245
Views
52
CrossRef citations to date
0
Altmetric
Review

Prodrug based optimal drug delivery via membrane transporter/receptor

, &
Pages 159-175 | Published online: 23 Feb 2005

Bibliography

  • NEUTRA M, KRAEHENBUHL JP: Transepithelial transport of proteins by intestinal epithelial cells. In: Biological Barriers to Protein Delivery. Audus KL, Raub TJ (Eds), Plenum Press, NY, USA (1993).
  • MURANISHI S, YAMAMOTO A, OKADA H: Rectal and vaginal absorption of peptides and proteins. In: Biological Barriers to Protein Delivery. Audus KL and Raub TJ (Eds), Plenum Press, NY, USA (1993):199–227.
  • HARRIS D, ROBINSON JR: Drug delivery via the mucous membrane of the oral cavity. J. Pharm. Sci. (1992) 81:1–10.
  • CHIEN YW, CHANG SF: Intranasal drug delivery forsystemic medications. Crit. Rev. Ther. Drug Carrier Sys. (1987) 4:67–194.
  • JOHNSON LG, BOUCHER RC: Macromolecular transportacross nasal and respiratory epithelia. In: Biological Barriers to Protein Delivery. Audus KL, Raub TJ (Eds.), Plenum Press, NY, USA (1993):161–178.
  • LEE VHL, ROBINSON JR: Topical ocular drug delivery:recent developments and future challenges. J. Ocul. Pharmacol. (1986) 2:67–108.
  • BANGA AK, CHIEN YW: Dermal absorption of peptidesand proteins. In: Biological Barriers to Protein Delivery. Audus KL, Raub TJ (Ed.), Plenum Press, NY, USA (1993):179–197
  • BURTON PS, CONRADI RA, HILGERS RA: Mechanism ofpeptide and protein absorption. 2. Transcellular mechanism of peptide and protein absorption: Passive aspects. Adv. Drug Deliv. Res. (1991) 7:365–386.
  • SMITH PL, EDDY EP, LEE CP, AND WILSON G: Exploita-tion of the intestinal oligopeptide transporter to enhance drug absorption. Drug Deliv.(1993) 1:103–111.
  • HUNTER J, JEPSON MA, TSURUO T, SIMMONS ML, HIRSTBH: Functional expression of a P-glycoprotein in apical membranes of human intestinal Caco-2 cells: Kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem. (1993) 268:14991–14997 .
  • AUDUS KL, CHIKHALE P, MILLER D, THOMPSON SE, BORCHARDT RT: Brain uptake: Influence of chemical and biological factors. In: Advances in Drug Research. Testa B (Ed.), Academic Press. London UK (1992):1–64.
  • BROADWELL R D: Transcytosis of macromoleculesthrough the blood-brain fluid barrier in vivo. In: Biological Barriers to Protein Delivery. Audus KL, Raub TJ (Eds), Plenum Press, NY, USA (1993):269–296.
  • MALIK AB, BIRMBOIM AS: Vascular endothelial barrierand its regulation. In Biological Barriers to Protein Delivery. Audus KL, Raub TJ (Eds) Plenum Press, NY, USA (1993):231–267.
  • Directed drug delivery: a multidisciplinary approach.Borchardt RT, Repta AJ, Stella VJ (Eds), Humana Press, NJ, USA (1985).
  • Advances in Drug Delivery Systems. Anderson JM, Kim SW(Eds.), Elsevier Amsterdam (1986).
  • TAYLOR M, AMIDON G: In Peptide-Based Drug Design:Controlling Transport and Metabolism. Washington DC.: American Chemical Society (1995).
  • STELLA VJ, CHARMAN WNA, NARINGREKAR VH: Prodrugs: do they have advantages in clinical practice? Drugs (1995) 29:455–473.
  • YANG CY, DANTZIG AH, PIDGEON: Intestinal peptidetransport systems and oral drug availability. Pharm. Res. (1999) 16:1331–1343.
  • TSUJI A, TAMAI I: Carrier-mediated intestinal transportof drugs. Pharm. Res. (1995) 13:963–977.
  • LIANG R, FEI YJ, PRASAD PD, RAMAMOORTHY S, HAN H, YANG-FENG L: Human intestinal IT/peptide cotrans-porter: cloning, functional expression and chromo-somal localization. J. Biol. Chem. (1995) 270:6456–6463.
