258
Views
52
CrossRef citations to date
0
Altmetric
Miscellaneous

Current developments in malaria transmission-blocking vaccines

&
Pages 619-628 | Published online: 23 Feb 2005

Bibliography

  • MENDIS K, SINA BJ, MARCHESINI P, CARTER R: The neglected burden of P vivax malaria. Am. j Trop. Med. Hyg. (In Press).
  • KASLOW DC: Transmission-blocking immunity against malaria and other vector-borne diseases. Curr. Opin. Immunol. (1993) 5:557–565.
  • KASLOW DC: Transmission-blocking vaccines: uses and current status of development. Int. j Parasitol. (1997) 27:183–189.
  • CARTER R, MENDIS KN, MILLER LH, MOLINEAUX L, SAUL A: Malaria transmission-blocking vaccines - how can their development be supported? Nature Med. (2000) 6:241–244.
  • ••TBVs are the only area of malaria researchwhere such a multi-laboratory, co-ordinated approach is being attempted. As such, this a real strength for TBVs.
  • ANONONYMOUS: Malaria transmission-blocking vaccines: an ideal public good. UNDP/Mrld Bank/WHO Special Programme for Research and Training in Tropical Diseases (TOR). (2000) TDR/ RBM/MALNAC/2000.1
  • •Theoretical analysis of the coverage required, and possible benefits of, TBV deployment.
  • GOOD MF, DOOLAN DL: Immune effector mechanisms in malaria. Curr. Opin. Immunol.(1999)11:412–419.
  • HUFF CG, MARCHBANKS DF, SHIROISHI T: Changes in infectiousness of malarial gametes. II Analysis of possible causative factors. Exp. Parasitol. (1958) 7:399–417.
  • •First demonstration of transmission-blocking immunity to malaria.
  • GWADZ RW: Successful immunization against the sexual stages of Plasmodium gallinaceum. Science (1976) 193:1150–1151.
  • ••Together with [9] and [10], the modemreproduction of the results of [7], and the elucidation of mechanism.
  • CARTER R, CHEN DH: Malaria transmission blocked by immunisation with gametes of the malaria parasite. Nature (1976) 263:57–60.
  • ••See notation for [8].
  • CARTER R, GWADZ RW, MCAULIFFE FM: Plasmodium gallinaceum: transmission-blocking immunity in chickens I. Comparative immunogenicity of gametocyte- and gamete-containing preparations. Exp. Parasitol. (1979) 47:185–193.
  • ••See notation for [8].
  • RENER J, GRAVES PM, CARTER R, WILLIAMS JL, BURKOT TR: Target antigens of transmission-blocking immunity on gametes of Plasmodium falciparum. Exp. Med. (1983) 158:976–981.
  • READ D, LENSEN AH, BEGARNIE S, HALEY S, RAZA A, CARTER R: Transmission-blocking antibodies against multiple, non-variant target epitopes of the Plasmodium falciparum gamete surface antigen Pfs230 are all complement-fixing. Parasite Immunol. (1994) 16:511–519.
  • ••Demonstration of complement-mediatedlysis of gametes in the mosquito mid-gut.
  • VERMEULEN AN, PONNUDURAI T, BECKERS PJ, VERHAVE JP, SMITS MA, MEUWISSEN JH: Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito.j Exp. Med. (1985) 162:1460–1476.
  • ••Demonstration of complement- independent transmission blocking activity in the mosquito midgut.
  • TSUBOI T, KASLOW DC, GOZAR MM, TACHIBANA M, CAO YM, TORII M: Sequence polymorphism in two novel Plasmodium vivaxookinete surface proteins, Pvs25 and Pvs28, that are malaria transmission-blocking vaccine candidates. Md. Med. (1998) 4:772–782.
  • SHAHABUDDIN M, TOYOSHIMA T, AIKAWA M, KASLOW DC: Transmission-blocking activity of a chitinase inhibitor and activation of malarial parasite chitinase by mosquito protease. Proc. Natl. Acad. Li. U SA (1993) 90:4266–4270.
  • COLLINS WE, SULLIVAN JS, MORRIS CL, GALLAND GG, RICHARDSON BB, ROBERTS JM: The Malayan IV strain of Plasmodium falciparum in Aotus monkeys. Am. j Trop. Med. Hyg. (1997) 56:49–56.
