114
Views
26
CrossRef citations to date
0
Altmetric
Review

T-cell-directed cancer vaccines: the melanoma model

, &
Pages 277-290 | Published online: 23 Feb 2005

Bibliography

  • YEWDELL JW, BENNINK JR: The binary logic of antigen processing and presentation to T-cells. Cell (1990) 62:203–206.
  • KNUTH A, DANOWSKI B, OETTGEN HF, OLD LJ: T-cell-mediated cytotoxicity against autologous malignant melanoma: Analysis with interleukin-2-dependent T-cell cultures. Proc. Natl. Acad. Sci. USA (1984) 81:3511–3515.
  • • First demonstration of T-cell based recognition of cancer.
  • MARINCOLA FM, ROSENBERG SA: Biologic therapy with Interleukin-2: clinical applications: melanoma. In: Biologic Therapy of Cancer: DeVita VT, Hellman S, Rosenberg SA (Eds.) J. B. Lippincott Company, PA, USA (1995):250–262.
  • MC CE; MC CM: Systemic chemotherapy for thetreatment of metastatic melanoma. Semin. Oncol. (1996) 23:744–753.
  • ROSENBERG SA: Keynote address: Perspective on theuse of Interleukin-2 in cancer treatment. Cancer J. Sci. Am. (1997) 3:s2–s6.
  • ROSENBERG SA, LOTZE MT, YANG JC et al.: Prospectiverandomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J. Natl. Cancer Inst. (1993) 85:622-632. [published erratum appears in J. Natl. Cancer Inst. (1993) 85:1091]
  • ROSENBERG SA, SPIESS P, LAFRENIERE R: A newapproach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science (1986) 233:1318–1321.
  • ITOH K, TILDEN AB, BALCH CM: Interleukin 2 activationof cytotoxic T-lymphocytes infiltrating into human metastatic melanomas. CancerRes. (1986) 46:3011–3017.
  • KAWAKAMI Y, ZAKUT R, TOPALIAN SL, STOTTER H,ROSENBERG SA: Shared human melanoma antigens. Recognition by tumor- infiltrating lymphocytes in HLA-A2.1-transfected melanomas. J. Immunol. (1992) 148:638–643.
  • • First comprehensive characterisation of the commonality of melanoma antigens.
  • VAN DER BRUGGEN P, TRAVERSARI C, CHOMEZ P et al.: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science (1991) 254:1643–1647.
  • •• Identification of first melanoma antigen recognised byT-cells.
  • CHEN Y-T, STOCKERT E, TSANG S, COPLAN KE, OLD LJ:Immunophenotyping of melanomas for tyrosinase: Implications for vaccine development. Proc. Natl. Acad. Sci. USA (1995) 92:8125–8129.
  • MARINCOLA FM, HIJAZI YM, FETSCH P et al.: Analysis ofexpression of the melanoma associated antigens MART-1 and gp100 in metastatic melanoma cell lines and in in situ lesions" Immunother. (1996) 19:192-205.
  • CORMIER JN, HIJAZI YM, ABATI A et al.: Heterogeneousexpression of melanoma-associated antigens (MAA) and HI.A-A2 in metastatic melanoma in vivo. Int. J. Cancer (1998) 75:517–524.
  • CORMIER JN, ABATI A, FETSCH P et al.: Comparativeanalysis of the in vivo expression of tyrosinase, MART-1/Melan-A and gp100 in metastatic melanoma lesions: implications for immunotherapy. J Immuno-ther. (1998) 21:27–31.
  • FETSCH PA, KLEINER D, MARINCOLA FM, ABATI A: Analysis of melanoma associated antigen MART-1 in normal tissues and in selected non-melanomatous neoplasms. Modern Path. (1997) 10:43.
  • MARINCOLA FM, SHAMAMIAN P, RIVOLTINI L et al.: HLA associations in the anti-tumor response against malignant melanoma. J. Immunother. (1996)18:242–252.