  • GANAPATHY V, BRANDSCH M, LEIBACH FH: Intestinal transport of amino acids and peptides. In: Physiology of the Gastrointestinal Tract. LR. Johnson (Ed.), Raven Press, NY, USA (1994):1773–1794.
  • HUM, SUBRAMANIAN P, MOSBERG HI, AMIDON GL: Useof the peptide carrier system to improve the intestinal absorption of L-alpha-methyldopa: carrier kinetics, intestinal permeabilities and in vitro hydrolysis of dipeptidyl derivatives of L-alpha-methyldopa. Pharm. Res. (1989) 6:66–70.
  • HUM, BORCHARDT RT: Mechanism of L-a-methyldopatransport through a monolayer of polarized human intestinal epithelial cells (Caco-2). Pharm. Res. (1990) 7:1313–1319.
  • TSUJI A, TAMAI I, NAKANISHI M, AND AMIDON GL: Mechanism of absorption of the dipeptide a-methyldopa-phe in the intestinal brush-border membrane vesicles. Pharm. Res. (1990) 7:308–309.
  • BAI JP, HU M, SUBRAMANIAN P, MOSBERG HI, ANDAMIDON GL: Utilization of peptide carrier system to improve intestinal absorption: targeting prolidase as a prodrug-converting enzyme. J. Pharm. Sci. (1992) 81:113–116.
  • GRAPPEL SF, GIOVENELLA AJ, NISBET LJ: Activity of apeptidyl prodrug, alafosfalin, against anaerobic bacteria. Antimicrob. Agents Chemother. (1985) 27:961–963.
  • SWAAN PW, TUKKER JJ: Carrier-mediated transportmechanism of foscarnet (trisodium phosphonofor-mate hexahydrate) in rat intestinal tissue./ Pharmacol. E. Ther. (1995) 272:242–247.
  • O'BRIEN J, CAMPOLI-RICHARDS DM: Acyclovir. An updated review of its antiviral activity, Pharmacold-netic properties and therapeutic efficacy. Drugs (1989) 37:233–309.
  • BEAUCHAMP LM, ORR GF, DE MIRANDA P, BURNETTE T,KRENITSKY TA: Amino add ester prodrugs of acyclovir. Antiviral Chem. Chemother. (1992) 3:157–164.
  • DE VRUEH RL, SMITH PL, LEE CP: Transport of L-valine-acyclovir via the oligopeptide transporter in the human intestinal cell line, Caco-2. J. Pharmacol. Exp. Ther. (1998) 286:1166–1170.
  • HAN HK, DEVRUEH RLA, RHIE JK et al 5'-Amino acid ester of antiviral nucleosides, acyclovir and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm. Res. 1998 15:1154–1159.
  • SINKO PJ, BALIMANE PV: Carrier-mediated intestinal absorption of valacyclovir, the L-valyl ester prodrug of acyclovir: 1. Interactions with peptides, organic anions and organic cations in rats. Biopharm. Drug Dispos. (1998) 19:209–217.
  • GANAPATHY ME, HUANG W, WANG H, GANAPATHY V:Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun. (1998) 246:470–475.
  • SUGAWARA M, HUANG W, FEI YJ, LEIBACH FH, GANAPATHY V, AND GANAPATHY ME: Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT 1 and PE112. J. Pharm. Sci. (2000) 89:781–789.
  • STEWART BH, KUGLER AR, THOMPSON PR, BOCKBRADER N: A saturable transport mechanism in the intestinal absorption of gabapentin is the underlying cause of the lack of proportionality between increasing dose and drug levels in plasma. Pharm. Res. (1993) 10:276–281.
  • HEDIGER MA, KANAI Y, YOU G, NUSSBERGER S: Mammalian ion-coupled solute transporters./ Physiol. (1995) 482:7S–17S.
  • HEDIGER MA, COADY MJ, IKEDA TS, WRIGHT EM: Expression cloning and cDNA sequencing of the Nat/glucose cotransporter. Nature (1987) 330:379–381.
  • MIYAMOTO K, TATSUMI S, MORIMOTO A et al.: Charac-terization of the rabbit intestinal fructose transporter (GLUTS). Biochem. J. (1994) 303:877–883.
  • KAYANO T, BURANT CF, FUKUMOTO H et al.: Human facilitative glucose transporters. J. Biol. Chem. (1990) 265:13276–13282.
