52
Views
2
CrossRef citations to date
0
Altmetric
Miscellaneous

Gene therapy for paediatric leukaemia

, &
Pages 663-674 | Published online: 23 Feb 2005

Bibliography

  • KERSEY JH: Fifty years of studies of the biology and therapy of childhood leukemia. Blood (1997) 90:4243–4251.
  • PUI CH, EVANS WE: Acute lymphoblastic leukemia. N Engl. j Med. (1998) 339:605–615.
  • RIVERA GK, PINKEL D, SIMONE JV et al.: Treatment of acute lymphoblastic leukemia: 30 year's experience at St. Jude Children's Research Hospital. N Engl. Med. (1995) 329:1989–1995.
  • BRENNER MK: Gene Marking. Hum. Gene Ther. (1996) 7:1927–1936.
  • WIVEL NA, WILSON JM: Methods of gene delivery. Hematol. arca Clin. North Am. (1998) 12:483–501.
  • BRENNER MK: Emerging applications of gene transfer in the hematopoietic cancers. Pediatr. Hematol arca (1997) 19:1–6.
  • MILLER AD: Cell-surface receptors for retroviruses and implications for gene transfer. Proc. Natl. Acad. Sd. USA (1996) 93:11407–11413.
  • MILLER DG, ADAM MA, MILLER AD:Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection [published erratum appears in Mol Cell Biol 1992 Jan:12(0:4331. Ma. Cell Biol. (1990) 10:4239–4242.
  • TISDALE JF, HANAZONO Y, SELLERSSE et al.: Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability. Blood (1998) 92:1131–1141.
  • AMADO RG, CHEN IS: Lentiviral vectors - the promise of gene therapy within reach? Science (1999) 285:674–676.
  • BUCHSCHACHER GL JR., WONG-STAAL F: Development of lentiviral vectors for gene therapy for human diseases. Blood (2000) 95:2499–2504.
  • SUTTON RE, WU HT, RIGG R et al.: Human immunodeficiency virus *type 1 vectors efficiently transduce human hematopoietic stem cells. j Viral. (1998) 72:5781–5788.
  • MASCARENHAS L, STRIPECKE R, CASE SS et al.: Gene delivery to human B-precursor acute lymphoblastic leukemia cells. Blood (1998) 92:3537–3545.
  • CASE SS, PRICE MA, JORDAN CT et al.: Stable transduction of quiescent CD34(+)CD38(-) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc. Natl. Acad. Sci. USA (1999) 96:2988–2993.
  • NALDINI L, BLOMER U, GAGE FH et al.: Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Nati Acad. Sci. USA (1996) 93:11382–11388.
  • YU SE VON RUDEN T, KANTOFF PW etal.: Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Nati Acad. Sci. USA (1986) 83:3194–3198.
  • XU K, MA H, MCCOWN TJ et al.: Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol. Ther. (2001) 3:97–104.
  • SALMON P, KINDLER V, DUCREY 0 et al.: High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood (2000) 96:3392–3398.
  • KAY MA, GLORIOSO JC, ALDINI L: Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature Med. (2001) 7:33–40.
  • ALTON E, KITS ON C: Gene therapy for cystic fibrosis. Expert Opin. Invest. Drugs (2000) 9:1523–1535.
  • BALAGUE C, ZHOU J, DAI Y et al.: Sustained high-level expression of full-length human Factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector. Blood (2000) 95:820–828.
  • MORSY MA, CASKEY CT: Expanded-capacity adenoviral vectors - the helper-dependent vectors. Ma. Med. Today (1999) 5:18–24.
  • MORRAL N, O& NEAL W, RICE K et al.:Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc. Natl. Acad. Sci. USA (1999) 96:12816–12821.
  • BRAMSON JL, GRAHAM FL, GAULDIE J: The use of adenoviral vectors for gene therapy and gene transfer in vivo. Curr. Opin. Biotech. (1995) 6:590–595.
  • INOUE N, RUSSELL DW: Packaging cells based on inducible gene amplification for the production of adeno-associated virus vectors. j Viral. (1998) 72:7024–7031.
