202
Views
7
CrossRef citations to date
0
Altmetric
Future Perspective

The role of α-smooth muscle actin in myogenic differentiation of human glandular stem cells and their potential for smooth muscle cell replacement therapies

, , &
Pages 853-861 | Published online: 05 Apr 2010

Bibliography

  • Vandekerckhove J, Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 1978;126(4):783-802
  • Rubenstein PA. The functional importance of multiple actin isoforms. Bioessays 1990;12(7):309-15
  • Pollard TD, Cooper JA. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 1986;55:987-1035
  • Skalli O, Ropraz P, Trzeciak A, A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 1986;103(6 Pt 2):2787-96
  • Saint-Jeannet JP, Levi G, Girault JM, Ventrolateral regionalization of Xenopus laevis mesoderm is characterized by the expression of alpha-smooth muscle actin. Development 1992;115(4):1165-73
  • Gorjup E, Danner S, Rotter N, Glandular tissue from human pancreas and salivary gland yields similar stem cell populations. Eur J Cell Biol 2009;88(7):409-21
  • Folk GE, Semken HA. The evolution of sweat glands. Int J Biometeorol 1991;35(3):180-6
  • Foschini M, Scarpellini F, Gown A, Eusebi V. Differential expression of myoepithelial markers in salivary, sweat and mammary glands. Int J Surg Pathol 2000;8(1):29-37
  • Kruse C, Birth M, Rohwedel J. Pluripotency of adult stem cells derived from human and rat pancreas. Appl Phys A 2004;79:1617-24
  • Seeberger KL, Dufour JM, Shapiro AMJ, Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab Invest 2006;86(2):141-53
  • Seaberg RM, Smukler SR, Kieffer TJ, Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 2004;22(9):1115-24
  • Rapoport DH, Schicktanz S, Gürleyik E, Isolation and in vitro cultivation turns cells from exocrine human pancreas into multipotent stem-cells. Ann Anat 2009;191(5):446-58
  • Haber PS, Keogh GW, Apte MV, Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol 1999;155(4):1087-95
  • Kishi S, Takeyama Y, Ueda T, Pancreatic duct obstruction itself induces expression of alpha smooth muscle actin in pancreatic stellate cells. J Surg Res 2003;114(1):6-14
  • Ciba P, Sturmheit TM, Petschnik AE, In vitro cultures of human pancreatic stem cells: gene and protein expression of designated markers varies with passage. Ann Anat 2009;191(1):94-103
  • Petschnik AE, Klatte JE, Evers LH, Phenotypic indications that human sweat glands are a rich source of nestin-positive stem cell populations. Br J Dermatol 2009: published online 8 September 2009, doi: 10.1111/j.1365-2133.2009.09512.x
  • Rotter N, Oder J, Schlenke P, Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 2008;17(3):509-18
  • Breitbart RE, Liang CS, Smoot LB, A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development 1993;118(4):1095-106
  • Firulli AB, Miano JM, Bi W, Myocyte enhancer binding factor-2 expression and activity in vascular smooth muscle cells. Association with the activated phenotype. Circ Res 1996;78(2):196-204
  • Kruse C, Kajahn J, Petschnik AE, Adult pancreatic stem/progenitor cells spontaneously differentiate in vitro into multiple cell lineages and form teratoma-like structures. Ann Anat 2006;188(6):503-17
  • Kobayashi N, Yasu T, Ueba H, Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp Hematol 2004;32(12):1238-45
  • Xiao Q, Zeng L, Zhang Z, Stem cell-derived Sca-1+ progenitors differentiate into smooth muscle cells, which is mediated by collagen IV-integrin alpha1/beta1/alphav and PDGF receptor pathways. Am J Physiol Cell Physiol 2007;292(1):C342-52
  • Suzuki S, Narita Y, Yamawaki A, Effects of extracellular matrix on differentiation of human bone marrow-derived mesenchymal stem cells into smooth muscle cell lineage: utility for cardiovascular tissue engineering. Cells Tissues Organs 2010;191(4):269-80
  • Shah NM, Groves AK, Anderson DJ. Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 1996;85(3):331-43