  • HAGA M, SAITO K, SHIMAYA T, MAEZAWA Y, KATO Y,KIM SW: Hypoglycemic effect of intestinally adminis-tered monosaccharide-modified insulin derivatives in rats. Chem. Pharm. Bull. (1990) 38:1983–1986.
  • MIZUMA T, OHTA K, HAYASHI M, AWAZU S: Intestinalactive absorption of sugar-conjugated compounds by glucose transport system: implication of improve-ment of poorly absorbable drugs. Biochem. Pharmacol. (1992) 43:2037–2039.
  • MIZUMA T, OHTA K, HAYASHI M, AWAZU S: Compara-tive study of active absorption by the intestine and disposition of anomers of sugar-conjugated compounds. Biochem. Pharmacol. (1993) 45:1520–1523.
  • MIZUMA T, OHTA K, AWAZU S: The 13-anomeric and glucose preferences of glucose transport carrier for intestinal active absorption of monosaccharide conjugates. Biochim. Biophys. Acta (1994) 1200:117–122.
  • MIZUMA T, SAKAI N, AWAZU S: Ne-Dependent transport of anninopeptidease-resistant sugar-coupled tripeptides in rat intestine. Biochem. Biophys. Res. Commun. (1994) 203:1412–1416.
  • PRICE NT, JACKSON VN, HALESTRAP AP: Cloning andsequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem. J. (1998) 329:321–328.
  • YABUUCHI H, TAMAI I, SAI Y, TSUJI A: Possible role ofanion exchanger AE2 as the intestinal monocarbox-ylic acid/antiporter. Pharm. Res. (1998) 15:411–416.
  • TSUJI A, TAMAI I, NAKANISHI M, TERASAKI T, HAMANO S:Intestinal brush-border transport of the oral cephalo-sporin antibiotic, cefdinir, mediated by dipeptide and monocarboxylic acid transport systems in rabbits. J. Pharm. Pharmacol. (1993) 45:996–998.
  • ITOH T, TANNO M, LI YH, YAMADA H: Transport ofphenethicillin into rat intestinal brush border membrane vesicles: role of the monocarboxylic acid transport system. Int. J. Pharm. (1998) 172:103–112.
  • LI YH, TANNO M, ITOH T, YAMADA H: Role of themonocarboxylic acid transport system in the intestinal absorption of an orally active I3-lactam prodrug: carindacillin as a model. Int. J. Pharm. (1999) 191:151–159.
  • WILSON FA: Intestinal transport of bile acids. Am. J.Physiol. (1981) 241:G83–G92.
  • LACK L, WEINER IM: Intestinal bile salt transport: structure-activity relationships and other properties. Am. J. Physiol. (1966) 210:1142–1152.
  • KRAMER W, WESS G: Bile acid transport systems as pharmaceutical targets. Europ. J. Clin. Invest. (1996) 26:715–732.
  • HILL BT, RICHES PG: The absorption, distribution and excretion of 3H-chlorambucil in rats bearing the Yoshida ascites sarcoma. Br.J.Cancer(1971) 25:831–837.
  • KRAMER W, WESS G, SCHUBERT G et al.: Liver-specific drug targeting by coupling to bile acids. J. Biol. Chem. (1992) 267:18598–18604.
  • KRAMER W, WESS G, ENHSEN A et al.: Bile acid derived HMG-CoA reductase inhibitors. Biochim. Biophys. Acta (1994) 1227:137–154.
  • WESS G, KRAMER W, BARTMANN W et al.: Modified bile acids: preparation of 7a,12a-dyhydroxy-3I3- and 7a,12a-dihydrooxy-3a-(2-hydroxyethoxy)-5I3-cholanic acid and their biological activity. Tetrahedron Lett (1992) 33:195–198.
  • WESS G, KRAMER W, ENHSEN A, GLOMBIK H, BARING-HAUS KH, BOCK K, KLEINE H, SCHMITT W: Preparation of3a-and3 I3-(w-aminoalkoxy)-7a,12a-dihydroxy-5I3-cholanoic acid esters: versatile shuttles for drug targeting. Tetrahedron Lett. (1993) 34:817–818.
  • WESS G, KRAMER W, SCHUBERT G eta/.: Synthesis of bile acid-drug conjugates: potential drug-shuttles for liver specific targeting. Tetrahedron Lea. (1993) 34:819–822.
  • WANG J, SHEN D, SHEN WC: Oral delivery of an insulin-transferrin conjugate in Streptozotocin-treated cf/1 mice. Pharm. Res. (1997) 14:S469.