  • MUZYCZKA N: Use of adeno-associated virus as a general transduction vector for mammalian cells. CWT. Top Microbial. Immurrof (1992) 158:97–129.
  • MIAO CH, NAKAI H, THOMPSON AR et al.: Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction. Viral. (2000) 74:3793–3803.
  • RUSSELL DW, KAY MA: Adeno-associated virus vectors and hematology. Blood (1999) 94:864–874.
  • STEDMAN H, WILSON JM, FINKE R et al.: Phase I clinical trial utilizing gene therapy for limb girdle muscular dystrophy: alpha-, beta-, gamma-, or delta-sarcoglycan gene delivered with intramuscular instillations of adeno-associated vectors. Hum. Gene Ther. (2000) 11:777–790.
  • KAY MA, MANNO CS, RAGNI MV et al.: Evidence for gene transfer and expression of Factor IX in haemophilia B patients treated with an AAV vector. Nature Genet. (2000) 24:257–261.
  • DONAHUE RE, KESSLER SW, BODINE D et al.: Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. j Exp. Med. (1992) 176:1125–1135.
  • HESLOP HE, RILL DR, HORWITZ EM et al.: Gene marking to assess tumor contamination in stem cell grafts for acute myeloid leukemia. In: Autologous Blood and Marrow Transplantation. DICKE KA, KEATING A (Eds.) Carden Jennings, Charlottesville, VA (1999):513–520.
  • HITT MM, GRAHAM FL: Adenovirus vectors for human gene therapy. Adv. Virus Res. (2000) 55:479–505.
  • FABB SA, DICKSON JG: Technology evaluation: AAV Factor IX gene therapy, Avigen, Inc. Curr. Opin. Md. Ther. (2000) 2:601–606.
  • HIGH KA: Gene therapy: a 2001 perspective. Haemophilia (2001) 7 (Suppl. 1):23–27.
  • SCULLY SP: Gene therapy: clinical considerations. CM]. Orthop. (2000) S55–S58.
  • BYSTRYN JC, HENN M, LI J et al.: Identification of immunogenic human melanoma antigens in a polyvalent melanoma vaccine. Cancer Res. (1992) 52:5948–5953.
  • THOMAS MC, GRETEN TF, PARDOLL DM et al.: Enhanced tumor protection by granulocyte-macrophage colony-stimulating factor expression at the site of an allogeneic vaccine. Hum. Gene Ther. (1998) 9:835–843.
  • FEARON ER, PARDOLL DM, ITAYA T et al.: Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell (1990) 60:397–403.
  • GOLUMBEK PT, LAZENBY AJ, LEVITSKY HI et al.: Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science (1991) 254:713–716.
  • ASHER AL, MULE JJ, KASID A etal.: Murine tumor cells transduced with the gene for tumor necrosis factor-alpha. Evidence for paracrine immune effects of tumor necrosis factor against tumors. J Immuriol. (1991) 146:3227–3234.
  • HOCK H, DORSCH M, DIAMANTSTEIN T et al.: Interleukin 7 induces CD4+ T cell-dependant tumor rejection. J Exp. Med. (1991) 174:1291–1298.
  • WATANABE Y, KURIBAYASHI K, MIYATAKE S: Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc. Natl. Acad. Li. USA (1989) 86:9456–9460.
  • CARD OSO AA, SCHULTZE JL, BOUSSIOTIS VA et al.: Pre-B acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen. Blood (1996) 88:41–48.
  • DILLOO D, BACON K, HOLDEN W et al.: Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nature Med. (1996) 2:1090–1095.
  • ••In vivo use of lymphotactin and itscombination with other immunostimulatory molecules that act at different levels of the immune response resulted in enhanced antitumor activity in a murine model.
  • CHONG H, TODRYK S, HUTCHINSON G et al.: Tumour cell expression of B7 costimulatory molecules and interleukin-12 or granulocyte-macrophage colony-stimulating factor induces a local antitumour response and may generate systemic protective immunity. Gene Ther. (1998) 5:223–232.