  • PLAYER MA, BARRACCHINI KC, SIMONIS TB et al.: Differ-ences in frequency distribution of HIA-A2 sub-types between American and Italian Caucasian melanoma patients: Relevance for epitope specific vaccination protocols. J. Immunother. (1996) 19:357–363.
  • KAWAKAMI Y, ELIYAHU S, DELGADO CH et al.: Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl. Acad. Sci. USA (1994)91:3515–3519.
  • KAWAKAMI Y, ELIYAHU S, SAKAGUCHI K et al.: Identifi-cation of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2- restricted tumor infiltrating lymphocytes. J. E. Med. (1994) 180:347–352.
  • KAWAKAMI Y, DANG N, WANG X et al.: Recognition of shared melanoma antigens in association with major HIA-A alleles by tumor infiltrating lymphocytes from 123 patients with melanoma. J. Immunother. (2000) 23:17–27.
  • SETTER S, MONSURRO V, NIELSEN M-B et al.:MART-1/MelanA and gp100/PMe117 irnmunodomi-nance revisited: Low frequency of melanoma differen-tiation antigen (MDA)-specific T-cells in tumor metastases. J Immunol (2000) (Submitted).
  • RIVOLTINI L, KAWAKAMI Y, SAKAGUCHI K et al.: Induction of tumor reactive CTL from peripheral blood and tumor infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J. Immunol. (1995) 154:2257–2265.
  • • First demonstration that systemic immune responses can be raised using self tumour antigen-derived epitope.
  • SALGALLER ML, AFSHAR A, MARINCOLA FM, RIVOLTINI L,KAWAKAMI Y, ROSENBERG SA: Recognition of multiple epitopes in the human melanoma antigen gp 100 by peripheral blood lymphocytes stimulated in vitro with synthetic peptides. Cancer Res. (1995) 55:4972–4979.
  • PARKHURST MR, SALGALLER ML, SOUTHWOOD S et al.:Improved induction of melanoma reactive CTL with peptides from the melanoma antigen gp100 modified at HIA-A*0201 binding residues. J. Immunol. (1996) 157:2539–2548.
  • SALGALLER ML, MARINCOLA FM, CORMIER JN, ROSENBERG SA: Immunization against epitopes in the human melanoma antigen gp100 following patient immunization with synthetic peptides. Cancer Res. (1996) 56:4749–4757.
  • • One of the first demonstrations that a class I-restricted epitope alone can induce T-cell responses in vivo.
  • CORMIER JN, SALGALLER ML, PREVETTE T et al.: Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A. Cancer J. Sci. Am. (1997) 3:37–44.
  • • One of the first demonstrations that a class I-restricted epitope alone can induce T-cell responses in vivo.
  • ROSENBERG SA, YANG JC, SCHWARTZENTRUBER D eta/.:Immunologic and therapeutic evaluation of a synthetic tumor associated peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med. (1998) 4:321–327.
  • JAGER E, RINGHOFFER M, KARBACH J, ARAND M, OESCHF, KNUTH A: Inverse relationship of melanocyte differ-entiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for irnmunoselection of antigen-loss variants in vivo. Intl. Cancer (1996) 66:470–476.
  • VITIELLO A, ISHIOKA G, GREY HM et al.: Development ofa lipopeptide-based therapeutic vaccine to treat chronic HBV infection. I. Induction of a primary cytotoxic T lymphocyte response in humans. J. Clin. Invest. (1995) 95:341–349.
  • STEINMAN RM: The dendritic cell system and its role inirnmunogenicity. Ann. Rev. Immunol. (1991) 9:271–296.
  • PORGADOR A, SNYDER D, GILBOA E: Induction of antitumor immunity using bone marrow-generated dendritic cells. J. Immunol. (1996) 156:2918–2926.