  • TOURE YT, DOUMBO 0, TOURE A et al.: Gametocyte infectivity by direct mosquito feeds in an area of seasonal malaria transmission: implications for Bancoumana, Mali as a transmission-blocking vaccine site. Am. j Trop. Med. Hyg. (1998) 59:481–486.
  • CARTER R, MENDIS KN, ROBERTS D: Spatial targeting of interventions against malaria. Bull. WHO. (2000) 78:1401–1411.
  • HOWARD SC, OMUMBO J, NEVILL C, SOME ES, DONNELLY CA, SNOW RW: Evidence for a mass community effect of insecticide-treated bednets on the incidence of malaria on the Kenyan coast. Trans. Roy Soc. Trop. Med. Hyg. (2000) 94:357–360
  • CARTER R: Epidemiological considerations for malaria reduction by transmission-blocking vaccination. Parassitologia (1999) 41:415–420.
  • ANDERSON RM, MAY RIVI: Infectious diseases of humans. Oxford Scientific Publications (1991).
  • HUBER M, CABIB E, MILLER LH: Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proc. Nati Acad. Sci. USA (1991) 88:2807–2810.
  • VINETZ JM, VALENZUELA JG, SPECHT CA etal.: Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut. ][. Biol. Chem. (2000) 275:10331–10341.
  • CARTER R, GRAVES PM, CREASEY A et al.: Plasmodium falciparum: an abundant stage-specific protein expressed during early gametocyte development. Exp. Parasitol. (1989) 69:140–149.
  • WIZEL B, KUMAR N: Identification of a continuous and cross-reacting epitope for Plasmodium falciparum transmission-blocking immunity. Proc. Nati Acad. Sci. USA (1991) 88:9533–9537.
  • LOBO CA, FUJIOKA H, AIKAWA M, KUMAR N: Disruption of the Pfg27 locus by homologous recombination leads to loss of the sexual phenotype in P falciparum. MM. Cell (1999) 3:793–798.
  • TEMPLETON TJ, KASLOW DC: Identification of additional members define a Plasmodium falciparum gene superfamily which includes Pfs48/45 and Pfs230. Md. Biochem. Parasitol. (1999) 101:223–227.
  • CARTER R, GRAVES PM, KEISTER DB, QUAKYI IA: Properties of epitopes of Pfs 48/45, a target of transmission-blocking monoclonal antibodies, on gametes of different isolates of Plasmodium falciparum. Parasite Immunol. (1990) 12:587–603.
  • VERMEULEN AN, ROEFFEN WF, HENDERIK JB, PONNUDURAI T, BECKERS PJ, MEUWISSEN JH: Plasmodium falciparum transmission-blocking monoclonal antibodies recognize monovalently expressed epitopes. Dev. Biol. Stand. (1985) 62:91–97.
  • KAUSHAL DC, CARTER R, RENER J, GROTENDORST CA, MILLER LH, HOWARD RJ: Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes. ][. Immunol. (1983) 131:2557–2562.
  • QUAKYI IA, CARTER R, RENER J, KUMAR N, GOOD MF, MILLER LH: The 230-kDa gamete surface protein of PlasmodMm falciparum is also a target for transmission-blocking antibodies.j Immunol. (1987) 139:4213–4217.
  • TARGETT GA, HARTE PG, EIDA S, ROGERS NC, ONG CS: Plasmodium falciparum sexual stage antigens: immunogenicity and cell- mediated responses. Immunol. Lett. (1990) 25:77–81.
  • WILLIAMSON KC, KEISTER DB, MURATOVA 0, KASLOW DC: Recombinant Pfs230, a Plasmodium falciparum gametocyte protein, induces antisera that reduce the infectivity of PlasmodMm falciparum to mosquitoes. Mol. Biochem. Parasitol. (1995) 75:33–42.
  • ROEFFEN W, GEERAEDTS F, ELING W et al.: Transmission blockade of Plasmodium falciparum malaria by anti-Pfs230-specific antibodies is isotype dependent. Infect. Immun (1995) 63:467–71.
  • CARTER R, GWADZ RW, GREEN I: Plasmodium gallinaceum: Transmission-blocking immunity in chickens. II. The effect of antigamete antibodies in vitro and in vivo and their elaboration during infection. Exp. Parasitol. (1979) 47:194–208.
  • ••Including [36] and [37], these papersprovide some of the best evidence that vaccine-induced transmission blocking immunity will persist in the field due to natural boosting.