  • EMTAGE PC, WAN Y, HITT M et al.: Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models [see comments]. Hum. Gene Ther. (1999) 10:697–709.
  • DRANOFF G, JAFFEE E, LAZENBY A et al.: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA (1993) 90:3539–3543.
  • •GM-CSF is a major immunomodulatory cytokine in tumor cells-based vaccines.
  • ELLEM KA, O& ROURKE MG, JOHNSON GR et al.: A case report: immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma cells for immunotherapy. Cancer Immuriol. Immunother. (1997) 44:10–20.
  • SIMONS JW, JAFFEE EM, WEBER CE etal.: Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res. (1997) 57:1537–1546.
  • MACKENSEN A, VEELKEN H, LAHN M et al.: Induction of tumor-specific cytotoxic T lymphocytes by immunisation with autologous tumor cells and interleukin-2 gene transfected fibroblasts. _J. Md. Med. (1997) 75:290–296.
  • VEELKEN H, MACKENSEN A, LAHN M et al.: A phase-I clinical study of autologous tumor cells plus interleukin-2-gene-transfected allogeneic fibroblasts as a vaccine in patients with cancer. Int. J Cancer (1997) 70:269–277.
  • DAS GUPTA TK, COHEN EP, RICHARDS JM: Phase I evaluation of interleukin-2-transfected irradiated allogeneic melanoma for the treatment of metastatic melanoma: appendix 1: protocol. Hum. Gene Ther. (1997) 8:1701–1714.
  • SOBOL RE, FAKHRAI H, SHAWLER D et al.: Interleukin-2 gene therapy in a patient with glioblastoma. Gene Ther. (1995) 2:164–167.
  • BRENNER M, FURMAN W, SANTANA V et al.: Phase I study of cytokine-gene modified autologous neuroblastoma cells for treatment of relapsed/refractory neuroblastoma. Hum. Gene Ther. (1992) 3:665.
  • BOWMAN L, GROSSMANN M, RILL D et al.: IL-2 adenovector-transduced autologous tumor cells induce antitumor immune responses in patients with neuroblastoma. Blood (1998) 92: 1941-1949.
  • GREWAL IS, FLAVELL RA: CD40 and CD154 in cell-mediated immunity. Ann. Rev. Immuriol. (1998) 16:111–135.
  • FAASSEN AE, DALKE DP, BERTON MT etal.: CD4O-CD40 ligand interactions stimulate B cell antigen processing. Eur. Immuriol. (1995) 25:3249–3255.
  • YELLIN MJ, SINNING J, COVEY LR et al.: T lymphocyte T cell-B cell-activating molecule/CD4O-L molecules induce normal B cells or chronic lymphocytic leukemia B cells to express CD80 (B7/BB-1) and enhance their costimulatory activity. J. Immuriol. (1994) 153:666–674.
  • RANHEIM E, KIPPS T: Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependant signal. J. Exp. Med. (1993) 177:925–935.
  • GREWAL IS, XU J, FLAVELL RA: Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature (1995) 378:617–620.
  • CARDOSO AA, SEAMON MJ, AFONSO HM etal.: Ex vivo generation of human anti-pre-B leukemia-specific autologous cytolytic T cells. Blood (1997) 90:549–561.
  • •A conceptual in vitro model of CTL generation against leukaemia.
  • DILLOO D, BROWN M, ROSKROW M et al.: CD40 ligand induces an antileukemia immune response in vivo. Blood (1997) 90: 1927-1933.
  • •A conceptual in vivo model of immunity against leukaemia.
  • KATO K, CANTWELL MJ, SHARMA S etal.: Gene transfer of CD40-ligand induces autologous immune recognition of chronic lymphocytic leukemia B cells. J. Chu. Invest. (1998) 101:1133–1141.
  • WIERDA W CANTWELL M, WOODS S etal.: CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood (2000) 96:2917–2924.
