661-70
  • Vence L, Palucka AK, Fay JW, Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Nat Acad Sci USA 2007;104(52):20884-9
  • Coquerelle C, Moser M. Are dendritic cells central to regulatory T cell function? Immunol Lett 2008;119(1-2):12-6
  • Levings MK, Gregori S, Tresoldi E, Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood 2005;105(3):1162-9
  • Bergmann C, Strauss L, Zeidler R, Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res. 2007;67(18):8865-73
  • Bergmann C, Strauss L, Zeidler R, Expansion and characteristics of human T regulatory type 1 cells in co-cultures simulating tumor microenvironment. Cancer Immunol Immunother 2007;56(9):1429-42
  • Delgado M, Gonzalez-Rey E, Ganea D. The neuropeptide vasoactive intestinal peptide generates tolerogenic dendritic cells. J Immunol 2005;175(11):7311-24
  • Gonzalez-Rey E, Chorny A, Fernandez-Martin A, Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood 2006;107(9):3632-8
  • Chu QS. Aflibercept (AVE0005): an alternative strategy for inhibiting tumour angiogenesis by vascular endothelial growth factors. Exp Opin Biol therapy 2009;9(2):263-71
  • Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 2007;12(6):713-8
  • Curiel TJ, Coukos G, Zou L, Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med 2004;10(9):942-9
  • Nummer D, Suri-Payer E, Schmitz-Winnenthal H, Role of tumor endothelium in CD4+ CD25+ regulatory T cell infiltration of human pancreatic carcinoma. J Natl Cancer Inst 2007;99(15):1188-99
  • Jackson AM, Mulcahy LA, Zhu XW, Tumour-mediated disruption of dendritic cell function: inhibiting the MEK1/2-p44/42 axis restores IL-12 production and Th1-generation. Int J Cancer 2008;123(3):623-32
  • Rodriguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 2008;222:180-91
  • Serafini P, Meckel K, Kelso M, Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 2006;203(12):2691-702
  • Uyttenhove C, Pilotte L, Theate I, Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Med 2003;9(10):1269-74
  • Hou DY, Muller AJ, Sharma MD, Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 2007;67(2):792-801
  • Landowski TH, Qu N, Buyuksal I, Mutations in the Fas antigen in patients with multiple myeloma. Blood 1997;90(11):4266-70
  • Gronbaek K, Straten PT, Ralfkiaer E, Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood 1998;92(9):3018-24
  • Shin MS, Park WS, Kim SY, Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. Am J Pathol 1999;154(6):1785-91
  • Zaks TZ, Chappell DB, Rosenberg SA, Restifo NP. Fas-mediated suicide of tumor-reactive T cells following activation by specific tumor: selective rescue by caspase inhibition. J Immunol 1999;162(6):3273-9
  • Medema JP, de Jong J, Peltenburg LT, Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Nat Acad Sci USA 2001;98(20):11515-20
  • Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother 2008;57(11):1719-26
  • Watson NF, Ramage JM, Madjd Z, Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int J Cancer 2006;118(1):6-10
  • Ahmadzadeh M, Johnson LA, Heemskerk B, Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009;114(8):1537-44
  • Alexander-Miller MA, Leggatt GR, Berzofsky JA. Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc Nat Acad Sci USA 1996;93(9):4102-7
  • Gallimore A, Glithero A, Godkin A, Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J Exp Med T 1998;187(9):1383-93
  • Sedlik C, Dadaglio G, Saron MF, In vivo induction of a high-avidity, high-frequency cytotoxic T-lymphocyte response is associated with antiviral protective immunity. J Virol 2000;74(13):5769-75
  • Yee C, Savage PA, Lee PP, Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J Immunol 1999;162(4):2227-34
  • Zeh HJ III, Perry-Lalley D, Dudley ME, High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 1999;162(2):989-94
  • Alexander-Miller MA, Leggatt GR, Role of antigen, CD8, and cytotoxic T lymphocyte (CTL) avidity in high dose antigen induction of apoptosis of effector CTL. J Exp Med 1996;184(2):485-92
  • Kroger CJ, Alexander-Miller MA. Cutting edge: CD8+ T cell clones possess the potential to differentiate into both high- and low-avidity effector cells. J Immunol 2007;179(2):748-51
  • Maryanski JL, Pala P, Cerottini JC, MacDonald HR. Antigen recognition by H-2-restricted cytolytic T lymphocytes: inhibition of cytolysis by anti-CD8 monoclonal antibodies depends upon both concentration and primary sequence of peptide antigen. Eur J Immunol 1988;18(11):1863-6
  • Munz C, Obst R, Osen W, Alloreactivity as a source of high avidity peptide-specific human CTL. J Immunol 1999;162(1):25-34
  • Sandberg JK, Franksson L, Sundback J, T cell tolerance based on avidity thresholds rather than complete deletion allows maintenance of maximal repertoire diversity. J Immunol 2000;165(1):25-33