  • CELLUZZI CM, MAYORDOMO JI, STORKUS WJ, LOTZE MT, FALO LD Jr: Peptide-pulsed dendritic cells induce antigen-specific CTL- mediated protective tumor immunity. J. Exp. Med. (1996) 183:283–287.
  • YOUNG JW, INABA K. Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity [comment]. J. Exp. Med. (1996) 183:7–11.
  • ZITVOGEL L, MAYORDOMO JI, TJANDRAWAN T et al.: Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimula-don and T helper cell 1-associated cytokines [see comments]. J. Exp. Med. (1996) 183:87–97.
  • PAGLIA P, CHIODONI C, RODOLFO M, COLOMBO MP: Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo [see comments]. J. Exp. Med. (1996) 183:317–322.
  • MAYORDOMO JI, ZORINA T, STORKUS WJ et al.: Bonemarrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Med. (1995) 1:1297–1302.
  • FIELDS RC, SHIMIZU K, MULE JJ: Murine dendritic cellspulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc. Natl. Acad. Sci. USA (1998) 95:9482–9487.
  • NESTLE FO, ALIJAGIC S, GILLIET M et al.: Vaccination ofmelanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med. (1998) 4:328–332.
  • CHEN YT, SCANLAN MJ, SAHIN U et al.: A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc. Natl. Acad. Sci. USA (1997) 94:1914–1918.
  • •• Identification of humoral responses directed against autolo-gous antigens. CHEN YT, SCANLAN MJ, SAHIN U et al.: A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc. Natl. Acad. Sci. USA (1997) 94:1914-1918. Identification of humoral responses directed against autolo-gous antigens.
  • HSU FJ, BENIKE C, FAGNONI F et al.: Vaccination ofpatients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med. (1996) 2:52–58.
  • KIM CJ, PREVETTE T, CORMIER JN et al.: Dendritic cellsinfected with poxviruses encoding MART-1/MelanA sensitize T lymphocytes in vitro. J. Immunother. (1997) 20:276–286.
  • THURNER B, HAENDLE I, RODER C et al.: Vaccinationwith MAGE-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. (1999) 190:1669–1678.
  • VAN DER BURG SH, VISSEREN MJ, BRANDT RM, KAST WM, MELIEF JM: Immunogenicity of peptide bound to MHC class I molecules depends on the MHC-peptide complex stability. J. Immunol. (1996) 156:3308–3314.
  • HUANG AY, GOLUMBEK P, AHMADZADEH M, JAFFEE E, PARDOLL D, LEVITSKY H: Role of bone marrow-derived cells in presenting MHC class I- restricted tumor antigens. Science (1994) 264:961–965.
  • BOCZKOWSKI D, NAIR SK, SNYDER D, GILBOA E: Dentritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. (1996) 184:465–472.
  • BHARDWAJ N, BENDER A, GONZALEZ N, BUI LK, GARRETT MC, STEINMAN RM: Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells. J. Cfin. Invest. (1994) 94:797–807.
  • KIM CJ, CORMIER JN, RODEN M et al.: Use of recombi-nant poxviruses to stimulate anti-melanoma T cell reactivity. Ann. Surg. Oncol. (1998) 5:64–76.
  • BETTINOTTI M, KIM CJ, LEE K-H et al.: Stringent allele/epitope requirements for MART-1/Melan A immunodominance: Implications for peptide-based immunotherapy. J. Immunol. (1998) 161:877–889.
  • SKIPPER JC, KITTLESEN DJ, HENDRICKSON RC et al.: Shared epitopes for HLA.-A3-restricted melanoma-reactive human CTL include a naturally processed epitope from Pme1-17/gp100. J. Immunol. (1996) 157:5027–5033.
  • YEE C, GILBERT MJ, RIDDELL SR et al.: Isolation oftyrosinase-specific CD8+ and CD4+ T cell clones from the peripheral blood of melanoma patients following in vitro stimulation with recombinant vaccinia virus./ Immunol. (1996) 157:4079–4086.