  • STRIPECKE R, SKELTON DC, PATTENGALE PK et al.: Combination of CD80 and granulocyte-macrophage colony-stimulating factor coexpression by a leukemia cell vaccine: preclinical studies in a murine model recapitulating Philadelphia chromosome-positive acute lymphoblastic leukemia. Hum. Gene Ther: (1999) 10:2109–2122.
  • DUNUSSI-JOANNOPOULOS K, RUNYON K, ERICKSON J et al.: Vaccines with interleukin-12-transduced acute myeloid leukemia cells elicit very potent therapeutic and long-lasting protective immunity. Blood (1999) 94:4263–4273.
  • STRIPECKE R, CARD OSO AA, PEPPER KA etal.: Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage- colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses. Blood (2000) 96:1317–1326.
  • ••Efficient in vitro transduction of primaryleukaemia cells can be efficiently transduced with lentiviral vectors producing an antileukaemic immune response.
  • VEREECQUE R, BUFFENOIR G, PREUDHOMME C et al.: Gene transfer of GM-CSF, CD80 and CD154 cDNA enhances survival in a murine model of acute leukemia with persistence of a minimal residual disease. Gene net: (2000) 7:1312–1316.
  • DUNUSSI-JOANNOPOULOS K, DRANOFF G, WEINSTEIN HJ et al.: Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood (1998) 91:222–230.
  • NAIR SK, HEISER A, BOCZKOWSKI D et al.: Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells [see comments]. Nature Med. (2000) 6:1011–1017.
  • ••New insights in the delicate balancebetween autoimmunity and tolerance.
  • BANCHEREAU J, STEINMAN RIVI: Dendritic cells and the control of immunity. Nature (1998) 392:245–252.
  • CHOUDHURY A, GAJEWSKI JL, LIANG JC et al.: Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia. Blood (1997) 89:1133–1142.
  • NIEDA M, NICOL A, KIKUCHI A et al.: Dendritic cells stimulate the expansion of bcr-ab/specific CD8+ T cells with cytotoxic activity against leukemic cells from patients with chronic myeloid leukemia. Blood (1998) 91:977–983.
  • CHOUDHURY A, TOUBERT A, SUTARIA S et al.: Human leukemia-derived dendritic cells: ex-viva development of specific antileukemic cytotoxicity. Grit. Rev. Immune]. (1998) 18:121–131.
  • CIGNETTI A, BRYANT E, ALLIONE B etal.: CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Blood (1999) 94:2048–2055.
  • ••CD34(+) AML and ALL derived-DC withmorphologic, phenotypic, and functional similarities to normal DC.
  • VONDERHEIDE R, HAHN W, SCHULTZE J et al.: The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity (1999) 10:673–679.
  • CHEEVER MA, CHEN W, DISIS ML et al.: T-cell immunity to oncogenic proteins including mutated ras and chimeric bcr-abl. Ann. NY Acad. Sci. (1993) 690:101–112.
  • FELTKAMP M, VREUGDENHIL G, VIERBOOM M et al.: CTL raised against a subdominant epitope offered as a synthetic peptide eradicate human papillomavirus Type 16-induced tumors. Eur j Immune]. (1995) 25:2638–2641.
  • BOCCHIA M, WENTWORTH PA, SOUTHWOOD S et al.: Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules. Blood (1995) 85:2680–2684.
  • YOTNDA P, GARCIA F, PEUCHMAUR M et al.: Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia. Clin. Invest. (1998) 102:455–462.
  • OKAY, UDAKA K, TSUBOI A etal.: Cancer immunotherapy targeting Wilms' tumor gene WT1 product. j Immune]. (2000) 164:1873–1880.
  • GAIGER A, REESE V, DISIS ML et al.: Immunity to WT1 in the animal model and in patients with acute myeloid leukemia. Blood (2000) 96:1480–1489.
  • ROSKROW MA, DILLOO D, SUZUKI N et al.: Autoimmune disease induced by dendritic cell immunisation against leukemia. Leuk. Res. (1999) 23:549–557.
  • LUDEWIG B, OCHSENBEIN AE ODERMATT B et al.: Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. j Esp. Med. (2000) 191:795–804.
