152
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Adenovirus vaccine immunotherapy targeting WT1-expressing tumors

, MD, , MD MHS, , MD, , PhD & , MD PhD
Pages 875-883 | Published online: 09 Apr 2010

Bibliography

  • Park JM, Terabe M, Sakai Y, Early role of CD4+ Th1 cells and antibodies in HER-2 adenovirus vaccine protection against autochthonous mammary carcinomas. J Immunol 2005;10(7):4228-36
  • Park JM, Terabe M, Steel JC, Therapy of advanced established murine breast cancer with a recombinant adenoviral ErbB-2/neu vaccine. Cancer Res 2008;68(6):1979-87
  • Gjertsen MK, Bjorheim J, Saeterdal I, Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Val) peptide vaccination of a patient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int J Cancer 1997;72(5):784-90
  • Hung K, Hayashi R, Lafond-Walker A, The central role of CD4+ T cells in the antitumor immune response. J Exp Med 1998;188(12):2357-68
  • Osada T, Woo CY, McKinney M, Induction of Wilms' tumor protein (WT1)-specific antitumor immunity using a truncated WT1-expressing adenovirus vaccine. Clin Cancer Res 2009;15(8):2789-96
  • Rauscher FJ III, Morris JF, Tournay OE, Binding of the Wilms' tumor locus zinc finger protein to the EGR-1 consensus sequence. Science 1990;250(4985):1259-62
  • Drummond IA, Madden SL, Rohwer-Nutter P, Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 1992;257(5070):674-8
  • Werner H, Re GG, Drummond IA, Increased expression of the insulin-like growth factor I receptor gene, IGF1R, in Wilms tumor is correlated with modulation of IGF1R promoter activity by the WT1 Wilms tumor gene product. Proc Natl Acad Sci USA 1993;90(12):5828-32
  • Harrington MA, Konicek B, Song A, Inhibition of colony-stimulating factor-1 promoter activity by the product of the Wilms' tumor locus. J Biol Chem 1993;268(28):21271-5
  • Pritchard-Jones K, Fleming S, Davidson D, The candidate Wilms' tumour gene is involved in genitourinary development. Nature 1990;346(6280):194-7
  • Englert C, Hou X, Maheswaran S, WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J 1995;14(19):4662-75
  • Scharnhorst V, van der Eb AJ, Jochemsen AG. WT1 proteins: functions in growth and differentiation. Gene 2001;273(2):141-61
  • Call KM, Glaser T, Ito CY, Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 1990;60(3):509-20
  • Oji Y, Ogawa H, Tamaki H, Expression of the Wilms' tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 1999;90(2):194-204
  • Miwa H, Beran M, Saunders GF. Expression of the Wilms' tumor gene (WT1) in human leukemias. Leukemia 1992;6(5):405-9
  • Bergmann L, Miething C, Maurer U, High levels of Wilms' tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 1997;90(3):1217-25
  • Netinatsunthorn W, Hanprasertpong J, Dechsukhum C, WT1 gene expression as a prognostic marker in advanced serous epithelial ovarian carcinoma: an immunohistochemical study. BMC Cancer 2006;6:90
  • Miyoshi Y, Ando A, Egawa C, High expression of Wilms' tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res 2002;8(5):1167-71
  • Sera T, Hiasa Y, Mashiba T, Wilms' tumour 1 gene expression is increased in hepatocellular carcinoma and associated with poor prognosis. Eur J Cancer 2008;44(4):600-8
  • Oka Y, Tsuboi A, Oji Y, WT1 peptide vaccine for the treatment of cancer. Curr Opin Immunol 2008;20(2):211-20
  • Hutchings Y, Osada T, Woo CY, Immunotherapeutic targeting of Wilms' tumor protein. Curr Opin Mol Ther 2007;9(1):62-9
  • Oka Y, Elisseeva OA, Tsuboi A, Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms' tumor gene (WT1) product. Immunogenetics 2000;51(2):99-107
  • Gao L, Bellantuono I, Elsasser A, Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 2000;95(7):2198-203
  • Ohminami H, Yasukawa M, Fujita S. HLA class I-restricted lysis of leukemia cells by a CD8+ cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 2000;95(1):286-93