  • GWADZ RW, KOONTZ LC: Plasmodium knowlest. persistence of transmission-blocking immunity in monkeys immunized with gamete antigens. Infect. Immun (1984) 44:137–140.
  • ••See note for [35].
  • RANAWAKA MB, MUNESINGHE YD, DE SILVA DM, CARTER R, MENDIS KN: Boosting of transmission-blocking immunity during natural Plasmodium vivax infections in humans depends upon frequent reinfection. Infect. Immun (1988) 56:1820–1824.
  • ••See note for [35].
  • CARTER R, GRAVES PM, QUAKYI IA, GOOD MF: Restricted or absent immune responses in human populations to PlasmodMm falciparum gamete antigens that are targets of malaria transmission-blocking antibodies. J. Exp. Med. (1989) 169:135–147.
  • GRAVES PM, CARTER R, BURKOT TR, QUAKYI IA, KUMAR N: Antibodies to PlasmodMm falciparum gamete surface antigens in Papua New Guinea sera. Parasite Immunol. (1988) 10:209–218.
  • HEALER J, MCGUINNESS D, CARTER R, RILEY E: Transmission-blocking immunity to Plasmodium falciparum in malaria- immune individuals is associated with antibodies to the gamete surface protein Pfs230. Parasitology (1999) 119:425–433.
  • ROEFFEN W, MULDER B, TEELEN K et al.: Association between anti-Pfs48/45 reactivity and R falciparum transmission-blocking activity in sera from Cameroon. Parasite Immunol. (1996) 18:103–109.
  • FOO A, CARTER R, LAMBROS C et al: Conserved and variant epitopes of target antigens of transmission- blocking antibodies among isolates of Plasmodium falciparum from Malaysia. Am. I Trap. Med. Hyg. (1991) 44:623–631.
  • KOCKEN CHM, MILEK RLB, LENSEN THW, KALSOW DC, SCHOENMAKER JGG, KONINGS RNH: Minimal variation in the transmission-blocking vaccine candidate Pfs48/45 of the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. (1995) 69:115–118.
  • WILLIAMSON KC, KASLOW DC: Strain polymorphism of Plasmodium falciparum transmission-blocking target antigen Pfs230. Mol. Biochem. Parasitol. (1993) 62:125–128.
  • RILEY EM, WILLIAMSON KC, GREENWOOD BM, KASLOW DC: Human immune recognition of recombinant proteins representing discrete domains of the Plasmodium falciparum gamete surface protein, Pfs230. Parasite Immunol. (1995) 17:11–19.
  • RILEY EM, WILLIAMSON KC, WANG CC, KALSOW DC, CARTER R: Antibody recognition and recombinant Pfs230: a target antigen of transmission-blocking immunity to Plasmodium falciparum malaria. Acta Parasitologica Turcica (1996) 20\(Suppl. 1):133–146.
  • BUSTAMANTE PJ, WOODRUFF DC, OH J, KEISTER DB, MURATOVA 0, WILLIAMSON KC: Differential ability of specific regions of Plasmodium falciparum sexual-stage antigen, Pfs230, to induce malaria transmission-blocking immunity. Parasite Immunol. (2000) 22:373–380.
  • WILLIAMSON KC, CRISCIO MD, KASLOW DC: Cloning and expression of the gene for PlasmodMm falciparum transmission-blocking target antigen, Pfs230. Mol. Biochem. Parasitol. (1993) 58:355–358.
  • MILEK RL, ROEFFEN WF, KOCKEN CH et al.: Immunological properties of recombinant proteins of the transmission-blocking vaccine candidate, Pfs48/45, of the human malaria parasite Plasmodium falciparum produced in Escherichia coli Parasite Immunol. (1998) 20:377-385.
  • MILEK RL, DEVRIES AA, ROEFFEN WF, STUNNENBERG H, ROTTIER PJ, KONINGS RN: Plasmodium falciparum: heterologous synthesis of the transmission-blocking vaccine candidate Pfs48/45 in recombinant vaccinia virus- infected cells. Exp. Parasitol. (1998) 90:165–174.
  • MILEK RL, STUNNENBERG HG, KONINGS RN: Assembly and expression of a synthetic gene encoding the antigen Pfs48/45 of the human malaria parasite Plasmodium falciparum in yeast. Vaccine (2000) 18:1402–1411.
  • KASLOW DC, QUAKYI IA, SYIN C, RAUM MG, KEISTER DB, COLIGAN JE, MCCUTCHEON TF, MILLER LH: A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature (1988) 333:74–76.