  • ROSENBERG SA, ZHAI Y, YANG JC et al.: Immunizationof patients with metastatic melanoma using recombi-nant adenoviruses encoding the MART-1 or gp100 melanoma antigens. J. Natl. Cancer Inst. (1998) 90:1894–1899.
  • KUGLER A, STUHLER G, WALDEN P et al.: Regression ofhuman metastatic renal cell carcinoma after vaccina-tion with tumor cell-dendritic cell hybrids. Nature Med. (2000) 6:332–336.
  • NEWTON DA, ROMANO C, GATTONI-CELLI S: Semiallo-genic cell hybrids as therapeutic vaccines for cancer./ Immunother. (2000) 23:246–254.
  • SPEISER DE, MIRANDA R, ZAKARIAN A et al.: Self antigensexpressed by solid tumors do not efficiently stimulate naive or activated T cells: Implications for irnmuno-therapy. J. Exp. Med. (1997) 186:645–653.
  • ZEH HJ, PERRY-LALLEY D, DUDLEY ME, ROSENBERG SA,YANG J: High avidity Clis for two self-antigens by solid tumors do not efficiently stimulate naive or activated T cells: Implications for inimunotherapy. J. Immunol. (1999) 162:989–994.
  • BARTH RJJ, MULE JJ, SPIESS P, ROSENBERG SA:Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+ tumor-infiltrating lymphocytes. J. Exp. Med. (1991) 173:647–658.
  • POCKAJ BA, SHERRY RM, WEI JP et al.: Localization of111Indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive irnmunotherapy: Augmentation with cyclophosphamide and correla-tion with response. Cancer (1994) 73: 1731-1737.
  • • Evidence that localisation of T-cells at the tumour site is necessary for tumour rejection.
  • MIZOGUCHI H, O'SHEA JJ, LONGO DL, LOEFFLER CM, MCVICAR DW, OCHOA AC: Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science (1992) 258:1795–1798.
  • GABRILOVICH DI, CHEN HL, GIRGIS KR eta/.: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Med. (1996) 2:1096-1103. [published erratum appears in Nature Med. (1996) 2(11):1261
  • KIM CJ, PARKINSON DR, MARINCOLA FM: Immunodomi-nance across the HLA. polymorphism: Implications for cancer inimunotherapy. J. Immunother. (1997) 21:1–16.
  • TSANG KY, ZAREMBA S, NIERODA CA, ZHU MZ, HAMILTON JM, SCHLOM J: Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J. Natl. Cancer Inst. (1995) 87:982–990.
  • LEE K-H, FANELLI MC, KIM CJ et al.: Functional dissocia-tion between local and systemic immune response following peptide vaccination. J. Immunol. (1998) 161:4183–4194.
  • FANELLI MC, RIKER A, KAMMULA US et al.: Expansion oftumor/T cell pairs from fine needle aspirates (FNA) of melanoma metastases. J. Immunol. (2000) 164:495–504.
  • GANSS R, HANAHAN D: Tumor microenvironment can restrict the effectiveness of activated antitumor lymphocytes. Cancer Res. (1998) 58:4673–4681.
  • MARINCOLA FM, JAFFE EM, HICKLIN DJ, FERRONE S: Escape of human solid tumors from T cell recognition: Molecular mechanisms and functional significance. Adv. Immunol. (2000) 74:181–273.
  • DUGGAN DJ, BITTNER M, CHEN Y, MELTZER P, TRENT JM: Expression profiling using cDNA microarrays. Nat. Genet. (1999) 21:10–14.
  • ROSENBERG SA: Cancer vaccines based on the identifi-cation of genes encoding cancer regression antigens. Immunol. Today (1997) 18:175–182
  • DRISCOLL MC, CHU A, HILGARTNER MW: Heteroduplex analysis in hemophilia B: Detection of two novel Factor IX gene mutations. Am. J. Hematol. (1996) 51:324–327.