  • Al Qudaihi G, Lehe C, Negash M, Enhancement of lytic activity of leukemic cells by CD8+ cytotoxic T lymphocytes generated against a WT1 peptide analogue. Leuk Lymphoma 2009;50(2):260-9
  • Pinilla-Ibarz J, May RJ, Korontsvit T, Improved human T-cell responses against synthetic HLA-0201 analog peptides derived from the WT1 oncoprotein. Leukemia 2006;20(11):2025-33
  • Guo Y, Niiya H, Azuma T, Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood 2005;106(4):1415-8
  • Kobayashi H, Nagato T, Aoki N, Defining MHC class II T helper epitopes for WT1 tumor antigen. Cancer Immunol Immunother 2006;55(7):850-60
  • Elisseeva OA, Oka Y, Tsuboi A, Humoral immune responses against Wilms tumor gene WT1 product in patients with hematopoietic malignancies. Blood 2002;99(9):3272-9
  • Oka Y, Udaka K, Tsuboi A, Cancer immunotherapy targeting Wilms' tumor gene WT1 product. J Immunol 2000;164(4):1873-80
  • Gaiger A, Reese V, Disis ML, Cheever MA. Immunity to WT1 in the animal model and in patients with acute myeloid leukemia. Blood 2000;96(4):1480-9
  • Tsuboi A, Oka Y, Ogawa H, Cytotoxic T-lymphocyte responses elicited to Wilms' tumor gene WT1 product by DNA vaccination. J Clin Immunol 2000;20(3):195-202
  • Nakajima H, Kawasaki K, Oka Y, WT1 peptide vaccination combined with BCG-CWS is more efficient for tumor eradication than WT1 peptide vaccination alone. Cancer Immunol Immunother 2004;53(7):617-24
  • Chaise C, Buchan SL, Rice J, DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood 2008;112(7):2956-64
  • Oka Y, Tsuboi A, Taguchi T, Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 2004;101(38):13885-90
  • Rezvani K, Yong AS, Mielke S, Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008;111(1):236-42
  • Keilholz U, Letsch A, Busse A, A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 2009;113(26):6541-8
  • Morita S, Oka Y, Tsuboi A, A Phase I/II trial of a WT1 (Wilms' tumor gene) peptide vaccine in patients with solid malignancy: safety assessment based on the phase I data. Jpn J Clin Oncol 2006;36(4):231-6
  • Iiyama T, Udaka K, Takeda S, WT1 (Wilms' tumor 1) peptide immunotherapy for renal cell carcinoma. Microbiol Immunol 2007;51(5):519-30
  • Izumoto S, Tsuboi A, Oka Y, Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 2008;108(5):963-71
  • Woo CY, Osada T, Clay TM, Recent clinical progress in virus-based therapies for cancer. Expert Opin Biol Ther 2006;6(11):1123-34
  • Vujanovic L, Whiteside TL, Potter DM, Regulation of antigen presentation machinery in human dendritic cells by recombinant adenovirus. Cancer Immunol Immunother 2009;58(1):121-33
  • Dietz AB, Vuk-Pavlovic S. High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood 1998;91(2):392-8
  • Juillard V, Villefroy P, Godfrin D, Long-term humoral and cellular immunity induced by a single immunization with replication-defective adenovirus recombinant vector. Eur J Immunol 1995;25(12):3467-73
  • Tripathy SK, Black HB, Goldwasser E, Leiden JM. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med 1996;2(5):545-50
  • Gallo P, Dharmapuri S, Cipriani B, Monaci P. Adenovirus as vehicle for anticancer genetic immunotherapy. Gene Ther 2005;12(Suppl 1):S84-91
  • Shirakawa T. The current status of adenovirus-based cancer gene therapy. Mol Cells 2008;25(4):462-6
  • Seregin SS, Amalfitano A. Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin Biol Ther 2009;9(12):1521-31
  • Harui A, Suzuki S, Kochanek S, Mitani K. Frequency and stability of chromosomal integration of adenovirus vectors. J Virol 1999;73(7):6141-6
  • Buchbinder SP, Mehrotra DV, Duerr A, Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008;372(9653):1881-93
  • Yang Y, Nunes FA, Berencsi K, Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994;91(10):4407-11
  • Bachtarzi H, Stevenson M, Fisher K. Cancer gene therapy with targeted adenoviruses. Expert Opin Drug Deliv 2008;5(11):1231-40
  • Osada T, Yang XY, Hartman ZC, Optimization of vaccine responses with an E1, E2b and E3-deleted Ad5 vector circumvents pre-existing anti-vector immunity. Cancer Gene Ther 2009;16(9):673-82