  • NESTLE FO, ALIJAGIC S, GILLIET M et al.: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells [see comments]. Nature Med. (1998) 4:328–332.
  • •A clinical study comparing two types of antigen-pulsing in DC.
  • RAZE, CARSON DA, PARKER SE et al.: Intradermal gene immunisation: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc. Nati Acad. Sci. USA (1994) 91:9519–9523.
  • KIM JJ, YANG JS, LEE DJ et Macrophage colony-stimulating factor can modulate immune responses and attract dendritic cells in vivo. Hum. Gene Mei: (2000) 11:305–321.
  • KIM JJ, YANG JS, MONTANER L et al.: Communisation with IFN-gamma or IL-2, but not IL-13 or IL-4 cDNA can enhance Thl-type DNA vaccine-induced immune responses in Vivo. j Interferon Cytokine Res. (2000) 20:311–319.
  • OHASHI T, HANABUCHI S, KATO H et al.: Prevention of adult T-cell leukemia-like lymphoproliferative disease in rats by adoptively transferred T cells from a donor immunized with human T-cell leukemia virus Type 1 Tax-coding DNA vaccine. Viral. (2000) 74:9610–9616.
  • SYRENGELAS AD, CHEN TT, LEVY R: DNA immunisation induces protective immunity against B-cell lymphoma. Nature Med. (1996) 2:1038–1041.
  • KRIEG A, WAGNER H: Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immune]. Today (2000) 21:521–526.
  • PORTER DL, ANTIN JH: The graft-versus-leukemia effects of allogeneic cell therapy. Ann. Rev Med. (1999) 50:369–386.
  • COLLINS RH, JR, SHPILBERG 0, DROBYSKI WR etal.: Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation [see comments]. Oiled. (1997) 15:433–444.
  • VAN RHEE F, LIN F, CULLIS JO et al.: Relapse of chronic myeloid leukemia after allogeneic bone marrow transplant: the case for giving donor leukocyte transfusions before the onset of hematologic relapse. Blood (1994) 83:3377–3383.
  • RIDDELL SR, ELLIOT M, LEWINSOHN DA etal.: T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nature Med. (1996) 2:216–223.
  • WALTER EA, GREENBERG PD, GILBERT MJ et al.: Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl. J Med. (1995) 333:1038–1044.
  • HESLOP HE, NG CYC, LI C et al: Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nature Med. (1996) 2:551–555.
  • ROONEY CM, SMITH CA, YC NG C et al.: Infusion of cytotoxic T Cells for the prevention and treatment of Epstein-Barr Virus-induced lymphoma in allogeneic transplant recipients. Blood (1998) 92:1549–1555.
  • ROSKROW MA, SUZUKI N, GAN Y-J et al.: Epstein-Barr Virus (EBV)-Specific Cytotoxic T Lymphocytes for the Treatment of Patients With EBV-Positive Relapsed Hodgkin's Disease. Blood (1998) 91:2925–2934.
  • WALKER RE, CARTER CS, MUUL Let al.: Peripheral expansion of pre-existing mature T cells is an important means of CD4+ T-cell regeneration HIV-infected adults. Nature Med. (1998) 4:852–856.
  • MERROUCHE Y, NEGRIER S, BAIN C et al.: Clinical application of retroviral gene transfer in oncology: results of a French study with tumor-infiltrating lymphocytes transduced with the gene of resistance to neomycin. J. Clin. Oncol (1995) 13:410–418.
  • ECONOMOU JS, BELLDEGRUN AS, GLASPY J etal.: In vivo trafficking of adoptively transferred interleukin-2 expanded tumor-infiltrating lymphocytes and peripheral blood lymphocytes. Results of a double gene marking trial. _J. Chit. Invest. (1996) 97:515–521.
  • BRODIE SJ, LEWINSOHN DA, PATTERSON BK et al: In vivo migration and function of transferred HIV- 1-specific cytotoxic T cells [see comments]. Nature Med. (1999) 5:34–41.