  • FUCHS EJ, MATZINGER P: Is cancer dangerous to the immune system? Semin. Immunol. (1996) 8:271–280.
  • • Application of 'danger model' to cancer immunology.
  • WANG E, MARINCOLA FM: A natural history of melanoma: Serial gene expression analysis. Immunol. Today (2000) (In press).
  • STAUDT LM, BROWN PO: Genomic views of the immune system. Ann. Rev. Immunol. (2000) 18:829–859.
  • ADAMS MD, DUBNICK M, KEERLAVAGE AR et al.: Sequence identification of 2,375 human brain genes. Nature (1992) 355:632–634.
  • BUTLER D: Computing 2010: from black holes to biology. Nature (1999) 402:C67–70.
  • CHEN Y, DOUGHERTY ER, BITTNER ML: Ratio-based decisions and the quantitative analysis of cDNA microarray images. Biomedical Optics (1997) 2:364–374.
  • SCHENA M, SHALON D, DAVIS RW, BROWN PO: Quanti-tative monitoring of gene expression patterns with a complementary DNA microarray. Science (1995) 270:467–470.
  • EISEN MB, SPELLMAN PT, BROWN PO, BOTSTEIN D: Cluster analysis and display of genome-wide expres-sion patterns. Proc. Natl. Acad. Sci. USA (1998) 95:14863–14868.
  • DERISI J, PENLAND L, BROWN PO et al.: Use of cDNAmicroarray to analyze gene expression patterns in human cancer. Nat. Genet. (1996) 14:457–460.
  • ALIZADEH AA, EISEN MB, BOTSTEIN D, BROWN PO, STAUDT LM: Probing lymphocyte biology by genomic-scale gene expression analysis. J. Clin. Invest. (1998) 18:373–379.
  • •• Molecular characterisation of cancer based on extendedgene expression profiling.
  • PEROU CM, JEFFREY SS, VAN DE RUN M et al.: Distinctive gene expression patterns in human mammary epithe-lial cells and breast cancers. Proc. Natl. Acad. Sci. USA (1999) 96:9212–9217.
  • •• Molecular characterisation of cancer based on extendedgene expression profiling.
  • BITTNER M, MELTZER P, CHEN Y et al.: Molecular classification of cutaneous malignant melanoma by gene expression: Shifting from a continuous spectrum to distinct biologic entities. Nature (2000) 406:536–840.
  • •• Molecular characterisation of cancer based on extendedgene expression profiling.
  • PEROU CM, SERTLE T, EISEN MB et al.: Molecular portraits of human breast tumors. Nature (2000) 406:747–752.
  • •• Molecular characterisation of cancer based on extendedgene expression profiling.
  • GOLUB TR, SLONIM DK, TAMAYO P et al.: Molecularclassification of cancer: Class discovery and class prediction by gene expression monitoring. Science (1999) 286:531–537.
  • KHAN J, SIMON R, BITTNER M et al.: Gene expressionprofiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res. (1998) 58:5009–5013.
  • ALIZADEH AA, EISEN MB, DAVIS RE et al.: Distinct typesof diffuse large B-cell lymphoma identified by gene expression profiling. Nature (2000) 403:467–578.
  • CLARK EA, GOLUB TR, LANDER ES, HYNES RO: Genomicanalysis of metastasis reveals an essential role for RhoC. Nature (2000) 406:532–535.
  • JAGER E, RINGHOFFER M, ALTMANNSBERGER M et al.:Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expres-sion in metastatic melanoma. Int. J. Cancer (1997) 71:142–147.
  • PANDOLFI F, BOYLE LA, TRENTIN L, KURNICK JT, ISSELBACHER KJ, GATTONI-CELLI S: Expression of HLA-A2 antigen in human melanoma cell lines and its role in T-cell recognition. Cancer Res. (1991) 51:3164–3170.