  • ••The first isolation and identification of agene coding for a target antigen of malaria transmission-blocking immunity.
  • TSUBOI T, KASLOW DC, CAO YM, SHIWAKU K, TORII M: Comparison of Plasmodium yoelii ookinete surface antigens with human and avian malaria parasite homologues reveals two highly conserved regions. Mal Biochem. Parasitol. (1997) 87:107–111.
  • BARR PJ, GREEN KM, GIBSON HL, BATHURST IC, QUAKYI IA, KASLOW DC: Recombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals.j Exp. Merl (1991) 174:1203–1208.
  • ••Along with [56], provides the firstdemonstration of vaccine-induced transmission blocking immunity in animal models using a recombinant protein adsorbed to aluminium hydroxide adjuvant.
  • KASLOW DC, ISAACS SN, QUAKYI IA, GWADZ RW, MOSS B, KEISTER DB: Induction of Plasmodium falciparum transmission-blocking antibodies by recombinant vaccinia virus. Science (1991) 252:1310–1313.
  • KASLOW DC, SHILOACH J: Production, purification and immunogenicity of a malaria transmission-blocking vaccine candidate: TBV25H expressed in yeast and purified using nickel-NTA agarose. Biotechnology (NY) (1994) 12:494–499.
  • ••See note for [54].
  • RAWLINGS DJ, KASLOW DC: Adjuvant-dependent immune response to malarial transmission-blocking vaccine candidate antigens. J. Exp. Med. (1992) 176:1483–1487.
  • LOBO CA, DHAR R, KUMAR N: Immunization of mice with DNA-based Pfs25 elicits potent malaria transmission-blocking antibodies. Infect. Immun. (1999) 67:1688–1693.
  • DUFFY PE, KASLOW DC: A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infect. Immun (1997) 65:1109–1113.
  • GOZAR MM, PRICE VL, KASLOW DC: Saccharomyces cerevisiae-secreted fusion proteins Pfs25 and Pfs28 elicit potent Plasmodium falciparum transmission-blocking antibodies in mice. Infect. Immun. (1998) 66:59–64.
  • HISAEDA H, STOWERS AW, TSUBOI T et al.: Antibodies to malaria vaccine candidates Pys25 and Pys28 completely block the ability of Plasmodium vivax to infect mosquitoes. Infect. Immun. (2000) 68:6618–6623.
  • ••One of the first recombinant protein-basedvivaxyaccines for any parasite stage. Most importantly, demonstrates that TBV development for both P falciparum and P vivax are running in parallel.
  • HAFALLA JC, SANTIAGO ML, PASAY MC etal.: Minimal variation in the Pfs28 ookinete antigen from Philippine field isolates of Plasmodium falciparum. Mal Biochem. Parasitol (1997) 87:97–99.
  • KASLOW DC, QUAKYI IA, KEISTER DB: Minimal variation in a vaccine candidate from the sexual stage of Plasmodium falciparum. Mal Biochem. Parasitol (1989) 32:101–103.
  • SHI YP ALPERS MP, POVOA MM, LAL AA: Single amino acid variation in the ookinete vaccine antigen from field isolates of Plasmodium falciparum. Mol. Biochem. Parasitol (1992) 50:179–180.
  • SIDEN-KIAMOS I, VLACHOU D, MARGOS G et al: Distinct roles for Pbs21 and Pbs25 in the in vitro ookinete to oocyst transformation of PlasmodMm berghei Cell Sci. (2000) 113:3419–3426.
  • OCKENHOUSE CF, SUN PF, LANAR DE et al.: Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. j Infect. Dis. (1998) 177:1664–1673.
  • TINE JA, LANAR DE, SMITH DM et al: NYVAC-Pf7: a poxvirus-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. Infect. Immun. (1996) 64:3833–3844.
  • STOWERS AW, ZHANG Y, SHIMP RL, KASLOW DC: Structural conformers produced during malarial vaccine production in yeast. Yeast (2001) 18:137–150.
  • ABDULLA S, ARMSTRONG-SCHELLENBERG J, NATHAN et al.: Impact on malaria morbidity of a programme supplying insecticide treated nets in children aged under 2 years in Tanzania: community cross sectional study. BMJ (2001) 322:270–273.
  • D'ALESSANDRO U: Insecticide treatednets to prevent malaria. BMJ (2001) 322:249–250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.