  • Connerotte T, Van Pel A, Godelaine D, Functions of Anti-MAGE T-cells induced in melanoma patients under different vaccination modalities. Cancer Res 2008;68(10):3931-40
  • Marelli-Berg FM, Jarmin SJ. Antigen presentation by the endothelium: a green light for antigen-specific T cell trafficking? Immunol letters 2004;93(2-3):109-13
  • Dutoit V, Rubio-Godoy V, Dietrich PY, Heterogeneous T-cell response to MAGE-A10(254-262): high avidity-specific cytolytic T lymphocytes show superior antitumor activity. Cancer Res 2001;61(15):5850-6
  • Alexander-Miller MA. High-avidity CD8+ T cells: optimal soldiers in the war against viruses and tumors. Immunol Res 2005;31(1):13-24
  • Ranasinghe C, Ramshaw IA. Genetic heterologous prime-boost vaccination strategies for improved systemic and mucosal immunity. Expert Rev Vaccin 2009;8(9):1171-81
  • Turner SJ, La Gruta NL, Kedzierska K, Functional implications of T cell receptor diversity. Curr Opin Immunol 2009;21(3):286-90
  • Ruan QG, Tung K, Eisenman D, The autoimmune regulator directly controls the expression of genes critical for thymic epithelial function. J Immunol 2007;178(11):7173-80
  • Anderson MS, Venanzi ES, Klein L, Projection of an immunological self shadow within the thymus by the aire protein. Science 2002;298(5597):1395-401
  • Hernandez J, Lee PP, Davis MM, Sherman LA. The use of HLA A2.1/p53 peptide tetramers to visualize the impact of self tolerance on the TCR repertoire. J Immunol 2000;164(2):596-602
  • Ercolini AM, Ladle BH, Manning EA, Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response. J Exp Med 2005;201(10):1591-602
  • Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 2003;3(4):331-41
  • Hernandez J, Aung S, Redmond WL, Sherman LA. Phenotypic and functional analysis of CD8+ T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J Exp Med 2001;194(6):707-17
  • Liu Z, Lefrancois L. Intestinal epithelial antigen induces mucosal CD8 T cell tolerance, activation, and inflammatory response. J Immunol 2004;173(7):4324-30
  • Nichols LA, Chen Y, Colella TA, Deletional self-tolerance to a melanocyte/melanoma antigen derived from tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric lymph nodes. J Immunol 2007;179(2):993-1003
  • Bakker AB, van der Burg SH, Huijbens RJ, Analogues of CTL epitopes with improved MHC class-I binding capacity elicit anti-melanoma CTL recognizing the wild-type epitope. Int J Cancer 1997;70(3):302-9
  • Chen JL, Dunbar PR, Gileadi U, Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J Immunol 2000;165(2):948-55
  • Rivoltini L, Squarcina P, Loftus DJ, A superagonist variant of peptide MART1/Melan A27–35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res 1999;59(2):301-6
  • Zaremba S, Barzaga E, Zhu M, Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 1997;57(20):4570-7
  • Rosenberg SA, Yang JC, Schwartzentruber DJ, Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med 1998;4(3):321-7
  • Speiser DE, Baumgaertner P, Voelter V, Unmodified self antigen triggers human CD8 T cells with stronger tumor reactivity than altered antigen. Proc Nat Acad Sci USA 2008;105(10):3849-54
  • Vujanovic L, Mandic M, Olson WC, A mycoplasma peptide elicits heteroclitic CD4+ T cell responses against tumor antigen MAGE-A6. Clin Cancer Res 2007;13(22 Pt 1):6796-806
  • Hunder NN, Wallen H, Cao J, Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. New Engl J Med 2008;358(25):2698-703
  • Yee C. Adoptive T cell therapy: addressing challenges in cancer immunotherapy. J Transl Med 2005;3(1):17
  • Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 2009;21(2):233-40
  • Hodge JW, Chakraborty M, Kudo-Saito C, Multiple costimulatory modalities enhance CTL avidity. J Immunol 2005;174(10):5994-6004
  • Bos R, van Duikeren S, van Hall T, Expression of a natural tumor antigen by thymic epithelial cells impairs the tumor-protective CD4+ T-cell repertoire. Cancer Res 2005;65(14):6443-9
  • Xu S, Koski GK, Faries M, Rapid high efficiency sensitization of CD8+ T cells to tumor antigens by dendritic cells leads to enhanced functional avidity and direct tumor recognition through an IL-12-dependent mechanism. J Immunol 2003;171(5):2251-61
  • Boyman O, Purton JF, Surh CD, Sprent J. Cytokines and T-cell homeostasis. Curr Opin Immunol 2007;19(3):320-6
  • Park JH, Adoro S, Lucas PJ, ‘Coreceptor tuning’: cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nature Immunol 2007;8(10):1049-59
  • Oh S, Perera LP, Burke DS, IL-15/IL-15Ralpha-mediated avidity maturation of memory CD8+ T cells. Proc Nat Acad Sci USA 2004;101(42):15154-9
  • Renard V, Romero P, Vivier E, CD8beta increases CD8 coreceptor function and participation in TCR-ligand binding. The Journal of Experimental Medicine 1996;184(6):2439-44