  • Xia D, Moyana T, Xiang J. Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res 2006;16(3):241-59
  • Gallo P, Dharmapuri S, Nuzzo M, Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector. Int J Cancer 2005;113(1):67-77
  • Chan T, Sami A, El-Gayed A, HER-2/neu-gene engineered dendritic cell vaccine stimulates stronger HER-2/neu-specific immune responses compared to DNA vaccination. Gene Ther 2006;13(19):1391-402
  • Morse MA, Wei J, Hartman Z, Synergism from combined immunologic and pharmacologic inhibition of HER2 in vivo. Int J Cancer 2009 [Epub Ahead of Print]
  • Essand M. Gene therapy and immunotherapy of prostate cancer: adenoviral-based strategies. Acta Oncol 2005;44(6):610-27
  • Elzey BD, Siemens DR, Ratliff TL, Lubaroff DM. Immunization with type 5 adenovirus recombinant for a tumor antigen in combination with recombinant canarypox virus (ALVAC) cytokine gene delivery induces destruction of established prostate tumors. Int J Cancer 2001;94(6):842-9
  • Kim S, Lee JB, Lee GK, Chang J. Vaccination with recombinant adenoviruses and dendritic cells expressing prostate-specific antigens is effective in eliciting CTL and suppresses tumor growth in the experimental prostate cancer. Prostate 2009;69(9):938-48
  • Lane C, Leitch J, Tan X, Vaccination-induced autoimmune vitiligo is a consequence of secondary trauma to the skin. Cancer Res 2004;64(4):1509-14
  • Leitch J, Fraser K, Lane C, CTL-dependent and -independent antitumor immunity is determined by the tumor not the vaccine. J Immunol 2004;172(9):5200-5
  • Steitz J, Bruck J, Knop J, Tuting T. Adenovirus-transduced dendritic cells stimulate cellular immunity to melanoma via a CD4+ T cell-dependent mechanism. Gene Ther 2001;8(16):1255-63
  • Wan Y, Bramson J, Pilon A, Genetically modified dendritic cells prime autoreactive T cells through a pathway independent of CD40L and interleukin 12: implications for cancer vaccines. Cancer Res 2000;60(12):3247-53
  • Rosenberg SA, Zhai Y, Yang JC, Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J Natl Cancer Inst 1998;90(24):1894-900
  • Mincheff M, Tchakarov S, Zoubak S, Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a Phase I/II clinical trial. Eur Urol 2000;38(2):208-17
  • Nemunaitis J, Meyers T, Senzer N, Phase I Trial of sequential administration of recombinant DNA and adenovirus expressing L523S protein in early stage non-small-cell lung cancer. Mol Ther 2006;13(6):1185-91
  • Butterfield LH, Comin-Anduix B, Vujanovic L, Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. J Immunother 2008;31(3):294-309
  • Bardeesy N, Pelletier J. Overlapping RNA and DNA binding domains of the wt1 tumor suppressor gene product. Nucleic Acids Res 1998;26(7):1784-92
  • Kast WM, Levitsky H, Marincola FM. Synopsis of the 6th Walker's Cay Colloquium on Cancer Vaccines and Immunotherapy. J Transl Med 2004;2(1):20
  • Oh ST, Kim CH, Park MY, Dendritic cells transduced with recombinant adenoviruses induce more efficient anti-tumor immunity than dendritic cells pulsed with peptide. Vaccine 2006;24(15):2860-8
  • Lehe C, Ghebeh H, Al-Sulaiman A, The Wilms' tumor antigen is a novel target for human CD4+ regulatory T cells: implications for immunotherapy. Cancer Res 2008;68(15):6350-9
  • Salucci V, Mennuni C, Calvaruso F, CD8+ T-cell tolerance can be broken by an adenoviral vaccine while CD4+ T-cell tolerance is broken by additional co-administration of a Toll-like receptor ligand. Scand J Immunol 2006;63(1):35-41
  • Thacker EE, Nakayama M, Smith BF, A genetically engineered adenovirus vector targeted to CD40 mediates transduction of canine dendritic cells and promotes antigen-specific immune responses in vivo. Vaccine 2009;27(50):7116-24
  • Kline J. Will changing the face of WT1 make it more attractive to T cells? Leuk Lymphoma 2009;50(2):156-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.