  • BALDWIN SA, MACKEY JR, CASS CE, YOUNG JD: Nucleo-side transporters: molecular biology and implications for therapeutic development. Mol. Med. Today (1999) 5:216–224.
  • WANG J, SCHANER ME, THOMASSEN S, SU SF, PIQUETTE-MILLER M, GIACOMINI KM: Functional and molecular characteristics of Natdependent nucleo-side transporters. Pharm. Res. (1997) 14:1524–1532.
  • DRESSER MJ, GRAY AT, GIACOMINI KM: Kinetic and selectivity differences between rodent, rabbit and human organic cation transporters (OCT1). J. Pharmacol. Exp. Ther. (2000) 292:1146–1152.
  • ZHANG L, BRETT CM, GIACOMINI KM: Role of organiccation transporters in drug absorption and elimina-tion. Ann. Rev. Pharmacol. Toxicol. (1998) 38:431–460.
  • FEILD JA, ZHANG L, BRUN KA, BROOKS DP, EDWARDSRM: Cloning and functional characterization of a sodium-dependent phosphate transporter expressed in human lung and small intestine. Biochem. Biophys. Res. Comm. (1999) 258:578–582.
  • TSUJI A, TAMAI I: Na + and pH dependent transport offoscarnet via the phosphate carrier system across intestinal brush-border membrane. Biochem. Pharmacol. (1989) 38:1019–1022.
  • ISHIZAWA T, SADAHIRO S, HOSOI K, TAMAI I, TERASAKI T, TSUJI A: Mechanisms of intestinal absorption of the antibiotic, fosfomycin, in brush-border membrane vesicles in rabbits and humans. J. Pharmacobio. Dyn. (1992) 15:481–489
  • ANDERSON RG, KAMEN BA, ROTHBERG KG, LACEY SW:Potocytosis: sequestration and transport of small molecules by caveolae. Science (1992) 255:410–411.
  • ROSS JF, CHAUDHURI PK, RATNAM M: Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer (1994) 73:2432–2443.
  • FAN J, KURESHY N, VITOLS KS, HUENNEKENS FM: Novelsubstrate analogs delineate an endocytotic mechanism for uptake of folate via the high-affinity, glycosylphosphatidylinositol-linked transport protein in L1210 mouse leukemia cells. Oncol. Res. (1995) 7:511–516.
  • LEAMON CP, LOW PS: Membrane folate-binding proteins are responsible for folate-protein conjugate endocytosis into cultured cells. Biochem. J. (1993) 291:855–860.
  • WANG S, LEE RJ, CAUCHON G, GORENSTEIN DG, LOW PS:Delivery of antisense oligodeoxyribounucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc. Natl. Acad. Sci. USA (1995) 92:3318–3322.
  • RUSSELL-JONES GJ: Oral delivery of therapeutic proteins and peptides by the vitamin B12 uptake system. In: Peptide-Based Drug Design: Controlling Transport and Metabolism. Taylor MD, Amidon GL (Eds.) :181-198. Washington DC: American Chemical Society (1995).
  • RUSSELL-JONES GJ, WESTWOOD SW, HABBERFIELD AD: Vitamin B12 mediated oral delivery systems for granulocyte-colony stimulating factor and erythro-poietin. Bioconjug. Chem. (1995) 6:459–465.
  • HABBERFIELD AD, JENSEN-PIPPO K, RALPH L, WESTWOOD SW, RUSSELL-JONES GJ: Vitamin B12-mediated uptake of recombinant therapeutic proteins from the gut. Int. J. Pharm. (1996) 145:1–8.
  • RUSSELL-JONES GJ, ARTHUR L, KILLINGER S, WESTWOOD SW: Vitamin B12-mediated transport of nanoparticiles. Proc. Intl. Symp. Control Rel . Bioact . Mater. (1997) 24:11–12.
  • RUSSELL-JONES GJ, WESTWOOD SW, HABBERFIELD AD: The use of the vitamin B12 transport system as a carrier for the oral delivery of peptides, proteins and nanopar-ticks. Proc. Int. Symp. Control Rel. Bioact. Mater. (1996) 23:49–50.
  • WANGENSTEEN OD, BARTLETT MM, JAMES JK, YANG ZF, LOW PS: Riboflavin-enhanced transport of serum albumin across the distal pulmonary epithelium. Pharm. Res. (1996) 13:1861–1864.