  • LENGAUER C, KINZLER KW, VOGELSTEIN B: Genetic instabilities in human cancers. Nature (1998) 396:643–649.
  • BONNER RF, EMMERT-BUCK M, COLE K et al.: Laser capture microdissection: molecular analysis of tissue. Science (1997) 278:1481–1483.
  • •• New method to separate cell populations ex vivo.
  • PETERSON LA, BROWN MR, CARLISLE AJ et al.: An improved method for construction of directionally cloned cDNA libraries from microdissected cells. Cancer Res. (1998) 58:5326–5328.
  • ALTMAN JD, MOSS PH, GOULDER PR et al.: Phenotypic analysis of antigen-specific T lymphocytes. Science (1996) 274:94-96. [published erratum appears in Science (1998) 280:1821]
  • •• New technology allowing immune phenotyping of antigen-specific T-cells.
  • ROMERO P, DUNBAR PR, VALMORI D et al.: Ex vivostaining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J. Exp. Med. (1998) 188:1641–1650.
  • KRUSE N, PETTE M, TOYKA K, RIECKMANN P: Quantifica-tion of cytokine mRNA expression by RT PCR in samples of previously frozen blood. J. Immunol. Methods (1997) 210:195–203.
  • KERN F, SUREL IP, BROCK C et al.: T-cell epitopemapping by flow cytometry. Nature Med. (1998) 4:975–978.
  • KAMMULA US, LEE K-H, RIKER A et al.: Functionalanalysis of antigen-specific T lymphocytes by serial measurement of gene expression in peripheral blood mononuclear cells and tumor specimens. J. Immunol. (1999) 163:6867–6879.
  • WANG E, MILLER L, OHNMACHT GA, LIU E, MARINCOLA FM: High fidelity mRNA amplification for gene profiling using cDNA microarrays. Nature Biotech. (2000) 17:457–459.
  • •• New method allowing utilisation of limited tissue materialfor extensive molecular analysis.
  • DUDLEY ME, NISHIMURA MI, HOLT AKC, ROSENBERG SA:Anti-tumor immunization with a minimal peptide epitope (G9-209-2M) leads to a functionally heteroge-neous CTL response. J. Immunother. (1999) 22:288–298.
  • SCHEIBENBOGEN C, LEE KH, STEVANOVIC S et al.: Analysis of the T cell response to tumor and viral peptide antigens by an IFNy-ELISPOT assay. Int. J. Cancer (1997) 71:932–936.
  • PASS HA, SCHWARZ SL, WUNDERLICH JR, ROSENBERGSA: Immunization of patients with melanoma peptide vaccines: Immunologic assessment using the ELISPOT assay. Cancer J. Sci. Am. (1998) 4:316–323.
  • COULIE PG, SOMVILLE M, LEHMANN F et al.: Precursor frequency analysis of human cytolytic T lymphocytes directed against autologous melanoma cells. Int. J. Cancer (1992) 50:289–297.
  • LEE K-H, WANG E, NIELSEN M-B et al.: Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regres-sion./ Immunol. (1999) 163:6292–6300.
  • OGG GS, ROD DP, ROMERO P, CHEN JL, CERUNDOLO V: High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoirnmune vitiligo. J. Exp. Med. (1998) 188:1203–1208.
  • LEE PP, YEE C, SAVAGE PA et al.: Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med. (1999) 5:677–685.
  • NIELSEN M-B, MONSURRO' V, MIGUELSE S et al.: Status of activation of circulating vaccine-elicited CD8+ T cells. J. Immunol. (2000) 465:2287–2296.
  • KAMMULA US, MARINCOLA FM, ROSENBERG SA. Real-time quantitative polymerase chain reaction assessment of immune reactivity in melanoma patients after tumor peptide vaccination./ Natl. Cancer Inst. (2000) 92:1336–1344.
  • MATZINGER P: An innate sense of danger. Semin. Immunol. (1998) 10:399–415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.