  • Jeon ES, Moon HJ, Lee MJ, Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. J Cell Sci 2006;119(Pt 23):4994-5005
  • Miano JM, Berk BC. Retinoids: versatile biological response modifiers of vascular smooth muscle phenotype. Circ Res 2000;87(5):355-62
  • Petschnik AE, Ciba P, Kruse C, Danner S. Controlling alpha-SMA expression in adult human pancreatic stem cells by soluble factors. Ann Anat 2009;191(1):116-25
  • Maden M. The role of retinoic acid in embryonic and post-embryonic development. Proc Nutr Soc 2000;59(1):65-73
  • Schuldiner M, Eiges R, Eden A, Induced neuronal differentiation of human embryonic stem cells. Brain Res 2001;913(2):201-5
  • Tang F, Shang K, Wang X, Gu J. Differentiation of embryonic stem cell to astrocytes visualized by green fluorescent protein. Cell Mol Neurobiol 2002;22(1):95-101
  • Jang YK, Park JJ, Lee MC, Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res 2004;75(4):573-84
  • Drab M, Haller H, Bychkov R, From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J 1997;11(11):905-15
  • Rohwedel J, Guan K, Wobus AM. Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 1999;165(3-4):190-202
  • Tanaka H, Homma K, White HD, Smooth muscle myosin phosphorylated at single head shows sustained mechanical activity. J Biol Chem 2008;283(23):15611-8
  • Brehmer B, Rohrmann D, Rau G, Jakse G. Bladder wall replacement by tissue engineering and autologous keratinocytes in minipigs. BJU Int 2006;97(4):829-36
  • Jack GS, Almeida FG, Zhang R, Processed lipoaspirate cells for tissue engineering of the lower urinary tract: implications for the treatment of stress urinary incontinence and bladder reconstruction. J Urol 2005;174(5):2041-5
  • Jack GS, Zhang R, Lee M, Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 2009;30(19):3259-70
  • Drewa T. Using hair-follicle stem cells for urinary bladder-wall regeneration. Regen Med 2008;3(6):939-44
  • Zhang Y, Lin HK, Frimberger D, Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int 2005;96(7):1120-5
  • Tian H, Bharadwaj S, Liu Y, Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering. Biomaterials 2010;31(5):870-7
  • Thyberg J, Hedin U, Sjölund M, Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis 1990;10(6):966-90
  • Niklason LE, Gao J, Abbott WM, Functional arteries grown in vitro. Science 1999;284(5413):489-93
  • L'Heureux N, Dusserre N, Konig G, Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 2006;12(3):361-5
  • Hashi CK, Zhu Y, Yang GY, Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA 2007;104(29):11915-20
  • Shinoka T, Breuer C. Tissue-engineered blood vessels in pediatric cardiac surgery. Yale J Biol Med 2008;81(4):161-6
  • L'Heureux N, Pâquet S, Labbé R, A completely biological tissue-engineered human blood vessel. FASEB J 1998;12(1):47-56
  • Zhao Y, Zhang S, Zhou J, The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials 2010;31(2):296-307
  • Wang C, Cen L, Yin S, A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials 2010;31(4):621-30
  • Egaña JT, Danner S, Kremer M, The use of glandular-derived stem cells to improve vascularization in scaffold-mediated dermal regeneration. Biomaterials 2009;30(30):5918-26
  • Salem H, Ciba P, Rapoport DH, The influence of pancreas-derived stem cells on scaffold based skin regeneration. Biomaterials 2009;30(5):789-96
  • Guldner NW, Kajahn J, Klinger M, Autonomously contracting human cardiomyocytes generated from adult pancreatic stem cells and enhanced in co-cultures with myocardial biopsies. Int J Artif Organs 2006;29(12):1158-66
  • Maass A, Kajahn J, Guerleyik E, Towards a pragmatic strategy for regenerating infarcted myocardium with glandular stem cells. Ann Anat 2009;191(1):51-61
  • Ghazanfari S, Tafazzoli-Shadpour M, Shokrgozar MA. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochem Biophys Res Commun 2009;388(3):601-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.