  • SWAAN PW: Recent advances in intestinal macromolecular drug delivery via receptor-mediated transport pathways. Pharm. Res. (1998) 15:826–834.
  • JEFFREY GP, BASCLAIN KA, ALLEN TL: Molecular regula-tion of transferrin receptor and ferritin expression in the rat gastrointestinal tract. Gastroenterology (1996) 110:790–800.
  • SHAH D, SHEN WC: Transcellular delivery of an insulin-transferrin conjugate in enterocyte-like Caco-2 cells. J. Pharm. Sci. (1996) 85:1306–1311.
  • WANG J, SHEN D, SHEN WC: Oral delivery of an insulin-transferrin conjugate in Streptozotocin-treated cf/1 mice. Pharm. Res. (1997) 14:S469.
  • HOKARI M, WU HQ, SCHWARCZ R, SMITH: Facilitated brain uptake of 4-chlorokynurenine and conversion to 7-chlorokynurenic acid. Neuroreport QR (1996) 8:15–18.
  • BONINA FP, ARENARE L, PALAGIANO F et al.: Synthesis, stability and pharmacological evaluation of nipecotic acid prodrugs. J. Pharm. Sci. (1999) 88:561–567.
  • WALKER I, NICHOLLS D, IRWIN WJ, FREEMAN S: Drug deliveryvia active transport at the blood-brain barrier: affinity of a prodrug of phosphonoformate for the large amino acid transporter. J. Pharm. Sci. (1994) 84:157–167.
  • POLT R, PORRECA F, SZABO LZ et al Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc. Natl. Acad. Sci. USA (1994) 91:7114–7118.
  • BATTAGLIA G, RUSSA ML, BRUNO V et al.: Systemically administered D-glucose conjugates of 7-chlorokynurenic acid are centrally available and exert anticonvulsant activity in rodents. Brain Res. (2000) 860:149–156.
  • JEFFERIES WA, BRANDON MR, WILLIAMS AF, HUNT SV: Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor. Immunology (1985) 54:333–341.
  • PRIGENT SA, STANLEY KK, SIDDLE K: Identification of epitopes on the human insulin receptor reacting with rabbit polyclonal antisera and mouse monoclonal antibodies. J. Biol. Chem. (1990) 265:9970–9977.
  • PARDRIDGE WM: Blood-brain barrier peptide transport and peptide drug delivery to the brain. In: Peptide-Based Drug Design: Controlling Transport and Metabolism. Taylor MD, Amidon GL (Eds). American Chemical Society. Washington DC (1995):265–296.
  • FRIDEN PM, WALUS LR, MUSSO GF, TAYLOR MA, MALFROY B, STARZYK RM: Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc. Natl. Acad. Sci. (1991) 88:4771–4775.
  • WU D, PARDRIGE WM: CNS pharmacologic effect in conscious rats after intravenous injection of a biotiny-lated vasoactive intestinal peptide analogue coupled to a blood-brain barrier drug delivery system. J. Pharmacol. Exp. Ther. (1996) 279:77–83.
  • SAITO Y, BUCIAK J, YANG J, PARDRIGE WM: Vector-mediated delivery of 125I-labeled beta-amyloid peptide A beta 1-40 through the blood-brain barrier and binding to Alzheimer's disease amyloid of the A beta 1-40/vector complex. Proc. Natl. Acad. Sci. USA (1995) 92:10227–10231.
  • WU D, YANG J, PARDRIGE W M: Drug targeting of a peptide radiopharrnaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor. J. Clin. Invest. (1997) 100:1804–1812.
  • PARDRIGE WM, WU D, SAKANE T: Combined use of carboxyl-directed protein peglyation and vector-mediated blood brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharm. Res. (1998) 15:576–582.
  • SAKANE T, PARDRIGE WM: Carboxyl-directed pegyla-don of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biological activity. Pharm. Res. (1997) 14:1085–1091.
  • BORCHARDT RT: Rational design of peptides with enhanced membrane permeability. In Medicinal Chemistry: Today, Tomorrow. Yamazaki M (Ed) Blackwell, Oxford, UK (1995):191–196.
  • YANG C, MITRA AK: Nasal absorption of tyrosine linkedmodel compounds. J. Pharm. Sci. (In Press).
  • YANG C, MITRA AK: Chemical stability, enzymatic hydrolysis and nasal uptake of amino acid ester prodrugs of acyclovir. J. Pharm. Sci. (In Press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.