  • Arcaro A, Gregoire C, Bakker TR, CD8beta endows CD8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56lck complexes. J Exp Med 2001;194(10):1485-95
  • Cawthon AG, Alexander-Miller MA. Optimal colocalization of TCR and CD8 as a novel mechanism for the control of functional avidity. J Immunol 2002;169(7):3492-8
  • Arcaro A, Gregoire C, Boucheron N, Essential role of CD8 palmitoylation in CD8 coreceptor function. J Immunol 2000;165(4):2068-76
  • Bourgeois C, Tanchot C. Mini-review CD4 T cells are required for CD8 T cell memory generation. Eur J immunol 2003;33(12):3225-31
  • Li Y, Bleakley M, Yee C. IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 2005;175(4):2261-9
  • Hou S, Mo XY, Hyland L, Doherty PC. Host response to Sendai virus in mice lacking class II major histocompatibility complex glycoproteins. J Virol 1995;69(3):1429-34
  • Janssen EM, Lemmens EE, Wolfe T, CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003;421(6925):852-6
  • Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 2003;300(5617):337-9
  • Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 2003;300(5617):339-42
  • Ahlers JD, Belyakov IM, Thomas EK, Berzofsky JA. High-affinity T helper epitope induces complementary helper and APC polarization, increased CTL, and protection against viral infection. J Clin Invest 2001;108(11):1677-85
  • Steinaa L, Rasmussen PB, Wegener AM, Linked foreign T-cell help activates self-reactive CTL and inhibits tumor growth. J Immunol 2005;175(1):329-34
  • Rees W, Bender J, Teague TK, An inverse relationship between T cell receptor affinity and antigen dose during CD4+ T cell responses in vivo and in vitro. Proc Nat Acad Sci USA 1999;96(17):9781-6
  • Bullock TN, Mullins DW, Engelhard VH. Antigen density presented by dendritic cells in vivo differentially affects the number and avidity of primary, memory, and recall CD8+ T cells. J Immunol 2003;170(4):1822-9
  • Alexander-Miller MA, Derby MA, Sarin A, Supraoptimal peptide-major histocompatibility complex causes a decrease in bc1-2 levels and allows tumor necrosis factor alpha receptor II-mediated apoptosis of cytotoxic T lymphocytes. J Exp Med 1998;188(8):1391-9
  • Terando AM, Faries MB, Morton DL. Vaccine therapy for melanoma: current status and future directions. Vaccine 2007;25(Suppl 2):B4-16
  • Kroger CJ, Amoah S, Alexander-Miller MA. Cutting edge: Dendritic cells prime a high avidity CTL response independent of the level of presented antigen. J Immunol 2008;180(9):5784-8
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nature Med 2004;10(9):909-15
  • Schadendorf D, Ugurel S, Schuler-Thurner B, Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 2006;17(4):563-70
  • Czerniecki BJ, Koski GK, Koldovsky U, Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 2007;67(4):1842-52
  • Small EJ, Schellhammer PF, Higano CS, Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 2006;24(19):3089-94
  • Gilboa E. DC-based cancer vaccines. J Clin Invest 2007;117(5):1195-203
  • Hawiger D, Inaba K, Dorsett Y, Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001;194(6):769-79
  • Mahnke K, Qian Y, Fondel S, Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Res 2005;65(15):7007-12
  • Ramakrishna V, Treml JF, Vitale L, Mannose receptor targeting of tumor antigen pmel17 to human dendritic cells directs anti-melanoma T cell responses via multiple HLA molecules. J Immunol 2004;172(5):2845-52
  • He LZ, Crocker A, Lee J, Antigenic targeting of the human mannose receptor induces tumor immunity. J Immunol 2007;178(10):6259-67
  • Akiyama K, Ebihara S, Yada A, Targeting apoptotic tumor cells to FcgammaR provides efficient and versatile vaccination against tumors by dendritic cells. J Immunol 2003;170(4):1641-8
  • Rafiq K, Bergtold A, Clynes R. Immune complex-mediated antigen presentation induces tumor immunity. J Clin Invest 2002;110(1):71-9
  • You Z, Huang X, Hester J, Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res 2001;61(9):3704-11
  • Qin H, Zhou C, Wang D, Specific antitumor immune response induced by a novel DNA vaccine composed of multiple CTL and T helper cell epitopes of prostate cancer associated antigens. Immunol Letts 2005;99(1):85-93
  • Metheringham RL, Pudney VA, Gunn B, Antibodies designed as effective cancer vaccines. MABs 2009;1(1):71-85
  • Kelland LR. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics–current status and future prospects. Eur J Cancer 2005;41(7):971-9
  • Pudney VA, Metheringham RL, Gunn B, DNA vaccination with T cell epitopes encoded within Ab molecules induces high avidity CD8+ T cells. Eur J Immunol 2010;40(3):899-910

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.