  • SMITH CA, NG CYC, HESLOP HE et al.: Production of genetically modified EBV-specific cytotoxic T cells for adoptive transfer to patients at high risk of EBV-associated lymphoproliferative disease. Hematother. (1995) 4:73–79.
  • ROONEY CM, SMITH CA, NG C etal.: Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr virus-related lymphoproliferation. Lancet (1995) 345:9–13.
  • TIBERGHIEN P, REYNOLDS CW, KELLER J et al: Ganciclovir treatment of herpes simplex thymidine kinase-transduced primary T lymphocytes: an approach for specific in vivo donor T-cell depletion after bone marrow transplantation? Blood (1994) 84:1333–1341.
  • BORDIGNON C, BONINI C, VERZELETTI S et al: Transfer of the HSV-tk gene into donor peripheral blood lymphocytes for in vivo modulation of donor anti-tumor immunity after allogeneic bone marrow transplantation. Hum. Gene Titer. (1995) 6:813–819.
  • TIBERGHIEN P, CAHN JY, BRION A et al.: Use of donor T-lymphocytes expressing herpes-simplex thymidine kinase in allogeneic bone marrow transplantation: a Phase I-II study. Hum. Gene Titer. (1997) 8:615–624.
  • BONINI C, FERRARI G, VERZELETTI S etal.: HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia [see comments]. Science (1997) 276:1719–1724.
  • SZCZYLIK C, SKORSKI T, NICOLAIDES NC et al: Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science (1991) 253:562–565.
  • SKORSKI T, NIEBOROWSKA-SKORSKA M, CAMPBELL K etal.: Leukemia treatment in severe combined immunodeficiency mice by antisense oligodeoxynucleotides targeting cooperating oncogenes. j Exp. Med. (1995) 182:1645–1653.
  • CALABRETTA B, SIMS RB, VALTIERI M et al.: Normal and leukemic hematopoietic cells manifest differential sensitivity to inhibitory effects of c-myb antisense oligodeoxynucleotides: an in vitro study relevant to bone marrow purging. Proc. Natl. Acad. Sci. USA (1991) 88:2351–2355.
  • SKORSKI T, NIEBOROWSKA-SKORSKA M, WLODARSKI P et al: Antisense oligodeoxynucleotide combination therapy of primary chronic myelogenous leukemia blast crisis in SCID mice. Blood (1996) 88:1005–1012.
  • GEWIRTZ AM: Myb targeted therapeutics for the treatment of human malignancies. Oncogene (1999) 18:3056–3062.
  • BAYEVER E, IVERSEN PL, BISHOP MR etal.: Systemic administration of a phosphorothioate oligonucleotide with a sequence complementary to p53 for acute myelogenous leukemia and myelodysplastic syndrome: initial results of a Phase I trial. Antisense Res. Dev. (1993) 3:383–390.
  • BISHOP MR, JACKSON JD, TARANTOLO SR et al: Ex vivo treatment of bone marrow with phosphorothioate oligonucleotide OL(1)p53 for autologous transplantation in acute myelogenous leukemia and myelodysplastic syndrome. Hematother. (1997) 6:441–446.
  • WATERS JS, WEBB A, CUNNINGHAM D et al: Phase I clinical and pharmacokinetic study of bc1-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma [see comments]. Chit. Oncol (2000) 18:1812–1823.
  • BRENNER MK, RILL DR, HOLLADAY MS etal.: Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet (1993) 342:1134–1347.
  • BRENNER M, MIRRO J, JR., HURWITZ C et al: Autologous bone marrow transplant for children with AML in first complete remission: use of marker genes to investigate the biology of marrow reconstitution and the mechanism of relapse. Hum. Gene Titer. (1991) 2:137–159.
  • DEISSEROTH AB, KANTARJIAN H, TALPAZ M et al: Autologous bone marrow transplantation for CML in which retroviral markers are used to discriminate between relapse which arises from systemic disease remaining after preparative therapy versus relapse due to residual leukemia cells in autologous marrow: a pilot trial. Hum. Gene Titer. (1991) 2:359–376.
  • SANTANA VM, BRENNER MK, IHLE J etal.: A Phase I trial of high-dose carboplatin and etoposide with autologous marrow support for treatment of relapse/ refractory neuroblastoma without apparent bone marrow involvement: use of marker genes to investigate the biology of marrow reconstitution and the mechanism of relapse. Hum. Gene Titer. (1991) 2:273–286.
  • CORNETTA K, TRICOT G, BROUN ER etal.: Retroviral-mediated gene transfer of bone marrow cells during autologous bone marrow transplantation for acute leukemia. Hum. Gene Titer. (1992) 3:305–318.
  • DUNBAR CE, NIENHUIS AW, STEWART FM etal.: Genetic marking with retroviral vectors to study the feasibility of stem cell gene transfer and the biology of hemopoietic reconstitution after autologous transplantation in multiple myeloma, chronic myelogenous leukemia, or metastatic breast cancer. Hum. Gene Ther. (1993) 4:205–222.
  • BJORKSTRAND B, GAHRTON G, SIRAC DILBER M et al: Retroviral-mediated gene transfer of CD34-enriched bone marrow and peripheral blood cells during autologous stem cell transplantation for multiple myeloma. Hum. Gene Ther. (1994) 5:1279–1286.
  • SCHUENING F, MILLER AD, TOROK-STORB B et al.: Study on contribution of genetically marked peripheral blood repopulating cells to hematopoieitc reconstitution after transplantation. Hum. Gene Ther. (1994) 5:1523–1534.
  • STEWART AK, DUBE ID, KAMEL-REID S etal.: A Phase I study of autologous bone marrow transplantation with stem cell gene marking in multiple myeloma. Hum. Gene Ther. (1995) 6:107–110.
  • GAHRTON G, BJORKSTRAND B, DILBER MS et al: Gene marking and gene therapy in multiple myeloma. Adv. Exp. Med. Biol. (1998) 451:493–497.
  • BRENNER MK, RILL DR, MOEN RC et al.: Gene-marking to trace origin of relapse after autologous bone marrow transplantation. Lancet (1993) 341:85–86.
  • RILL DR, SYCAMORE DL, SMITH SS et al.: Long term in vivo fate of human hemopoietic cells transduced by moloney-based retroviral vectors. Blood (2000) 96:844a.
  • SORRENTINO BP BRANDT SJ, BODINE D et al.: Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science (1992) 257:99–103.
  • ALLAY JA, PERSONS DA, GALIPEAU J etal.: In vivo selection of retrovirally transduced hematopoietic stem cells. Nature Med. (1998) 4:1136–1143.
  • PATEL DH, ALLAY JA, BELT JA et al: Retroviral transfer of the hENT2 nucleoside transporter cDNA confers broad-spectrum antifolate resistance in murine bone marrow cells. Blood (2000) 95:2356–2363.
  • MORITZ T, MACKAY W, GLASSNER BJ etal.: Retrovirus-mediated expression of a DNA repair protein in bone marrow protects hematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo. Cancer Res. (1995) 55:2608–2614.
  • REESE JS, KOC ON, LEE KM et al: Retroviral transduction of a mutant methylguanine DNA methyltransferase gene into human CD34 cells confers resistance to 06-benzylguanine plus 1,3-bis(2-chloroethyl)-1-nitrosourea. Proc. Natl. Acad. Sci. USA (1996) 93:14088–14093.
  • MAZE R, KURPAD C, PEGG AE et al: Retroviral-mediated expression of the P 140A, but not P140A/G156A, mutant form of 06-methylguanine DNA methyltransferase protects hematopoietic cells against 06-benzylguanine sensitization to chloroethylnitrosourea treatment. j Pharmacol Exp. Ther. (1999) 290:1467–1474.
  • MOSCOW JA, HUANG H, CARTER C et al.: Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood (1999) 94:52–61.
  • ABONOUR R, WILLIAMS DA, EINHORN L et al.: Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells [see comments]. Nature Med. (2000) 6:652–658.
  • BUNTING KD, GALIPEAU J, TOPHAM D et al.: Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood (1998) 92:2269–2279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.